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Abstract: This paper presents advances in quantum computing 

rendered present cryptosystems obsolete. 

 

Keywords: Quantum computing, cryptosystems  

1. Introduction 

Advances in technology and the rise of quantum computers 

are prevalent subjects in today’s day and age. However, this 

advancement comes with a cost. Quantum computers pose a 

threat to modern-day crypto systems and also threaten the 

integrity and confidentiality of data. This paper aims to tackle 

the question ‘Will advances in Quantum Computing rendered 

present cryptosystems obsolete?’  

Most commonly used cryptosystems are based on the integer 

factorization problem and the discrete log problem. Quantum 

computers are able to find solutions to these problems in 

polynomial time. Therefore, there is a need to find 

cryptosystems that are based on problems that are resistant to 

quantum computing algorithms. 

This paper initially explains the basic ideas of cryptography, 

symmetric key encryption and asymmetric key encryption. 

Following that, an introduction to quantum computing is given 

and two algorithms – Shor’s algorithm [3] and Grover’s 

algorithm [2] – that pose a threat to modern-day cryptosystems 

are introduced. Finally, an overview of post-quantum 

cryptography is presented. The ideas explored in that section 

include lattice-based cryptography, multivariate-based 

cryptography, and code-based cryptography.  

2. What is cryptography? 

Mankind has always been fascinated with withholding 

information from people they do not trust; they have always had 

the urge to keep secrets. In order to facilitate this, cryptography 

was born.  

The analogy of the box best describes cryptography. Suppose 

a message is kept in a box and locked by a lock whose 

combination is only known to the sender and the recipient. This 

is known as encryption. Then the locked message is sent to the 

recipient, who opens the lock with the code he knew in advance. 

This is called decryption. Cryptography starts when one ditches 

the box and uses ciphers (a disguised way of writing) instead. 

Think of it as scrambling and unscrambling letters [7]. 

Cryptography has been in use since before the birth of  

 

computers. It has taken many forms, such as letter substitution 

and shift ciphers, to rotor machines such as the enigma that was 

broken by the British and helped in defeating the Nazis in 

World War 2 [9]. Today, in this digital age, cryptography has 

become more crucial to information exchange than ever before. 

Cryptography forms the backbone of the all-digital 

communication that takes place. Data is encrypted with an 

encryption key, which converts plain text into ciphertext, an 

unreadable string of letters that can only be decrypted by using 

the decryption key. The ciphertext is what is transmitted, or 

communicated, between computers, as the risk of it being 

understood by an eavesdropper are minimal. After the recipient 

receives the ciphertext, it is converted back into plaintext. 

Modern cryptography revolves around key generation that 

makes encryption almost impossible to break without the 

private keys. Given the computational power of today’s 

computers, encryption keys are irreversible for a well-designed 

cryptosystem in a reasonable amount of time (polynomial time). 

There are two main types of encryption, the symmetric key 

encryption and the public key encryption. 

3. Symmetric Key (Private Key) Encryption 

Symmetric Key encryption is a type of encryption where the 

plaintext is encrypted and decrypted using the same or closely 

related shared key, often called the private key. Though not 

widely used in today’s day and age, symmetric key encryption 

was the preferred and safest method of encryption when 

transferring data during the majority of the twentieth century as 

the concept of public key systems was unknown. The fact that 

symmetric key encryptions are simple to adopt and fast to 

implement resulted in them being used wherever encryption 

was necessary. One problem that plagued the symmetric key 

encryption method is the “key distribution problem,” which 

says that securely communicating the key to the recipient may 

not be much easier than communicating the ciphertext over that 

channel [9]. Another problem that is associated with the 

symmetric key system is the huge key size required for a high 

level of security. Symmetric Key encryption is used in places 

where large amounts of data need to be encrypted or if the data 

being encrypted will be decrypted shortly thereafter. An 

example of the same includes the Transport Layer Security, or 

TLS, which encrypts and decrypts information that is 

exchanged between the server and the computer. However, with 
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the advancements in technology, symmetric key encryption 

became easy to crack. This lead to the birth of an alternative 

method: asymmetric key encryption. 

4. Asymmetric Key (Public Key) Encryption 

Asymmetric Key Encryption was developed to overcome the 

“key distribution problem” that Symmetric Key encryption 

faced. It was introduced in 1976 in a paper written by Whitfield 

Diffie and Martin Helman titled ‘New Directions in 

Cryptography’ [1]. Asymmetric Key encryption is a type of 

encryption in which plaintext is encrypted using the public key 

and decrypted using the private key. The public key is shared 

with everyone whereas the private key is kept as a secret. In this 

form of encryption, anybody can encrypt a message with the 

recipient’s public key. The secret private key owned by the 

recipient can only decrypt this ciphertext. Asymmetric key 

encryption relies on ‘one-way trapdoor functions’ i.e. functions 

that are easy compute in one direction, but it is difficult to 

compute their inverse. These include the integer factorization 

and the discrete log problem (DLP). The main idea behind the 

integer factorization problem is that it is easy to find to large 

primes p and q but difficult to find p and q given n=p∙q. On the 

other hand, the idea DLP is that it is easy to compute h=g^x for 

a given g and x, but difficult to find x given h and g. The most 

well-known public key encryption is the RSA encryption [4]. It 

is based on the integer factorization problem. It uses the product 

of two very large prime numbers to generate keys, which are 

almost impossible to crack if the numbers are large (at least 

2048 bits or more) and carefully chosen. Since algorithms based 

on classical computing are unable to offer the computational 

power required to crack this type of encryption, the RSA Public 

Key Encryption [4] remains a common encryption method. 

5. What is Quantum Computing? 

Richard Feynman first introduced quantum-computing 

concepts in 1982 in a paper titled ‘Simulating Physics with 

Computers’ [5]. These computers are based on the laws of 

quantum mechanics rather than classical algorithms.  

 
Fig. 1.  The Bloch sphere 

 

The smallest unit in a classical computer is a bit, which is 

either in the on state or the off state represented by 1 and 0 

respectively. The speed of execution on a classical computer is 

determined by how quickly these bits can be accessed and 

changed. Therefore, the speed of encryption and decryption is 

also limited by a bit in a classical computer. Quantum 

computers, on the other hand, use quantum bits or ‘qubits’. 

Qubits can exist in the 0 state, the 1 state, or a superposition of 

the two states at the same time [15]. Superposition does not 

mean that the qubit is divided half in this state and half in the 

other; it is in the 0 and 1 state at the same time. Qubits can be 

imagined as a sphere. While a classical bit can only be in two 

states - at either pole of the sphere - a qubit can be anywhere 

within that sphere. This representation is known as the Bloch 

sphere (see Fig. 1).  

Mathematically, the vectors |0⟩ and |1⟩ form the basis of a 

qubit. The vector |0⟩ represents [1,0] and |1⟩ represents [0,1]. 

A qubit is a linear superposition of its basis vectors [9]. In other 

words, qubits can be represented as a linear combination of |0⟩ 
and |1⟩ with complex coefficients: 

 

|v⟩  = 𝑎|0⟩ + 𝑏|1⟩ 
 

Here, a and b are known as the amplitudes of the qubit and 

are complex numbers and since the absolute value of the qubit 

must measure up to be 1, |𝑎|2 + |𝑏|2 = 1 

Quantum Computers take advantage of the fact that 

subatomic particles can co-exist in multiple states at a time. 

Because of this property, quantum computing operation 

requires less energy and can be performed more quickly than in 

classical computers. Any calculation using a qubit, acts on both 

values at the same time [15]. The parallelism of multiple qubits 

increases the number of states the computer is acting on 

simultaneously and therefore, quantum computers can perform 

tasks which may otherwise be impossible with modern 

computers. 

A calculation on a qubit that is superimposed essentially acts 

on both values and can further be improved upon by using a 

system with multiple qubits in parallel. For example, a 4-qubit 

system would operate in 16 states. This improvement in 

performance because of parallelism grows exponentially as the 

number of qubits increases, allowing quantum computers to 

carry out tasks that may not be possible for classical computers. 

Like modern computers, quantum computers also have gates. 

The most basic gate is the NOT gate that is used to invert the 

input. The following matrix is used to represent the NOT gate: 

 

𝑋 = [
0 1
1 0

] 

 

Another quantum gate that is commonly used in the quantum 

algorithms is the Hadamard gate. It creates a superposition of 

all the qubits.  

For example, it will map |0⟩ →
1

√2
|0⟩ +

1

√2
|1⟩ and |1⟩ →

1

√2
|0⟩ −

1

√2
|1⟩   

6. The potential of quantum computers 

The main advantage of using a quantum computer over a 

classical computer is the fact that quantum processors allow for 
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tasks to be performed simultaneously. This allows quantum 

algorithms such as Shor’s Algorithm [3] and Grover’s 

algorithm [2] to be more efficient than classical algorithms. 

Parallelism of qubits gives us a quantum computer more 

powerful than a classical computer [12]. The property of 

quantum parallelism is a result of the ability of a quantum 

memory register to exist in superposition of its base vectors. A 

number that is made up of n qubits can represent a quantum 

superposition of as many as 2^n states [15]. On a modern 

computer, any operation carried out will require 2^n steps 

whereas a quantum computer would complete these tasks in one 

step, as the actions will be carried out simultaneously. For 

example, a 50 qubit quantum computer can represent a quantum 

superposition of as many as 2^50 states. Each state is equivalent 

to a combination of 50 bits and is made up of 0s and 1s. This 

implies that any calculation performed through quantum gates 

would therefore operate on all 2^50 states all at the same time. 

An operation requiring 2^50 rounds of operation on a classical 

computer may be completed in 1 step on a quantum computer 

[15]. When a quantum computer is asked for a result, all the 

states would collapse into 1 state, which corresponds to the 

answer. However, one must note that not all classical 

computations are made faster by quantum computers. 

One may draw parallels to multicore processing with 

quantum parallelism. However, rather than having separate 

processors, a quantum computer relies on the superposition of 

qubits to perform tasks simultaneously. Superposition also 

presents an effective solution to the problem of storage capacity 

as quantum computers can store much more information than a 

classical computer. Individual atoms can be used to store data 

that eliminates the possibility of running out of space on our 

hard drives. 

Quantum computers also have various drawbacks. One 

drawback of quantum computers is that they are vulnerable to 

interferences, such as heat, noise and electromagnetic 

couplings, from the surroundings [9]. The base of quantum 

computing is the vibration in the atom, which can be disturbed 

by any external noise and lead to error in calculations. Also, the 

results obtained with the help of quantum computing are 

probabilistic. A quantum computer may yield several results 

from which only one is correct. Therefore, the process of 

verifying the correct answer undermines the advantage of 

increased calculation speed offered by a quantum computer [9]. 

Another drawback of quantum computing is that Qubits suffer 

from bit-flops. Like a bit can change is value from 0 to 1, a qubit 

can also change its value, leaving its superposition state. 

7. Quantum Cracking 

The study of determining the strengths and weaknesses of a 

cryptographic system is known as cryptanalysis [15]. 

Cryptanalysts employ various methods that reverse the cipher 

text into plaintext. While pen and paper were the only tools 

required to break the earliest forms of ciphers, today’s 

encryption systems are based on hard math problems and 

employ powerful tools including computers that make 

cryptanalysis difficult. However, powerful computers help 

cryptanalysts as well. 

8. Shor’s Algorithm 

The present public key encryption methods are secure 

because the encryption is a one-way function. One-way 

functions are described as functions that are easy to compute in 

one direction but difficult to find the inverse of the same 

function. Since no efficient solutions exist for these one-way 

functions, a classical computer is unable to reverse a 

cryptographic algorithm in polynomial time. Therefore, these 

algorithms are considered to be secure. One example of such a 

mathematical problem is factoring large semi primes, or the 

product of two prime numbers. No polynomial time algorithm 

for classical computers is known until today, making it a secure 

system. Many polynomial time algorithms for integer 

multiplication exist but there are none for factoring integers 

[11]. However, quantum computers using Shor’s Algorithm 

could change all of this. Peter Shor came up with an algorithm 

in 1994 to factor large semi prime numbers, which is a difficult 

task for a classical computer [3]. This threatens the existence of 

various encryption algorithms, such as the RSA algorithm, 

which are based on the fact that classical computers find it 

nearly impossible to factor large semi-prime numbers in an 

efficient way [4]. The most efficient way to factor on a classical 

computer has a sub-exponential run-time, which implies that as 

the numbers get bigger, the time required to factor the number 

grows at an exponential rate.  

Shor’s algorithm focuses on finding the period of a function 

mod N. To give a bigger picture, Shor’s algorithm is dependent 

on modular arithmetic, quantum parallelism and quantum 

Fourier transform. The algorithm has 2 parts to it. The first step 

is to convert the problem of finding factors of a number to 

finding its period. This is done using classical methods. 

Subsequently, finding the period is done using the Quantum 

Fourier Transform (QFT). The QFT is responsible for the 

quantum speedup in the algorithm [13]. In theory, Shor’s 

algorithm creates a superposition of all the possible values of a 

function using a quantum gate and then transforms the 

amplitudes of the values in order to calculate the period of the 

function. This period is in turn used to factor the original 

integer. 

In order to fully understand Shor’s algorithm, one must be 

familiar with the following Theorem: 

If N is a prime number and there exists a solution x such that 

𝑥2 = 1 𝑚𝑜𝑑 𝑁, where 𝑥 ≠  ±1; One of the greatest common 

divisor (gcd) of (x-1, N) and gcd of (x+1, N) is nontrivial factor 

of N 

Proof: 

Let 𝑥 ≠  ±1 𝑚𝑜𝑑 𝑁 and 𝑥2 = 1 𝑚𝑜𝑑 𝑁. Then, 𝑥2 − 1 =
0 (𝑚𝑜𝑑 𝑁) so that 𝑥2 − 1 is a multiple of N. Factoring this 

would yield that 𝑁 | (𝑥 + 1)(𝑥 − 1), but because 

𝑥 ≠  ±1 (𝑚𝑜𝑑 𝑁), 𝑁 ∤ 𝑥 ± 1. 
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Therefore, the gcd of (x-1, N) and gcd of (x+1, N) are factors 

of N and the gcd can be computed using Euclid’s Algorithm 

The basic Steps of Shor’s Algorithm are as follows [3]: 

 

Step 1: Choose a random integer m < N, such that m and N are 

co-prime. For this example, let N = 15 and m = 2. 

Step 2: Use a quantum computer to find out the period P of the 

function x→𝑚𝑥 𝑚𝑜𝑑 𝑁 

Step 3: If P = Odd, go back to first step. Otherwise, if P = even, 

proceed ahead 

Step 4: As P is even: 

  (𝑚
𝑝

2 − 1) (𝑚
𝑝

2 + 1) = (𝑚𝑝 − 1)= 𝑂 𝑚𝑜𝑑 𝑁  

 Step 5: Compute d = gcd ((𝑚
𝑝

2 − 1), n) using the Euclidean 

Algorithm. Since (𝑚
𝑝

2 + 1) cannot be 0 mod N, d is a nontrivial 

factor of n. 

If one wants to factorize the number 15, one needs a 4-qubit 

register. A 4-qubit register can be visualized as a traditional 4-

bit register on a classical computer. The bit 1111 represents the 

number 15 in binary; therefore a 4-qubit register can calculate 

the prime factorization of this number. This step requires one to 

load the input register with equally weighted superposition of 

all integers from 0 to all possible states (16 states in this case) 

i.e. 0 to 15. This is done using the Hadamard quantum gate. 

Following that load the output register with the value zero. The 

calculations performed on the register are done parallel for each 

possible value of the qubits.  

The initial state of the system will be represented as: 

 

1

√16
∑|𝑎, 000⟩

15

𝑎=0

 

 

*The comma denotes entangled states (the quantum state 

cannot be factored into its constituents) 

Following this, the transformation 𝑚𝑥𝑚𝑜𝑑 𝑁 is applied to 

each number in the input register and the results are stored in 

the output register. 

1

√16
∑|𝑎, 𝑚𝑥𝑚𝑜𝑑 𝑁⟩

15

𝑎=0

 

 

After this, the QFT is applied 

 

1

√16
∑𝑄𝐹𝑇 (|a⟩)|𝑚𝑥𝑚𝑜𝑑 𝑁⟩

15

𝑎=0

 

 

The QFT is used to find the period of the function in 

polynomial time on a quantum computer. This basic calculation 

can be modeled as: 

 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 =  𝑚𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 1 𝑚𝑜𝑑 𝑁 

 

In the above equation, N represents the number one wants to 

factorize while m is any number greater than 1 but smaller than 

N that is chosen for the calculation. In the above calculation, m, 

the random number chosen for the calculation is raised to the 

power of the first qubit register and then computed mod N.  

The Table (Table 1) below represents the result of the 

calculation. 

 

The second register contains the repeated output of 1,2,4,8. 

Since the pattern is made up of four numbers, the period or the 

frequency of the algorithm is 4. In this example, the frequency 

is easy to calculate but becomes difficult to perform once the 

numbers become larger. 

The next step is to find the factor of N using the period one 

finds. The factor can be found out using the following equation- 

 

gcd (𝑚
𝑝
2 − 1, 𝑁) 

 

In this particular example, the calculation can be modeled as 

follows- 

 

gcd(3, 15) = 3 

 

To confirm that 3 is a factor of 15, we can do this calculation: 

15 𝑚𝑜𝑑 3 = 0. 

The above calculations show how Shor’s algorithm can be 

used to solve the integer factorization problem. By starting at 

an equal superposition of qubits, and performing a QFT on it to 

find the period, one can calculate the unknown “exponent” in 

the integer factorization problem. This could have serious 

implications for public key encryption systems that rely on 

classical computers being unable to factor large semi-primes in 

a reasonable amount of time. 

The average runtime for factoring integers according to the 

brute-force algorithm has an average time complexity of 

O(2log 𝑛 ) where log n is the size of the input with n bits. This 

implies that as the number increases, the time required to factor 

it also increases as it is exponential. Factoring small numbers 

Table 1 

Result of the calculation 

First Qubit 

Register 

Calculation Second Qubit 

Register 

0 20 𝑚𝑜𝑑 15 1 

1 21 𝑚𝑜𝑑 15 2 

2 22 𝑚𝑜𝑑 15 4 

3 23 𝑚𝑜𝑑 15 8 

4 24 𝑚𝑜𝑑 15 1 

5 25 𝑚𝑜𝑑 15 2 

6 26 𝑚𝑜𝑑 15 4 

7 27 𝑚𝑜𝑑 15 8 

8 28 𝑚𝑜𝑑 15 1 

9 29 𝑚𝑜𝑑 15 2 

10 210 𝑚𝑜𝑑 15 4 

11 211 𝑚𝑜𝑑 15 8 

12 212 𝑚𝑜𝑑 15 1 

13 213 𝑚𝑜𝑑 15 2 

14 214 𝑚𝑜𝑑 15 4 

15 215 𝑚𝑜𝑑 15 8 
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within a reasonable amount of time is possible on classical 

computer, but doing the same for a large number is not possible. 

On the other hand, Shor’s algorithm has a time complexity of 

𝑂((log 𝑛)3) which is a significantly smaller time when 

factoring large numbers even when compared to the best known 

integer factorization algorithms. The General Number Field 

Sieve is the most efficient classical algorithm for factoring 

integers larger than 10100. It has a time complexity of 

O(𝑒
√

64

9

3
(𝑙𝑜𝑔 𝑛)

1
3(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)

2
3 

) where n is the number itself [18]. 

A comparison of the two runtimes is shown in the table 

(Table 2) below: 

 

Shor’s algorithm presents a very efficient way to factor large 

semi-prime numbers. The most widely used public key 

cryptosystem, the RSA, will be rendered useless by quantum 

computers as they will be able to factor large semi-primes in a 

reasonable amount of time. 

9. Grover’s algorithm 

Searching an unsorted database takes a very long time on a 

classical computer. The only way is to go through each and 

every value and check. On the other hand, searching a sorted 

database is relatively easier. In the worst-case scenario, a search 

algorithm would require n steps (where is n is the number of 

entries in a database) when a database is randomly sorted [14]. 

On an average, searching an unsorted database would require 
𝑛

2
 

steps. For example, in a database with 1,000,000 entries, the 

average time to find a particular value is 500,000. On the other 

hand, in the worst-case scenario, it may take 1,000,000 steps. 

This problem can be efficiently tackled by Lov Gorver’s 

algorithm that uses quantum computers to search unsorted 

databases [1] [2]. Like every quantum algorithm, this algorithm 

is also dependent on quantum parallelism and superposition of 

the states. It aims at maximizing the amplitude of the right 

answer. It decreases search time from 
𝑛

2
 to √𝑛 steps. This means 

that the number of steps falls from 500,000 to just 1,000. 

 

Grover’s algorithm has two steps [2]: 

 

Step 1: Phase inversion 

Step 2: Inversion about the mean 

The first step in this algorithm is to create a superposition of 

states 

|𝑣⟩ = ∑
1

√𝑁
|𝑥⟩

𝑁

𝑥=0

 

 

Following this, the amplitude of the number that is to be 

selected is inverted i.e. 
1

√𝑁
|𝑥⟩  → −

1

√𝑁
|𝑥⟩. This is phase 

inversion. 

After this, the average of the amplitudes is calculated. The 

average will be less than the highest amplitudes. Following this, 

the amplitudes are inverted about the mean. This implies that 

the amplitude of each state is transformed such that the 

amplitude is as far above the mean as it was below it before 

being inverted, and vice versa [16]. This results in the amplitude 

of the target increasing by a factor of 3. This is repeated √2𝑛 

times following which the answer is found. 

This can also be illustrated through an example. Let the 

following be the superposition of states and let the bolded super 

amplitude be the one that is to be enhanced: 

 

|𝑣⟩ = [
1

√8
,

1

√8
,

1

√8
,

1

√8
,

1

√8
,

𝟏

√𝟖
,

1

√8
,

1

√8
] 

 

Then, the amplitude of the number one wants to enhance is 

inversed: 

 

|𝑣⟩ = [
1

√8
,

1

√8
,

1

√8
,

1

√8
,

1

√8
,
−𝟏

√𝟖
,

1

√8
,

1

√8
] 

 

The average of these amplitudes is: 

 

7 ∙
1

√8
−

1

√8
8

=  
3

4√8
 

 

Inverting the amplitudes about the mean leads to the 

following answer: 

 

|𝑣⟩ = [
1

2√8
,

1

2√8
,

1

2√8
,

1

2√8
,

1

2√8
,

𝟓

𝟐√𝟖
,

1

2√8
,

1

2√8
] 

 

Repeating this Grover’s algorithm would yield: 

 

|𝑣⟩ = [
−1

4√8
,

−1

4√8
,

−1

4√8
,

−1

4√8
,

−1

4√8
,

𝟏𝟏

𝟒√𝟖
,

−1

4√8
,

−1

4√8
 

 

This would lead to a probability of |
11

4√8
|2 =  0.9543 to find 

the correct answer that the user is looking for. 

The average time to find a particular entry on a classical 

computer would take 
𝑛

2
 steps. This may be a reasonable amount 

of time for a small database but may not work for larger 

databases. Therefore, large databases such as the ones that store 

login credentials, such as username and password, or credit card 

numbers are not only encrypted but also stored in an unsorted 

Table 2 

Comparison of run times 

The 
number 

being 
factored (n) 

Average runtime on 
Shor’s algorithm 

𝑶((𝐥𝐨𝐠 𝒏)𝟑) 

Average runtime of the 
General Number Field 

Sieve 

O(𝒆
√

𝟔𝟒

𝟗

𝟑
(𝒍𝒐𝒈 𝒏)

𝟏
𝟑(𝒍𝒐𝒈 𝒍𝒐𝒈 𝒏)

𝟐
𝟑 

) 

101 1 1 

10100 1,000,000 1,423,716 

101,000 1,000,000,000 2.354 ×  1017 

1010,000 1,000,000,000,000 2.182 ×  1045 
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manner to enhance the security. However, all of this is under 

threat because of Grover’s Algorithm. The following table 

(Table 3) compares the average runtime of Grover’s algorithm 

with the classical algorithm for locating a particular entry in a 

database. 

 

The difference is negligible for small databases (N=10). 

However, as N increases, Grover’s algorithm becomes 

significantly more efficient. In cryptography, Grover’s 

algorithm can be applied to brute-forcing algorithms [2]. When 

one uses Grover’s algorithm to find out a password using the 

brute-force method, the algorithm will try each possible 

permutation until it finds the correct one [1]. Such applications 

threaten systems that use symmetric key as a standard for 

encryption (For example, the Advanced Encryption Standard 

(AES)). 

10. Implications 

The integer factorization problem (e.g. RSA) and the discrete 

logarithm problem (e.g., DSA signatures and ElGamal 

encryption) form the basis of the public key cryptosystems used 

today. These encryption methods have come under threat 

because of Shor’s algorithm as well as the progress made in 

building actual quantum computers. Recently developed 

algorithms that are based on elliptic curves (such as ECDSA) 

use a modification of the discrete logarithm problem and hence 

are also threatened by Shor’s algorithm [9]. 

The table (Table 4) below illustrates the impact of Shor’s 

algorithm on cryptographic algorithms. 

Grover’s algorithm, on the other hand, threatens symmetric 

key encryption. These cryptographic schemes (such as the 

Advanced Encryption Standard-AES) are safe even from 

quantum computers if they have sufficient key sizes. Since 

Grover’s algorithm offers a square-root sped up to brute-force 

algorithms, it makes an n-bit cipher from 2𝑛 to √2𝑛 =  2
𝑛

2 [9]. 

In reality, this implies that a private key encryption with a key 

length of 32 bits would provide security equivalent to a key 

length of 16 bits. Therefore, the Advanced Encryption Standard 

(AES) is considered to be resilient to quantum computation 

when its key size is 192 bits or 256 bits. Another fact that 

concretizes the fact that the AES is secure in the post-quantum 

era is that the NSA (The National Security Agency) uses the 

AES encryption method to protect classified documents and 

encryption them with key sizes of 192 or 256 bits [9]. This is 

because the NSA understands that public key cryptosystems 

will not be resilient to quantum computers and hence they want 

to store their files in such a manner that the files do not fall into 

the wrong hands ever. 

The table (Table 5) below compares the classical and 

quantum security levels for the most used cryptographic 

schemes [9]. 

11. Post quantum cryptography 

The question that becomes evident is: are there any 

cryptosystems that are safe to use in the age of quantum 

computing? The aim of post quantum cryptography is to 

develop encryption algorithms that are safe against both 

quantum and classical computers. The mathematical based 

solutions that have come up are the following: 

 Lattice based cryptography 

 Multivariate-based cryptography  

 Code-based cryptography 

Lattice-based cryptography is something that eliminates the 

weakness of the RSA system. It involves the multiplication of 

matrices rather than the multiplication of large prime numbers. 

This encryption method is based on the mathematical hardness 

of lattice problems, such as the short vector problem (SVP) [9]. 

It involves finding out the shortest non-zero vector where the 

input is a lattice represented by an arbitrary basis. The Ajtai-

Table 3 

Average steps required for sorting 

Size of the 

database (n) 

Average steps 

required on 

Grover’s algorithm 

(√𝒏) 

Average steps 

required on a 

classical computer 

(
𝒏

𝟐
) 

10 3.16 5 

100 10 50 

1,000 31.6 500 

10,000 100 5,000 

100,000 316 50,000 

1,000,000 1,000 500,000 

10,000,000 3,160 5,000,000 

 

 

Table 4 

Impact of Shor’s algorithm on cryptographic algorithms 

Cryptosystem Type Purpose Implication 

because of 

quantum 

computers 

AES-256 Symmetric 

Key 

cryptography 

Encryption Relatively 

secure 

SHA-256, SHA-3 - Hash 

Functions 

Relatively 

secure 

RSA Public Key 

cryptography 

Signatures and 

key 

establishment 

Not Secure 

Elliptic curve 

cryptography (E.g. 

ECDSA, ECDH) 

Public Key 

cryptography 

Signatures and 

key exchange 

Not secure 

Finite Field 

Cryptography (E.g. 

DSA) 

Public Key 

cryptography 

Signatures and 

key exchange 

Not secure 

 

 

Table 5 

Comparison of the classical and quantum security levels for the most used 

cryptographic schemes 

Cryptographic 

Algorithm 

Key Size 

(in bits) 

Effective Key strength 

Classical 

computers 

Quantum 

computers 

RSA - 1024 1024 80 0 

RSA - 2048 2048 112 0 

ECC - 256 256 128 0 

ECC - 384 384 256 0 

AES - 128 128 128 64 

AES - 256 256 256 128 
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Dwork (AD), Goldreich-Goldwasser-Halevi (GGH) and NTRU 

encryption schemes are examples of lattice-based 

cryptosystems [9]. 

The multivariate-based cryptographic algorithms are based 

on the difficulty of solving multivariate polynomials over a 

finite field. Examples of such cryptographic algorithms include 

the MI88, Pat96b, and KPG99. An MQ-problem involves 

finding the solution to 𝑥 𝜖 𝔽 for a given system of quadratic 

polynomials and a given vector 𝑦 𝜖 𝔽𝑚 [10]. 

Code based cryptography is a type of crypto scheme that uses 

error correcting codes. It is based on the fact that decoding 

linear codes is difficult. Code-based cryptosystems are 

considered to be resilient to quantum computers. Linear block 

codes are generally used in error-detection and error-correction 

codes. It involves a generator matrix G that transforms the 

message m into a codeword c. There is always a parity check 

matrix H that is derived from the generator matrix and is used 

to check the consistency of the codeword. Code-based 

cryptography relies on the fact that there exist no efficient 

algorithms to decode a general linear code [6]. 

In code-based cryptography, to encrypt a message, a random 

error vector is added. To decrypt the message, one must remove 

the errors that had been added. It is imperative to hide the 

algebraic structure of the code so that it is difficult for the 

adversary to decrypt it. 

One of the most prominent code-based cryptosystems is the 

McEliece cryptosystem and was introduced in the 1970s by 

Robert McEliece [6]. It was not adopted during the 1970s 

mainly because of its large key sizes. The public key of the 

cryptosystem is a randomized generator matrix that is 

multiplied with a random permutation and a non-singular 

matrix. If the generator matrix G is 𝑘 ×  𝑛, then the random 

non-singular matrix S is 𝑘 ×  𝑘 and the random permutation 

matrix G is 𝑛 ×  𝑛. For the generator matrix, there is an 

efficient algorithm Dec that can decode the codeword with up 

to T errors. The public key is 𝐺∗ = 𝑆 ∙ 𝐺 ∙ 𝑃.  The message m is 

multiplied by 𝐺∗ and a random error e, a random n-bit vector, 

is added to create the codeword C. The codeword can have 

errors after it has been transmitted through a noisy channel and 

has been received by the recipient. Therefore, e<T, so that there 

is room for unwanted errors. To decrypt the message, the 

recipient can reverse the secret permutation P. Following this, 

the original message can be recovered by inverting the linear 

transformation given by S [8]. This can be written as: 

1. 𝑐∗ ← 𝑐 ∙ 𝑃−1 

2. 𝑚∗ ← 𝐷𝑒𝑐(𝑐∗) 

3. 𝑚 ←  𝑐∗ ∙  𝑆−1 

Code-based cryptosystems cannot be broken by quantum 

computing algorithms yet. Therefore, they can be used in post-

quantum cryptography. 

12. Conclusion 

Quantum computing is on the rise. However, making a 

quantum computer that can be used by a common man will still 

take a couple of years. The most powerful quantum computer 

built till date is by IBM and is a 50-qubit machine and can only 

remain in a quantum state for 90 microseconds [17]. 

Information plays an important role in today’s society and the 

integrity and confidentiality of the same are very important. 

Quantum computing and quantum algorithms pose a threat to 

cryptosystems that are commonly used in information 

transmission in the modern era. This includes the public key 

algorithms (for example RSA, ElGamal, ECC and DSA) and 

symmetric key algorithms (such as 3DES, AES). A fully 

operational quantum computer would render public key 

encryption methods that are considered unbreakable as of now 

to be insecure [9]. Solutions that have come up for this include 

lattice- based cryptography, code-based cryptography, and 

multivariate-based cryptography. 
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