
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

373

Abstract: This paper describes the verification of AHB Protocol

using the methodology UVM (Universal Verification

Methodology). AHB is an Advanced High performance system Bus

that supports multiple masters and multiple slaves. It implements

burst transfers, split transactions, single-cycle bus master

handover, single-clock edge operation, wider data bus

configuration (64/128bits). Verification IP is the one which

provides a smart way to verify the AHB Components such as

Master, Slave, Arbiter and Decoder. UVM is used for the

verification of AHB Protocol which provides the best framework

to achieve CDV (Coverage Driven Verification) which combines

automatic test generation, self-checking test benches, and coverage

metrics to significantly reduce the time spent on verifying a design.

An UVM test bench is composed of reusable verification

environments called VCs (verification Components). This paper

examines the verification of VCs which are structured to work

with Verilog, System Verilog and System C.

Keywords: AHB, CDV, UVM, VCs, TB, Sequencer

1. Introduction

AMBA–AHB is intended to address the high performance

synthesizable design. AHB is the new level bus implements for

the high performance applications and high clock frequency

systems. UVM is a complete verification methodology which

extends from System Verilog and OVM .Which is targeted at

verifying large gate count and IP based SOC. Verification

productivity stems from the ability to quickly develop

individual verification components, encapsulate them into

larger reusable verification components (VCs), and reuse them

in different configurations and at different levels of abstraction.

UVM uses a System Verilog implementation of standard

Transaction Level Modelling (TLM) interfaces for modular

communication between AHB components such as Master and

Slave. The System Verilog UVM Class Library also provides

various utilities to simplify the development and use of

verification environments. These utilities support debugging by

providing a user- controllable messaging utility. The System

Verilog UVM Class Library provides global messaging

facilities that can be used for failure reporting and general

reporting purposes.

A. Objective of study

1) To study the specifications of AMBA AHB which

include all the scenarios.

2) To generate the Test Plan comprises of Test Cases

which meets the specified scenarios.

3) To understand the development of Verification

Environment for Single Master -Single Slave which

follows the UVM topology of Driver, Sequencer and

a Monitor along with Test Plan

4) Analysis on how the driver drives the sequences from

the sequencer to the Score Board.

5) In the scoreboard, the actual output is compared with

the expected one. If the obtained output matches with

the expected result means verification is completed

successfully.

2. Architecture of UVM test bench

A. UVM test bench and environment

An UVM test bench is composed of reusable verification

environments called Verification Components (VCs). The

VCs are applied to the device under test (DUT) to verify the

implementation of the AHB protocol. Architecture of UVM n

test bench is shown in Fig. 1.

B. Building blocks of test bench

The three main building blocks of a test bench in UVM based

verification are,

 Uvm_env:

It is the top level component of the verification

components. uvm_env is extended from uvm_component. It is

used to create and connect the uvm_components like drivers,

monitors, sequencers. It can also use as sub environment in

another environment.

 UVM test:

The uvm_test class defines the test scenario for the test bench

specified in the test. The test class enables configuration of the

test bench and verification components.

 UVM Verification Components:

Sequencer (stimulus generator): The sequencer generates

stimulus data and passes it to a driver for execution. The

uvm_sequencer is the base class of uvm class library contains

all of the base functionality required to allow a sequence to

communicate with a driver.

Verification of Advanced High Speed Bus in

UVM Methodology

Malla Siva Ramakrishna1, Baddireddy Satya Sridevi2

1Student, Dept. of Electronics and Communications Engg., Aditya Engineering College, Peddapuram, India
2Professor & HoD, Dept. of Electronics and Communications Engg., Aditya Engg. College, Peddapuram, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

374

1. Driver: The driver drives data items to the bus

following the interface protocol. The driver obtains the

data items from the sequencer for execution. The

UVM Class Library provides the uvm_driver base

class.

2. Monitor: The monitor extracts signal information from

the bus and translates it into events, structs, and status

information.

3. Agent: An agent has two basic operating modes

i. Active mode: In this mode, the agent emulates a device

in the system and drives DUT signals. This mode

requires that the agent instantiate a driver and

sequencer. A monitor also is instantiated for checking

and coverage.

ii. Passive mode: In this mode, the agent does not

instantiate a driver or sequencer and operates

passively. Only the monitor is instantiated and

configured. This mode is used only when checking and

coverage collection is desired.

4. UVM top:

Test Bench top is the module, it connects the DUT and

Verification environment components.

Fig. 1. Typical UVM test bench architecture

3. UVM class hierarchy

The components in an UVM verification environment are

derived either directly or indirectly from the uvm_component

class as shown in Fig. 2.

 Build(): This phase is used to construct various child

components/ports/exports and configures them.

 Connect(): This phase is used for connecting the

ports/exports of the components.

 End of elaboration(): This phase is used for con gusing the

components if required.

 Start of simulation(): This phase is used to print the

banners and topology.

 Run(): In this phase, main body of the test is executed

where all threads are forked off.

Fig. 2. UVM class hierarchy

4. AMBA AHB features

A. Design methodology

This includes the features of AMBA AHB protocol and its

Components like master, slave, arbiter, decoder and its

interconnections.

B. AMBA AHB protocol features

AMBA AHB implements the features required for high

performance, high clock frequency systems including:

 Burst transfers

 Split transactions

 Single-cycle bus master handover

 Single-clock edge operation

 Non-tristate implementation

 Wider data bus configurations (64/128 bits)

Bridging between this higher level of bus and the current

ASB/APB can be done efficiently to ensure that any existing

designs can be easily integrated. An AMBA AHB design may

contain one or more bus masters, typically a system would

contain at least the processor and test interface. However, it

would also be common for a Direct Memory Access(DMA) or

Digital Signal Processor(DSP) to be included as bus masters.

The external memory interface, APB bridge and any internal

memory are the most common AHB slaves. Any other

peripheral in the system could also be included as an AHB

slave.

C. A typical AMBA AHB system contains the following

components:

1) AHB bus interconnection

The AMBA AHB bus protocol is designed to be used with a

Central multiplexer interconnection scheme. A central

decoder is also required to control the read data and response

signal multiplexer, which selects the appropriate signals from

the slave that is involved in the transfer.

2) AHB master interface diagram

The interface diagram of an AHB bus master shows the main

signal groups. An AHB master provides address and control

information to initiate read and write operations.

3) AHB Slave Interface diagram

The interface diagram of an AHB bus slave shows the main

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

375

signal groups. An AHB slave responds to transfers initiated by

masters in the system. The slave uses the HSELx select signal

from the decoder to control when it responds to a bus transfer.

Fig. 3. Multiplexer interconnection

Fig. 4. AHB bus master interface diagram

Fig. 5. AHB bus slave interface diagram

4) AHB decoder

This component decodes the address of each transfer and

provides a select signal for the slave that is involved in the

transfer. It also provides a control signal to the multiplexor. A

single centralized decoder is required in all AHB-Lite

implementations that use two or more slaves.

In multi-layer AHB-Lite implementations, the decoder

function is usually included in the multi-layer interconnect

component.

Fig. 6. AHB decoder diagram

5) AHB arbiter

The role of an arbiter in an AMBA system is to control which

master has access to the bus. Every bus master has a

REQUEST/GRANT interface to the arbiter and the arbiter uses

a prioritization scheme to decide which bus master is currently

the highest priority master requesting the bus. Each master also

generates an HCLOCKx signal which is used to indicate that

the master requires exclusive access to the bus. The detail of the

priority scheme is not specified and defined for each

application. It is acceptable for the arbiter to use other signals,

either AMBA or non-AMBA, to influence the priority scheme

that is in use.

Fig. 7. AHB arbiter diagram

5. Results and discussion

The results of verification components such as Master Agent

and the Slave Agent of the UVM Environment are presented.

According to Test Plan, the test cases are verified by developing

the Verification IP for the AHB Protocol. The Test Cases are

written in the form of sequences in the Sequencer using System

Verilog. The sequencer drives the sequences to the driver and

thereby to Score Board. In the scoreboard, the actual output is

compared with the expected one. If the obtained output matches

with the expected result then we conclude that the verification

is completed successfully. By using the tool Questa, the

Verification of AHB Components known as VC’s such as

Master Agent and Slave agent are done and the log files for the

test cases are generated and simulated waveforms are achieved

and shown in Fig. 8 to Fig. 11.

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

376

Fig. 8. AHB single burst

Fig. 9. AHB write transfer

Fig. 10. AHB write and read data

Fig. 11. Master and slave data transfer

A. UVM Info

B. UVM report

6. Conclusion

This paper presented verification of advanced high speed bus

in UVM methodology.

References

[1] Jack Erickson, “TLM-Driven Design and Verification – Time for a
Methodology Shift”, Cadence Design Systems, Inc.

[2] Rath A.W, Esen.V and Ecker.W , “A transaction –oriented UVM-based

library for verification of analog behavior ” Publication Year:2014
Page(s): 806 – 811.

[3] Stuart Sutherland, Don Mills, “Synthesizing System Verilog Busting the

myth that System Verilog is only for Verification”
[4] Soo-Yun Hwang and Kyoung-Sun Jhang , “An Improved Implementation

Method Of AHB BusMatrix” SOC Conference 2005, Proceedings, IEEE

International pp. 211-214.
[5] Mulani, “ Level Verification Using SystemVerilog ” Emerging Trends in

Engineering and Technology (ICETET), 2009 2nd International

Conference on 16-18 Dec.2009 pp. 378-380.

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

377

[6] Pockrandt, M , Herber, P and Glesner, S, “ Model checking a
SystemC/TLM design of the AMBA AHB Protocol ” Embedded Systems

for Real-Time Multimedia (ESTIMedia), 2011 9th IEEE Symposium on

13-14 Oct.2011 pp.66 – 75
[7] IEEE Draft Standard for System Verilog - Unified Hardware Design,

Specification and Verification Language, IEEE P1800/DS, February 2012

pp.1-1304.

[8] Young-Nam Yun, Jae-Beom Kim, Nam-Do Kim and Byeong Min,
“Beyond UVM for practical SoC verification” SoC Design Conference

(ISOCC), 2011 International pp. 158-162

[9] Keaveney. Martin, Mc Mahon. Antony, O’ Keeffe. Niall, Keane. Kevin
and O.Reilly James “The Development of advanced verification

environments using System Verilog” Signals and Systems

Conference,208.(ISSC 2008),IET Irish pp.325-330
[10] Universal Verification Methodology 1.1 User’s Guide May 18, 2011.

http://www.accellera.org

