
International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

109

Bug Triaging Mechanism for Non-Reproducible

Bugs

Akshay Patil1, Arpit Bobade2, Vaishnavi Ingole3

1,2,3Department of Computer Science and Engineering, Dr. D. Y. Patil College of Engineering, Pune, India

Abstract—Programming organizations spend more than 45

percent of cost in managing programming bugs. An unavoidable

stride of settling bugs is bug triage, which means to effectively

appoint a designer to another bug. To diminish the time cost in

manual work, content order procedures are connected to lead

programmed bug triage. In this paper, we address the issue of

information decrease for bug triage, i.e., how to lessen the scale

and enhance the nature of bug information. We consolidate

occurrence determination with include choice to at the same time

diminish information scale on the bug measurement and the word

measurement. To decide the request of applying case choice and

highlight determination, we separate characteristics from

recorded bug informational collections and construct a prescient

model for another bug informational collection. We

observationally research the execution of information lessening on

absolutely 600,000 bug reports of two huge open source ventures,

in particular Eclipse and Mozilla. The outcomes demonstrate that

our information decrease can adequately diminish the

information scale and enhance the precision of bug triage.

Index Terms—Bug Data Reduction, Bug Triage, Data

Management in Bug Repository, Feature Selection, Instance

Selection, Mining Software Repository

I. INTRODUCTION

Bug triage is the methodology that assigns the bug reports to

the appropriate developer. The data that is available in the real

world is prone to noise and may also contain redundant values.

Data that comprising noise may mislead the data analysis

techniques while redundant data may increase the cost of data.

Software bugs are inevitable and bug triaging is a difficult and

time consuming task. Previous studies show that optimizing

bug triaging is a non-trivial activity. Hence, automatic bug

triaging techniques that can help triager in making strategic

decision can be beneficial. One of the important factors that

plays an integral role in developer selection is recency. This is

due to the fact that knowledge of a developer is statistically

correlated with time. The existing studies have used bug textual

features with time decay for assignment. Since meta-fields are

also important, we proposed a novel metafield oriented time

decay model for bug triaging.

Previous studies propose varied bug triaging techniques

considering all bug parameters on a same platform. In real time

scenario, bug parameters can play a role with varying

importance in decision making. Hence, we use phenomenon of

parameter prioritization in bug triaging. Analytic hierarchy

process (AHP) is a technique for decision making that involves

parameter prioritization. We propose an AHP based bug

triaging technique, W8Prioritizer, to optimize the efficiency of

bug report assignment technique.

The main contributions of this research will be development

of a proficient recommender system for bug report assignment.

We characterize developer recommendation through various

quantitative and qualitative models. In essence, these models

utilize time decay and parameter prioritization. We plan to use

these models to perform suitable developer selection for NR

bugs. Our intuition is that before developer assignment for NR

bugs if there is a prediction model that could judge the

fixability of NR bugs then it could be beneficial for both bug

triagers and software developers. With the use of such

mechanism, developers & triager can actually devote their time

and efforts only on those bugs that have high probability of

getting fixed and are regarded as fixable by the proposed

mechanism.

The order of applying the reduction techniques may affect

the result of bug triage approach. In this paper, we propose a

Predictive model in order to determine the order of bug data

reduction techniques, i.e., FS to IS or IS to FS. To decrease the

manual triager cost, text classification technique i.e., Naive

Bayes is used to predict correct developer to solve and fix the

bug reports. The proposed system performance is verified

using Mozilla bug data set .After reducing the training set, the

accuracy of bug data is measured as 78%. The result shows that

the experiment on reduce training sets can obtain better

accuracy than that on original training set.

The remainder section of this paper is organized as follows:

Section 2 presents the proposed methodology. Section 3

presents the implementation. In Section 4 we briefly conclude

this paper and present our future work.

II. PROPOSED METHODOLOGY

In the last two decades, researchers have addressed problem

of bug triaging exhaustively. Various techniques such as

machine learning (ML), information retrieval (IR), statistical

approaches, fuzzy sets, and auction based approaches, social

network & tossing graph based approaches have been used in

literature. IR based approaches are most popular among all.

This is due to the fact that IR based techniques consider overall

expertise of developers towards bug reports for

recommendation. Also, it is easy to comprehend with other

techniques. Thus, we propose IR based recommender taking

additional factors, time decay and parameter prioritization into

consideration.NR bugs account for approximately 17% of all

bug reports and 3% of these bugs are later marked as fixed.

There could be various reasons behind this fixation of NR bugs.

If we can have a mechanism that can provide information to

developer beforehand that the bug report currently marked as

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

110

NR will be fixed in future or not, it will not only provide

insights to triager but also helps developers by predicting the

possibility that whether bug report marked as NR could get

fixed in future or not.

Fig. 1. Procedure of proposed methodology

This will save time, effort and cost incurred in those NR

bugs which have less probability of getting fixed. With the use

of such mechanism, developers & triager can actually devote

their precious time and efforts on those bugs that are regarded

as fixable by the proposed mechanism. This will also raise level

of interest among developers towards NR bugs. Thus we are

developing a machine learning based prediction model, NR

Fixer to predict the probability of fixation of bug report

currently marked as NR. The NR Fixer uses various bug meta-

fields to predict the fixability of NR bug on the basis of past

information. The NR bug reports predicted as fixable by the

prediction model will be assigned with a new developer using

the proposed bug assignment technique who will try to

reproduce the bug and may fix it. The proposed prediction

model, NR Fixer has been evaluated on Mozilla and Eclipse

bug reports and achieves precision value up to 74.7% for

Mozilla bug reports and 68% for Eclipse bug reports.

The bug details consist of bug repository and bug reports. In

a bug repository, a bug is sustained as a bug report, which

traces the textual illustration to repeat the bug and updates

according to the status of bug fixing.

A) Bug Repository:

A bug repository is a typical software repository, for storing

details of bugs, e.g., a popular and open source bug repository,

Bugzilla .Large software projects deploy bug repositories is

also called as bug or issue tracking systems, which is used to

support information collection and to assist developers to

handle bugs. Each bug is maintained as a bug report, which

traces the documentary description of reproducing the bug and

revises according to the significance of bug fixing. The use of

bug repository can improve the development process and

quality of software produced. It presents a data platform to

sustain many forms of assignment on bugs, e.g., defect

prediction, bug localization and reopened bug analysis.

B) Bug Report:

A recorded bug is called a bug report or bug data. It has

multiple items for detailing the information of reproducing the

bug. In a bug report, the outline and the report are two key items

about the information of the bug, which are traced in natural

languages. Summary denotes the general statement for

identifying a bug and description gives the details to reproduce

the bug. The bug report may also contain other items also, such

as product, platform, and importance.

C) Bug Triage:

The method of allocating a correct developer for renovating

the bug is called bug triage. Once the bug report is formed, a

bug triager allocates the bug to a developer who can fix this

bug and developer is recorded in an item assigned-to without

any tossing.

D) Feature Selection:

Feature selection is a preprocessing method for choosing a

diminished set of features for huge-scale data sets. The pre-

processing techniques are tokenization, stop word removal,

stemming process and vector space model. The tokenization

method is used to tokenize the summary and description of the

bug reports into word vectors. Non- alphabetic words and

special character are removed to avoid the noisy bug words.

Stop word removal technique remove the stop words in high

frequency and provide no helpful information for bug triage.

Stemming technique uses porter stemming algorithm for

reducing inflected words their word stem/root form. Vector

space model /Term vector model is an algebraic model for

representing text document as vector of identifier. The

minimized set is considered as the representative features of the

original feature set. The four well-performed algorithms are

chosen in text data and software data, namely Information Gain

(IG), χ2 statistic (CH), Symmetrical Uncertainty attribute

evaluation (SU), and Relief-F Attribute selection (RF).

Fig. 2. General feature selection structure

Based on feature selection, words in bug reports are

organized according to their feature importance and a given

number of words with large values are selected as

representative features.

E) Instance Selection:

Instance selection is methods to diminish the number of

instances by eliminate noisy and redundant instances. An

instance selection algorithm can give a condensed data set by

eliminating non-representative instances. There are four

instance selection algorithms, namely Iterative Case Filter

(ICF), Learning Vectors Quantization (LVQ), Decremental

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

111

Reduction Optimization Procedure (DROP), and Patterns by

Ordered Projections (POP).In the proposed the iterative case

filter (ICF) algorithm defines local set L(X) which contains all

cases inside largest hyper sphere centered in X such that the

hyper sphere contains only cases of the same class as a instance

X. The properties of ICF defined as Coverage of a case is the

set of target problems that it can be used to solve.

Coverage (X) ={X’≤ T: X ≤ L (X’)} (1)

Reachability of a target problem is the set of cases that can

be used to afford a solution for the target.

Reachability(X) = {X ' ≤ T: X ' ≤ L(X)} (2)

III. IMPLEMENTATION

In this part, we introduce the information readiness for

applying the bug information lessening. We assess the bug

information lessening on bug stores of two vast open source

ventures, to be specific Eclipse and Mozilla. Shroud is a multi-

dialect programming improvement condition, including an

Integrated Development Environment (IDE) and an extensible

module framework; Mozilla is an Internet application suite,

including some great items, for example, the Firefox program

and the Thunderbird email customer. Up to December 31,

2011, 366,443 bug reports more than 10 years have been

recorded to Eclipse while 643,615 bug reports more than 12

years have been recorded to Mozilla. In our work, we gather

constant 300,000 bug reports for each undertaking of Eclipse

and Mozilla ,i.e., bugs 1-300000 in Eclipse and bugs

300001600000 in Mozilla. As a matter of fact, 298,785 bug

reports in Eclipse and 281,180 bug reports in Mozilla are

gathered since some of bug reports are expelled from bug

vaults (e.g., bug 5315 in Eclipse) or not permitted unknown

access (e.g., bug 40020 in Mozilla). For each bug report, we

download pages from bug stores and concentrate the points of

interest of bug reports for tests. Since bug triage plans to

foresee the designers who can settle the bugs, we take after the

current work to evacuate unfixed bug reports, e.g., the new bug

reports or will-not-settle bug reports. In this way, we just pick

bug reports, which are settled and copy (in light of the things

status of bug reports). Additionally, in bug vaults, a few

designers have just settled not very many bugs. Such latent

engineers may not give adequate data to foreseeing right

designers. In our work, we expel the engineers, who have

settled under 10 bugs.

A) Data Design:

A description of all data structures including internal, global, and

temporary data structures, database design (tables), file formats of our

project following diagrams shows data base design.

B) Internal software data structure:

We use xml files for store large data that data transfer among all other

components.

C) Global data structure:

We are using java for development, we will design classes for store

data globally.

D) Component Design:

Class diagrams, Interaction Diagrams, Algorithms. Description of

each component description required.

TABLE I

BUGS AND ITS DESCRIPTION

Fig. 3. Flow chart

IV. CONCLUSION

Bug triage is a costly step of software maintenance in both

labor cost and time cost. The proposed system combines the

feature selection algorithm (FS) with instance selection

International Journal of Research in Engineering, Science and Management (IJRESM)

www.ijresm.com Volume-1, Issue-4, April 2018

112

algorithm (IS) in order to reduce the scale of bug data sets as

well as improve the data quality. A comparative analysis of

popular techniques used for bug triaging has been conducted.

We proposed bug assignment approaches using time decay and

parameter prioritization. The experimental result shows that

both time based knowledge decay and parameter prioritization

helps in more precise developer recommendation. We

proposed NR Fixer, a prediction model to predict the fixability

of bug reports marked as NR. In the future, we first plan to

integrate the parameter prioritization model with time decay

model. Second, we plan to evaluate the effectiveness of

proposed bug report assignment techniques for NR bugs that

are predicted as fixable by NR Fixer.

REFERENCES

[1] Y. Fu, X. Zhu and B. Li, “A survey on instance selection for active

learning,” Knowledge and Information Systems, vol. 35, no. 2, pp. 249-

283, May 2013.

[2] C. Sun, D. Lo, S. C. Khoo and J. Jiang, "Towards more accurate retrieval

of duplicate bug reports," 2011 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2011), Lawrence,

KS, 2011, pp. 253-262.

[3] Y. Freund and R. E. Schapire, “Experiments with a new boosting

algorithm,” In Proceedings Of The Thirteenth International Conference

On Machine Learning, 1996.

[4] S. Artzi, "Finding Bugs in Web Applications Using Dynamic Test

Generation and Explicit-State Model Checking," in IEEE Transactions

on Software Engineering, vol. 36, no. 4, pp. 474-494, July-Aug. 2010.

[5] S. Breu, R. Premraj, J. Sillito and T. Zimmermann, “Information needs

in bug reports: improving cooperation between developers and

users,” CSCW, 2010

[6] A. K. Farahat, A. Ghodsi and M. S. Kamel, “Efficient Greedy Feature

Selection for Unsupervised Learning,” University of Waterloo.

[7] V. Cerveron and F. J. Ferri, "Another move toward the minimum

consistent subset: a tabu search approach to the condensed nearest

neighbor rule," in IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 31, no. 3, pp. 408-413, Jun 2001.

[8] C. C. Aggarwal and P. Zhao, “Towards graphical models for text

processing,” Knowledge and Information Systems, vol. 36, no. 1, pp. 1-

21, July 2013.

