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Abstract—In the world of neural networks, deep neural nets 

having a large set of parameters are very powerful machine 

learning systems. But, such networks comes across a serious 

problem known as overfitting. With large networks being slow to 

use, overfitting becomes even more difficult to deal with by 

combining the predictions of many different large neural nets at a 

test time.  However, there is a technique known as Dropout to 

address this problem. Dropping the units randomly along with 

their connections from the network during their training is the key 

idea behind this technique. What this does is that this prevents the 

units from co-adapting too much. Dropout samples from an 

exponential number of different “thinned” networks. The 

approximation of the effect of averaging the predictions of all these 

thinned networks is easy at the test time and it’s simply done by 

using a single unthinned network that has smaller weights. And 

this results in the significant decrease of overfitting giving major 

improvements over other regularization methods. In short, we will 

be showing that dropout improves the performance of neural 

networks on supervised learning tasks in vision, speech 

recognition, document classification and computational biology, 

obtaining state-of-the-art results on many benchmark data sets. 

 
Index Terms—Neural networks, regularization, model 

combinations, deep learning 

I. INTRODUCTION 

Containing non-linear hidden layers makes deep neural 

networks very expressive models and they can also learn very 

complicated relationships between their inputs and outputs. But 

limited training data makes these complicated relationships a 

result of sampling noise, hence, even if it is drawn from the 

same distribution, they will exist in the training set but not in 

real test data. Ultimately, this results in Overfitting and number 

of methods have been developed for reducing it. Such methods 

include the stoppage of training as soon as performance on a 

validation set becomes worsening, introducing various kinds of 

weight penalties such as L1 and L2 regularization and soft 

weight training.  

The best way to “regularize” a fixed-sized model is to 

average the predictions of all possible settings of the  

Parameters, and also by weighting each setting by the 

probability of its posterior. However, all this can be 

approximated quite well sometimes for simple or small models, 

but we approach Bayesian gold standard’s performance using 

considerably less computation. We propose to do this by taking 

an approximation of equally weighted geometric mean of all the  

 

possible predictions of an exponential number of learned 

models that share the parameters.  

In most of the cases, model combination almost always 

improves the machine learning method’s performance. The 

obvious idea behind the large neural networks’ averaging the 

outputs of many separately nets being trained is expensive in a 

prohibitive way. When the individual models are different from 

each other, combining the several models proves most helpful 

in order to achieve the neural net models being made different. 

Neural Networks are a versatile family of model used to find 

relationships between enormous volumes of data, such as the 

one we usually work with. They come in all shapes and sizes. 

Their accuracy is significantly conditioned by both their 

structure and size and quality of the data they are trained on.  

Building models help data scientists to answer their 

questions. However, when we use adaptive and deep neural 

networks models, the risk of overfitting is always present. 

Thankfully, we can apply a number of procedures and 

techniques to avoid this overfitting- like pruning when using 

classification trees, stop criteria in generic algorithms or 

bagging in a more general context. Some Machine learning 

methods like the ensemble methods- where many weak learners 

co-operate smartly combining their predictions- were designed 

to avoid overfitting. Models following this kind of pattern of 

many weak learners co-operating often show higher accuracy 

and more stable results (that is, they generalise better) than 

other singleton complex models out there.  

As we said, the adaptability of feed-forward and deep neural 

networks is a source of overfitting. Furthermore, the amount of 

data and computational effort required to train a single neural 

network grows rapidly as we add hidden layers to its 

architecture. Thus, separately lots of neural networks in an 

attempt to mimic ensemble methods is a rather daunting task.  

Dropout is a technique that tackles both of these issues by 

exploiting a simple idea: Dropping some of the neurons and 

their connections to their counterparts during training.  

In every training batch some neurons’ connections are 

temporarily removed, obtaining a simple and lighter version of 

the compete Neural network. The most generic way to do this 

is by “dropping” each neuron with probability “p” independent 

of the others. This means that their weights won’t be modified 

either in the feed-forward or in the back-propagation process, 

and no output is issued from that neuron.  
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Once trained, at test time, every weight Wij in the complete 

Neural network is scaled down, multiplying it by the expected 

probability of have been used in a given instance of the lighter 

versions. In the previous case, this just amounts to substitute Wij 

for its scaled-down value pWij.  

Given that we know a bit about dropout, a question arises —

 why do we need dropout at all? Why do we need to literally 

shut-down parts of a neural networks? 

The answer to these questions is “to prevent over-fitting”. 

A fully connected layer occupies most of the parameters, and 

hence, neurons develop co-dependency amongst each other 

during training which curbs the individual power of each 

neuron leading to over-fitting of training data. Now that we 

know a little bit about dropout and the motivation, let’s go into 

some detail. If you just wanted an overview of dropout in neural 

networks, the above two sections would be sufficient. In this 

section, I will touch upon some more technicality. 

In machine learning, regularization is way to prevent over-

fitting. Regularization reduces over-fitting by adding a penalty 

to the loss function. By adding this penalty, the model is trained 

such that it does not learn interdependent set of features 

weights. Those of you who know Logistic Regression might be 

familiar with L1 (Laplacian) and L2 (Gaussian) penalties. 

 

 
Fig. 1.  Neural networks 

 

Dropout is an approach to regularization in neural networks 

which helps reducing interdependent learning amongst the 

neurons. 

Training Phase: 

For each hidden layer, for each training sample, for each 

iteration, ignore (zero out) a random fraction, p, of nodes (and 

corresponding activations). 

Testing Phase: 

Use all activations, but reduce them by a factor p (to account 

for the missing activations during training). 

 

 
Fig. 2.  Dropout approach 

II. RELATED WORK 

Another question which arises is “Why would I want to 

cripple my neural network? “ So the answer to this would be: 

As weird as it may sound, cancelling some neurons’ ability to 

learn during training actually aims to obtain better trained 

neurons and reduce overfitting. 

By doing so, we get an approximate result of averaging the 

simpler trained models, which would otherwise take a lot more 

time and computational power to be trained by one. But this into 

the only reason. In fact, training our neurons in such a particular 

way not only helps them to co-adapt, balancing their 

weaknesses and strengths, it also ensures that the features they 

encapsulate work well with randomly chosen subsets of other 

neurons’ learned features. After all, during training time, they 

couldn’t rely on all of their colleagues to do the job as most of 

the time some of them went missing.  

This rests in more demanding neurons that try to move past 

complicated, tailor-made features – which are prone to 

generalize poorly, and retain more useful information on their 

own. In the following figure, we find a comparison of the 

features learned on MNIST dataset with one hidden layer auto 

encoder having 256 rectified linear units without dropout (left)  

and the features learned by the same structure using dropout in 

its hidden layer with p=0.5 (right). While the former shows 

unstructured, messy patterns which are impossible to interpret, 

the latter clearly exhibits purposeful weight distributions that 

detect strokes edges and spots on their own, breaking their co-

dependency with other neurons to carry out the job.  
 

Fig. 3.  Without dropout and with dropout p=0.5 

III. LEARNING DROPOUT NETS 

This section describes a procedure for training dropout neural 

nets.  

A. Back propagation  

Dropout neural networks can be trained using stochastic 

gradient descent in a manner similar to standard neural nets. 

The only difference is that for each training case in a mini-

batch, we sample a thinned network by dropping out units. 

Forward and back propagation for that training case are done 

only on this thinned network. The gradients for each parameter 

are averaged over the training cases in each mini-batch. Any 
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training case which does not use a parameter contributes a 

gradient of zero for that parameter. Many methods have been 

used to improve stochastic gradient descent such as momentum, 

annealed learning rates and L2 weight decay. Those were found 

to be useful for dropout neural networks as well.  

B. Unsupervised Pre training  

Neural networks can be pre trained using stacks of RBMs 

(Hinton and Salakhutdinov, 2006), auto encoders (Vincent et 

al., 2010) or Deep Boltzmann Machines (Salakhutdinov and 

Hinton, 2009). Pre training is an effective way of making use of 

unlabelled data. Pre training followed by fine tuning with back 

propagation has been shown to give  

Significant performance boosts over fine tuning from random 

initializations in certain cases. 

IV. SOME OBSERVATIONS 

1) Dropout forces a neural network to learn more robust 

features that are useful in conjunction with many different 

random subsets of the other neurons. 

2) Dropout roughly doubles the number of iterations required 

to converge. However, training time for each epoch is less. 

3) With H hidden units, each of which can be dropped, we 

have 2^H possible models. In testing phase, the entire 

network is considered and each activation is reduced by a 

factor p. 

V. EXPERIMENT IN KERAS 

Let’s try this theory in practice. To see how dropout works, I 

build a deep net in Keras and tried to validate it on the CIFAR-

10 dataset. The deep network is built had three convolution 

layers of size 64, 128 and 256 followed by two densely 

connected layers of size 512 and an output layer dense layer of 

size 10 (number of classes in the CIFAR-10 dataset). 

I took ReLU as the activation function for hidden layers and 

sigmoid for the output layer (these are standards, didn’t 

experiment much on changing these). Also, I used the standard 

categorical cross-entropy loss. 

Finally, I used dropout in all layers and increase the fraction 

of dropout from 0.0 (no dropout at all) to 0.9 with a step size of 

0.1 and ran each of those to 20 epochs. The results look like 

this:  

 

 
Fig. 4.  Accuracy vs. Dropout (blue) and Loss vs. Dropout (green) 

 

From the above graphs we can conclude that with increasing 

the dropout, there is some increase in validation accuracy and 

decrease in loss initially before the trend starts to go down.  

There could be two reasons for the trend to go down if 

dropout fraction is 0.2: 

1) 0.2 is actual minima for the dataset, network and the set 

parameters used. 

2) More epochs are needed to train the networks 

VI. CONCLUSION AND FUTURE SCOPE 

Dropout is a technique which improves neural networks by 

reducing overfitting. Standard back-propagation learning 

enables the building of brittle co-adaptations that work for the 

training data but fails to generalise unseen data. These co-

adaptations are broken by random dropouts by making the 

presence of any particular hidden unit unreliable. Dropout has 

been found helpful in improving the performance of neural nets 

in a wide variety of application domains including object 

classification, digit recognition, speech recognition, document 

classification and is not specific to any domain. Using this 

technique, many methods achieve state-of-the-art results on 

SVHN, I’m agent, CIFAR-100 and MOIST. The performances 

of standard neural nets on even other data sets has been 

improved by Dropout.  

The main idea which is central to all of this process is to take 

a large model that overfits easily and repeatedly sample and to 

train smaller sub-models from it. Such an idea can also be 

exerted to Restricted Boltzmann Machines and other graphical 

models and hence we have also developed Dropout RBMs and 

empirically showed that they have certain desirable properties. 

But dropout is far from perfect and one of the major 

drawbacks of it is that it increases training time. In comparison 

to a standard neural network or the same architecture, a dropout 

network typically takes 2-3 times longer. This increase in the 

training time is majorly caused by the reason that the parameter 

updates are very noisy. A different random architecture is 

effectively being tried to trained by each training case 

effectively. That’s why the gradients that are being computed 

are not gradients of the final architecture that will be used at test 

time. And hence, training taking a long time comes as no 

surprise. But stochasticity preventing overfitting is likely 

however which creates a trade-off between overfitting and 

training time. But by marginalizing the noise that does the same 

thing as the dropout procedure (in expectation), is the one way 

to obtain some of the benefits without stochasticity.  We 

showed this because wanted to tell that for linear regression this 

regularize risk a modified form of L2 regularization. It is not 

obvious how to obtain an equivalent regularised for more 

complicated models.   An interesting direction for future work 

would be to speeding up dropout. 
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