
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

254

Abstract—A framework is delineated which will be accustomed

build and check application-level software package for wireless

mobile computing. It emulates the physical quality of wireless

devices by victimization the logical quality of software package-

based emulators of the devices and target software. Since every

individual is enforced as a mobile agent, it will dynamically carry

the target software package to every of the sub-networks to that

its device is connected on behalf of the device, allowing the

software package to move with different servers within the current

sub-network.

Index Terms—Wireless Network, Mobile Agent, Host Mobility,

Wireless Device, Remote Control Server.

I. INTRODUCTION

Mobile and wireless computing has the ability to alter the

manner company is conducted. It permits staff, partners and

customers to access company information from nearly

anyplace. Universal information access, combined with

exaggerated employee productivity and effectiveness, is driving

the demand for enterprise mobile applications. Because the

demand continues to extend, the mobile infrastructure that

produces making refined mobile applications attainable is

maturing. We’ve got rapt past the irrational exuberance that

enclosed client wireless application into the fact of making

advanced, integrated enterprise solutions that bring true worth

to enterprises that are adopting mobile and wireless technology

as a part of their core infrastructure.

II. MOBILE STERMINAL EMULATION

Each mobile-agent-based emulator container hold and test

software designed to run on its intention lethal. The recent

emancipation of the approach is built.

III. EMULATION OF USER INTERFACES

Mobiles are equipped are restricted. Every upper will

expressly constrain such user interfaces out there through the

target software package by employing a set of its tailor-made

Java AWT categories. It can even offer footage of the target

terminal’s physical computer program because it would seem

to the top user. A typical mobile terminal can embrace a screen

which will permit the content to be displayed. Therefore, the

screen is seamlessly embedded into the terminal footage, and

therefore the basic controls of the terminal are often simulated

through mouse-clickable buttons own graphical user. It can also

monitor the standing of all access-point.

IV. THE FLYING EMULATOR FRAMEWORK

 Mobile agent-based emulator: A mobile agent capable of

moving the target application to specific access-point hosts

on remote networks on behalf of a goal mobile device.

 Application runtime system: Middleware, that runs on a

mobile device, to support the execution of mobile agent-

based applications.

 Device server: A graphical front-end to the entire system,

that permits United States of America to observe and

operate the moving apery and its target application by

remotely displaying its graphical user interfaces on its

screen.

V. REMOTE CONTROL SERVER

This server could be a management entity liable for

managing the entire system. It will run on a customary digital

computer that supports Java. It will continually track the

locations of all the emulators as a result of every access-point

host sends bound messages to the management server whenever

the moving emulators arrive or leave. Moreover, the server acts

as a graphical front for the system and, thus, permits the

developer to freely instruct moving emulators to migrate to

other locations and terminate, through its own graphical user. It

also can monitor the status of all access-point.

VI. SECURITY

Security is important in mobile agent computing. The

framework isn't serious as compared with alternative mobile

agent applications as a result of it's employed in the method of

computer code development. however, it will directly inherit

the protection mechanism of the underlying mobile agent

system .It authenticates users while not exposing their

passwords on the network and generates secret cryptography

keys which will by selection be shared between reciprocally

suspicious parties. The Java virtual machine may expressly

limit agents in order that they will solely access such resources

to safeguard hosts from malicious agents.

Software Testing in Wireless Mobile

Applications

Dhanalakshmi. A1, V. Kathiresan2

1Student, Dept. of Computer Applications, Dr. SNS Rajalakshmi College of Arts & Science, Coimbatore, India
2Professor, Dept. of Computer Applications, Dr. SNS Rajalakshmi College of Arts & Science, Coimbatore, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

255

VII. WIRELESS APPLICATIONS

Wireless applications will be classified into 2 streams

(Beaulieu, 2002;

1. Browser-based: Applications developed employing

nomenclature. This can be similar to the present desktop

browser model wherever the device is supplied with a

browser. The Wireless Application Protocol or WAP.

2. Native applications: Compiled applications wherever the

device includes a runtime environment to execute

applications. Extremely interactive wireless applications

square measure solely attainable with the latter model.

Interactive applications, like mobile pc games, are a good.

VIII. AD-HOC DEVELOPMENT PROCESS

 An ad-hoc development method for wireless

applications includes 3 steps:

1. Write the appliance. Many Integrated Development

Environments (IDEs) square measure obtainable for

developing Java-based wireless applications.

2. Check the appliance in Associate in nursing emulation

atmosphere. Once the appliance compiles nicely, it will be

tested in Associate in nursing copycat.

3. Transfer the appliance to a physical device and check it.

Once the application’s Performance is satisfactory on one

or more emulators, it will be transfer disfunction to a true

device and tested there. If it's a network application, it's

tested on a live wireless network to make sure that its

performance is suitable. It’s clear that a lot of necessary

software package engineering activities square measure

missing from this adhoc development method.

IX. TESTING ISSUES AND TESTING ACTIVITIES

The big variety of mobile devices like wireless phones and

PDAs ends up in every device running a special implementation

of the J2ME surroundings. Varied show sizes augment the

complexness of the testing method. Here are some tips for

testing

 Implementation Validation

 Usability Testing

 Network Performance Testing.

 Server-Side Testing.

X. TESTING CHECKLISTS

Here we offer checklists that area unit helpful once testing

your application, in each emulation and live environments.

These checklists embrace tests that area unit sometimes

performed by certification programs offered by Nokia and

Motorola (Motorola Application Certification Program).

Navigation Checklist

 Successful startup and exit

 Application name

 Keep the user informed

 Readable text

 Repainting screens

 Soft buttons

 Screen navigation

 Portability

Network Checklist

 Sending/Receiving data

 Name resolution

 Sensitive data

 Error handling

 Interruptions

XI. CONCLUSION

Automated testing approaches like outsourcing, cloud and

crowed- based mostly testing become additional vital as they

introduce price effective resolution over ancient application

testing and enabling testing through layers and clearly separate

application-level failures from application framework or OS

failures. It’s expected that some corporations may adopt As-a-

Service software package testing services approach, by

providing special skills and laboratories to conduct thorough

testing of mobile applications in a reasonable manner.

We tend to confer a framework for building and testing

networked applications for mobile computing. It absolutely was

impressed by the shortage of methodologies accessible for

developing context-aware applications in mobile computing

settings. Our early expertise with the epitome implementation

of this framework powerfully steered that the framework might

greatly scale back the time required to develop networked

applications in mobile computing settings. We tend to

conjointly believe that the framework could be a novel and

helpful application space for mobile agents and, thus, makes a

big contribution to mobile agent technology.

REFERENCES

[1] I. Satoh, “A Testing Framework for Mobile Computing Software,” IEEE

Trans. Software Eng., vol. 29, no. 12, 2003, pp. 1112–21.

[2] Microsoft Corporation, “Universal Plug and Play Device Architecture

Version 1.0” June, 2000.

[3] K. Arnold et al., The Jini Specification, Addison-Wesley, 1999.

[4] M. Le, F. Burghardt, and J.Rabaey, “Software Architecture of the Infopad

System,” Wksp. Mobile and WirelessInfo. Sys. 1994.

[5] A. Fuggetta, G.P. Picco, and G. Vigna, “Understanding Code Mobility,”

IEEE Trans. Software Eng., vol. 24, no. 5, May 1998.

[6] International Business Machines Corporation, “Remote Abstract Window

Toolkit for Java,” http://www.alphaworks.ibm.com/,1998.

[7] J. Jing, “Client-Server Computing in Mobile Environments,” ACM

Computing Survey, 1999.

[8] Liu, Z., Gao, X., and Long, X., “Adaptive Random Testing of Mobile

Application”, 2010 2nd International Conference on Computer

Engineering and Technology, Vol. 2, 297-301

[9] Kirubakaran, B., and Karthikeyani, V., “Mobile Application Testing –

Challenges and Solution Approach through Automation”. Proceedings of

the 2013 International Conference on Pattern Recognition, Informatics

and Mobile Engineering (PRIME) February 21-22

[10] S., Sivapalan, S., and Warren, I., Hermes, “A Tool for Testing Mobile

Device Applications”, 2009 Australian Software Engineering

Conference, 121-130.

