
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

118

Abstract—In the world of neural networks, deep neural nets

having a large set of parameters are very powerful machine

learning systems. But, such networks comes across a serious

problem known as overfitting. With large networks being slow to

use, overfitting becomes even more difficult to deal with by

combining the predictions of many different large neural nets at a

test time. However, there is a technique known as Dropout to

address this problem. Dropping the units randomly along with

their connections from the network during their training is the key

idea behind this technique. What this does is that this prevents the

units from co-adapting too much. Dropout samples from an

exponential number of different “thinned” networks. The

approximation of the effect of averaging the predictions of all these

thinned networks is easy at the test time and it’s simply done by

using a single unthinned network that has smaller weights. And

this results in the significant decrease of overfitting giving major

improvements over other regularization methods. In short, we will

be showing that dropout improves the performance of neural

networks on supervised learning tasks in vision, speech

recognition, document classification and computational biology,

obtaining state-of-the-art results on many benchmark data sets.

Index Terms—Neural networks, regularization, model

combinations, deep learning

I. INTRODUCTION

Containing non-linear hidden layers makes deep neural

networks very expressive models and they can also learn very

complicated relationships between their inputs and outputs. But

limited training data makes these complicated relationships a

result of sampling noise, hence, even if it is drawn from the

same distribution, they will exist in the training set but not in

real test data. Ultimately, this results in Overfitting and number

of methods have been developed for reducing it. Such methods

include the stoppage of training as soon as performance on a

validation set becomes worsening, introducing various kinds of

weight penalties such as L1 and L2 regularization and soft

weight training.

The best way to “regularize” a fixed-sized model is to

average the predictions of all possible settings of the

Parameters, and also by weighting each setting by the

probability of its posterior. However, all this can be

approximated quite well sometimes for simple or small models,

but we approach Bayesian gold standard’s performance using

considerably less computation. We propose to do this by taking

an approximation of equally weighted geometric mean of all the

possible predictions of an exponential number of learned

models that share the parameters.

In most of the cases, model combination almost always

improves the machine learning method’s performance. The

obvious idea behind the large neural networks’ averaging the

outputs of many separately nets being trained is expensive in a

prohibitive way. When the individual models are different from

each other, combining the several models proves most helpful

in order to achieve the neural net models being made different.

Neural Networks are a versatile family of model used to find

relationships between enormous volumes of data, such as the

one we usually work with. They come in all shapes and sizes.

Their accuracy is significantly conditioned by both their

structure and size and quality of the data they are trained on.

Building models help data scientists to answer their

questions. However, when we use adaptive and deep neural

networks models, the risk of overfitting is always present.

Thankfully, we can apply a number of procedures and

techniques to avoid this overfitting- like pruning when using

classification trees, stop criteria in generic algorithms or

bagging in a more general context. Some Machine learning

methods like the ensemble methods- where many weak learners

co-operate smartly combining their predictions- were designed

to avoid overfitting. Models following this kind of pattern of

many weak learners co-operating often show higher accuracy

and more stable results (that is, they generalise better) than

other singleton complex models out there.

As we said, the adaptability of feed-forward and deep neural

networks is a source of overfitting. Furthermore, the amount of

data and computational effort required to train a single neural

network grows rapidly as we add hidden layers to its

architecture. Thus, separately lots of neural networks in an

attempt to mimic ensemble methods is a rather daunting task.

Dropout is a technique that tackles both of these issues by

exploiting a simple idea: Dropping some of the neurons and

their connections to their counterparts during training.

In every training batch some neurons’ connections are

temporarily removed, obtaining a simple and lighter version of

the compete Neural network. The most generic way to do this

is by “dropping” each neuron with probability “p” independent

of the others. This means that their weights won’t be modified

either in the feed-forward or in the back-propagation process,

and no output is issued from that neuron.

Drop: A Simple Way to Prevent Neural Network

by Overfitting

Vishal Shirke1, Ritesh Walika2, Lalita Tambade3

1,2,3Student, Department of Computer Engineering, MGM College, Navi Mumbai, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

119

Once trained, at test time, every weight Wij in the complete

Neural network is scaled down, multiplying it by the expected

probability of have been used in a given instance of the lighter

versions. In the previous case, this just amounts to substitute Wij

for its scaled-down value pWij.

Given that we know a bit about dropout, a question arises —

 why do we need dropout at all? Why do we need to literally

shut-down parts of a neural networks?

The answer to these questions is “to prevent over-fitting”.

A fully connected layer occupies most of the parameters, and

hence, neurons develop co-dependency amongst each other

during training which curbs the individual power of each

neuron leading to over-fitting of training data. Now that we

know a little bit about dropout and the motivation, let’s go into

some detail. If you just wanted an overview of dropout in neural

networks, the above two sections would be sufficient. In this

section, I will touch upon some more technicality.

In machine learning, regularization is way to prevent over-

fitting. Regularization reduces over-fitting by adding a penalty

to the loss function. By adding this penalty, the model is trained

such that it does not learn interdependent set of features

weights. Those of you who know Logistic Regression might be

familiar with L1 (Laplacian) and L2 (Gaussian) penalties.

Fig. 1. Neural networks

Dropout is an approach to regularization in neural networks

which helps reducing interdependent learning amongst the

neurons.

Training Phase:

For each hidden layer, for each training sample, for each

iteration, ignore (zero out) a random fraction, p, of nodes (and

corresponding activations).

Testing Phase:

Use all activations, but reduce them by a factor p (to account

for the missing activations during training).

Fig. 2. Dropout approach

II. RELATED WORK

Another question which arises is “Why would I want to

cripple my neural network? “ So the answer to this would be:

As weird as it may sound, cancelling some neurons’ ability to

learn during training actually aims to obtain better trained

neurons and reduce overfitting.

By doing so, we get an approximate result of averaging the

simpler trained models, which would otherwise take a lot more

time and computational power to be trained by one. But this into

the only reason. In fact, training our neurons in such a particular

way not only helps them to co-adapt, balancing their

weaknesses and strengths, it also ensures that the features they

encapsulate work well with randomly chosen subsets of other

neurons’ learned features. After all, during training time, they

couldn’t rely on all of their colleagues to do the job as most of

the time some of them went missing.

This rests in more demanding neurons that try to move past

complicated, tailor-made features – which are prone to

generalize poorly, and retain more useful information on their

own. In the following figure, we find a comparison of the

features learned on MNIST dataset with one hidden layer auto

encoder having 256 rectified linear units without dropout (left)

and the features learned by the same structure using dropout in

its hidden layer with p=0.5 (right). While the former shows

unstructured, messy patterns which are impossible to interpret,

the latter clearly exhibits purposeful weight distributions that

detect strokes edges and spots on their own, breaking their co-

dependency with other neurons to carry out the job.

Fig. 3. Without dropout and with dropout p=0.5

III. LEARNING DROPOUT NETS

This section describes a procedure for training dropout neural

nets.

A. Back propagation

Dropout neural networks can be trained using stochastic

gradient descent in a manner similar to standard neural nets.

The only difference is that for each training case in a mini-

batch, we sample a thinned network by dropping out units.

Forward and back propagation for that training case are done

only on this thinned network. The gradients for each parameter

are averaged over the training cases in each mini-batch. Any

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

120

training case which does not use a parameter contributes a

gradient of zero for that parameter. Many methods have been

used to improve stochastic gradient descent such as momentum,

annealed learning rates and L2 weight decay. Those were found

to be useful for dropout neural networks as well.

B. Unsupervised Pre training

Neural networks can be pre trained using stacks of RBMs

(Hinton and Salakhutdinov, 2006), auto encoders (Vincent et

al., 2010) or Deep Boltzmann Machines (Salakhutdinov and

Hinton, 2009). Pre training is an effective way of making use of

unlabelled data. Pre training followed by fine tuning with back

propagation has been shown to give

Significant performance boosts over fine tuning from random

initializations in certain cases.

IV. SOME OBSERVATIONS

1) Dropout forces a neural network to learn more robust

features that are useful in conjunction with many different

random subsets of the other neurons.

2) Dropout roughly doubles the number of iterations required

to converge. However, training time for each epoch is less.

3) With H hidden units, each of which can be dropped, we

have 2^H possible models. In testing phase, the entire

network is considered and each activation is reduced by a

factor p.

V. EXPERIMENT IN KERAS

Let’s try this theory in practice. To see how dropout works, I

build a deep net in Keras and tried to validate it on the CIFAR-

10 dataset. The deep network is built had three convolution

layers of size 64, 128 and 256 followed by two densely

connected layers of size 512 and an output layer dense layer of

size 10 (number of classes in the CIFAR-10 dataset).

I took ReLU as the activation function for hidden layers and

sigmoid for the output layer (these are standards, didn’t

experiment much on changing these). Also, I used the standard

categorical cross-entropy loss.

Finally, I used dropout in all layers and increase the fraction

of dropout from 0.0 (no dropout at all) to 0.9 with a step size of

0.1 and ran each of those to 20 epochs. The results look like

this:

Fig. 4. Accuracy vs. Dropout (blue) and Loss vs. Dropout (green)

From the above graphs we can conclude that with increasing

the dropout, there is some increase in validation accuracy and

decrease in loss initially before the trend starts to go down.

There could be two reasons for the trend to go down if

dropout fraction is 0.2:

1) 0.2 is actual minima for the dataset, network and the set

parameters used.

2) More epochs are needed to train the networks

VI. CONCLUSION AND FUTURE SCOPE

Dropout is a technique which improves neural networks by

reducing overfitting. Standard back-propagation learning

enables the building of brittle co-adaptations that work for the

training data but fails to generalise unseen data. These co-

adaptations are broken by random dropouts by making the

presence of any particular hidden unit unreliable. Dropout has

been found helpful in improving the performance of neural nets

in a wide variety of application domains including object

classification, digit recognition, speech recognition, document

classification and is not specific to any domain. Using this

technique, many methods achieve state-of-the-art results on

SVHN, I’m agent, CIFAR-100 and MOIST. The performances

of standard neural nets on even other data sets has been

improved by Dropout.

The main idea which is central to all of this process is to take

a large model that overfits easily and repeatedly sample and to

train smaller sub-models from it. Such an idea can also be

exerted to Restricted Boltzmann Machines and other graphical

models and hence we have also developed Dropout RBMs and

empirically showed that they have certain desirable properties.

But dropout is far from perfect and one of the major

drawbacks of it is that it increases training time. In comparison

to a standard neural network or the same architecture, a dropout

network typically takes 2-3 times longer. This increase in the

training time is majorly caused by the reason that the parameter

updates are very noisy. A different random architecture is

effectively being tried to trained by each training case

effectively. That’s why the gradients that are being computed

are not gradients of the final architecture that will be used at test

time. And hence, training taking a long time comes as no

surprise. But stochasticity preventing overfitting is likely

however which creates a trade-off between overfitting and

training time. But by marginalizing the noise that does the same

thing as the dropout procedure (in expectation), is the one way

to obtain some of the benefits without stochasticity. We

showed this because wanted to tell that for linear regression this

regularize risk a modified form of L2 regularization. It is not

obvious how to obtain an equivalent regularised for more

complicated models. An interesting direction for future work

would be to speeding up dropout.

REFERENCES

[1] D.Maio and D. Maltoni. “Direct gray-scale minutiae detection in

fingerprints” IEEE Trans. Pattern Anal. And Machine Intel. 19(1):27-40,

1997.

[2] N. Ratha, S. Chen and A.K. Jain, :Adaptive Flow Orientation Based

Feature Extraction in Fingerprint Images”, in Pattern Recognition, Vol.

28, pp. 1657-1672, November 1995.

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-9, September-2018

www.ijresm.com | ISSN (Online): 2581-5782

121

[3] Alessandro Farina, Zsolt M.Kovacs-Vajna, Alberto leone, Fingerprint

minutiae extraction from skeletonized binary images,in Pattern

Recognition, vol. 32, no. 4, pp. 877-889, 1999.

[4] M. K. Thakur, R. S. Kumar, M. Kumar, and R. Kumar, “Wireless

Fingerprint Based Security System using Zigbee,” in International

Journal of Inventive Engineering and Sciences, vol. 1, no. 5, April 2013.

[5] Mary Lourde R and Dushyant Khosla, “Fingerprint Identification in

Biometric Security Systems”, International Journal of Computer and

Electrical Engineering, Vol. 2, no. 5. Pp. 852-855, Oct. 2010.

