
International Journal of Research in Engineering, Science and Management  

Volume-1, Issue-12, December-2018  

www.ijresm.com | ISSN (Online): 2581-5792     

 

165 

 

Abstract: After about a decade of intense research, spurred by 

both economic and operational considerations, and by 

environmental concerns, energy efficiency has now become a key 

pillar in the design of communication networks. With the advent 

of the fifth generation of wireless networks, with millions more 

base stations and billions of connected devices, the need for 

energy-efficient system design and operation will be even more 

compelling. In this Paper we provides a minimization of the total 

power consumption while satisfying Quality of Service (QoS) 

constraints at the users and power constraints at the Base Station 

(BS) and Small Cell Access Points (SCA). To improve the cellular 

energy efficiency we analyze a combination of two densification 

approaches, namely “massive” multiple-input multiple-output 

(MIMO) base stations and small-cell access points with higher 

spatial reuse., we present resource-aware energy-saving technique 

with a low-complexity algorithm based on classical regularized 

zero-forcing (RZF) beamforming is proposed and compared with 

the optimal solution. Furthermore, we provide promising 

simulation results showing how the total power consumption can 

be greatly improved by combining massive MIMO and small cells; 

this is possible with both optimal and low-complexity 

beamforming. 

 
Keywords: Energy efficiency, 5G, resource allocation, dense 

networks, massive MIMO, small cells networks, mm Waves, RZF 

Beamforming, Base stations, small cell access points. 

1. Introduction 

Energy consumption has become a primary concern in the 

design and operation of next generation wireless 

communication systems. Indeed, while for more than a century 

communication networks have been mainly designed with the 

aim of optimizing performance metrics such as the data-rate, 

throughput, latency, etc., in the last decade energy efficiency 

has emerged as a new prominent figure of merit, due to 

economic, operational, and environmental concerns. The design 

of the next generation (5G) of wireless networks will thus 

necessarily have to consider energy efficiency as one of its key 

pillars. Indeed, 5G systems will serve an unprecedented number 

of devices, providing ubiquitous connectivity as well as 

innovative and rate-demanding services. It is forecast that by 

2020 there will be more than 50 billion connected devices [1], 

i.e. more than 6 connected devices per person, including not 

only human type communications, but also machine-type 

communications. The vision is to have a connected society in  

 

which sensors, cars, drones, medical and wearable devices will 

all use cellular networks to connect with one another, 

interacting with human end-users to provide a series of  

innovative services such as smart homes, smart cities, smart 

cars, tele surgery, and advanced security. Clearly, in order to 

serve such a massive number of terminals, future networks will 

have to dramatically increase the provided capacity compared 

to present standards. It is estimated that the traffic volume in 5G 

networks will reach tens of Exabyte’s (10006 Bytes) per month. 

This requires the capacity provided by 5G networks to be 1000 

times higher than in present cellular systems [2]. Trying to 

achieve this ambitious goal relying on the paradigms and 

architectures of present networks is not sustainable, since it will 

inevitably lead to an energy crunch with serious economic and 

environmental concerns. Economic Concerns: Current 

networks are designed to maximize the capacity by scaling up 

the transmit powers. However, given the dramatic growth of the 

number of connected devices, such an approach is not 

sustainable. Using more and more energy to increase the 

communication capacity will result in unacceptable operating 

costs. Present wireless communication techniques are thus 

simply not able to provide the desired capacity increase by 

merely scaling up the transmit powers. Environmental 

Concerns: Current wireless communication systems are mainly 

powered by traditional carbon-based energy sources. At 

present, information and communication technology (ICT) 

systems are responsible for 5% of the world’s CO2 emissions 

[3], [4], but this percentage is increasing as rapidly as the 

number of connected devices. The classical macro-cell network 

topology is well-suited for providing wide-area coverage, but 

cannot handle the rapidly increasing user numbers and QoS 

expectations that we see today—the energy efficiency would be 

very low. The road forward s¬¬¬eems to be a densified 

topology that enables very high spatial reuse. Two main 

approaches are currently investigated: massive MIMO and 

small-cell networks. The first approach is to deploy large-scale 

antenna arrays at existing macro base stations (BSs) [1]. This 

enables precise focusing of emitted energy on the intended 

users, resulting in a much higher energy efficiency. The channel 

acquisition is indispensable for massive MIMO, which requires 

the exploitation of channel reciprocity using time-division 

duplex (TDD). This mode makes the channel estimation 
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accuracy limited by the number of users and not the number of 

BS antennas [1]. The second approach is to deploy an overlaid 

layer of small-cell access points (SCAs) to offload traffic from 

BSs, thus exploiting the fact that most data traffic is localized 

and requested by low-mobility users. This approach reduces the 

average distance between users and transmitters, which 

translates into lower propagation losses and higher energy 

efficiency [2]. This comes at the price of having a highly 

heterogeneous network topology where it is difficult to control 

and coordinate inter-user interference. To meet this challenge, 

industry [3] and academia [4] are shifting focus from user-

deployed femtocells to operator-deployed SCAs. The latter can 

rely on reliable backhaul connectivity and joint 

control/coordination of BS and SCAs; the existence of SCAs 

can even be transparent to the users, as in the soft-cell approach 

proposed for LTE in [3]. The total power consumption can be 

modeled with a static part that depends on the transceiver 

hardware and a dynamic part which is proportional to the 

emitted signal power [5]–[7]. Massive MIMO and small-cell 

networks promise great improvements in the dynamic part, but 

require more hardware and will therefore increase the static 

part. In other words, dense network topologies must be properly 

deployed and optimized to actually improve the overall energy 

efficiency. This paper analyzes the possible improvements in 

energy efficiency when the classical macro-cell topology is 

modified by employing massive MIMO at the BS and/or 

overlaying with SCAs. We assume perfect channel acquisition 

and a backhaul network that supports interference coordination; 

we thus consider an ultimate bound on what is practically 

achievable. The goal is to minimize the total power 

consumption while satisfying QoS constraints at the users and 

power constraints at the BS and SCAs. We show that this 

optimization problem has a hidden convex structure that 

enables finding the optimal solution in polynomial time. The 

solution is proved to automatically/ dynamically assign each 

user to the optimal transmitter (BS or SCA). A low-complexity 

algorithm based on classical regularized zero-forcing (RZF) 

beamforming is proposed an compared with the optimal 

solution. The potential merits of different densified topologies 

are analyzed by simulations. 

2. System model 

In order to avert the energy crunch, new approaches to 

wireless network design and operation are needed. The key 

point on which there is general consensus in the wireless 

academic and industry communities, is that the 1000_ capacity 

increase must be achieved at a similar or lower power 

consumption as today’s networks [6], [7]. This means that the 

efficiency with which each Joule of energy is used to transmit 

information must increase by a factor 1000 or more. Increasing 

the network energy efficiency has been the goal of the Green 

Touch consortium [8], which was founded in 2010 as an open 

global pre-competitive research consortium with the focus to 

improve network energy efficiency by a factor 1000 with 

respect to the 2010 state of the art reference network. The 

consortium published a technology roadmap and announced its 

final results in its “Green Meter” research study [9]. 

 

 
Fig. 1.  Energy efficient 5G technologies 

 

Additionally, the Groupe Speciale Mobile Association 

(GSMA) demands, by 2020, a reduction of CO2 emissions per 

connection of more than 40%. These fundamental facts have led 

to introducing the notion of bit-per-Joule energy efficiency, 

which is defined as the amount of information that can be 

reliably transmitted per Joule of consumed energy, and which 

is a key performance indicator for 5G networks [6],[7] (see also 

[10]–[12] as some of the first papers introducing the notion of 

bit-per-Joule energy efficiency). As illustrated in Fig. 1, most 

of the approach useful for increasing the energy efficiency of 

wireless networks can be grouped under four broad categories 

as follows. 

Network planning and deployment: The second technique is to 

deploy infrastructure nodes in order to maximize the covered 

area per consumed energy, rather than just the covered area. In 

addition, the use of base station (BS) switch on/ switch-off 

algorithms and antenna muting techniques to adapt to the traffic 

conditions, can further reduce energy consumptions [14], [15]. 

Low Complexity Algorithm For Resource Allocation: The first 

technique to increase the energy efficiency of a wireless 

communication system is to allocate the system radio resources 

in order to maximize the energy efficiency rather than the 

throughput by using the low complexity algorithms. This 

approach has been shown to provide substantial energy 

efficiency gains at the price of a moderate throughput reduction 

[13]. 

Energy harvesting and transfer: The third technique is to 

operate communication systems by harvesting energy from the 

environment. This applies to both renewable and clean energy 

sources like sun or wind energy, and to the radio signals present 

over the air. 

Hardware solutions: The fourth technique is to design the 

hardware for wireless communications systems explicitly 

accounting for its energy consumption [16], and to adopt major 

architectural changes, such as the cloud-based implementation 

of the radio access network [17]. In the following, a survey of 

the state-of-the-art relative to the above cited four categories is 

given, with a special focus on the papers published in this issue. 
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3. System analysis 

A. Network planning and deployment 

In order to cope with the sheer number of connected devices, 

several potentially disruptive technologies have been proposed 

for the planning, deployment, and operation of 5G networks. 

From that several technologies we use optimal soft cell 

coordination using Massive MIMO BS and Soft Cell Access 

points 

B. Optimal Soft Cell Co-Ordination Method 

We consider a single-cell downlink scenario where a macro 

BS equipped with NBS antennas should deliver information to 

K single-antenna users. In addition, there are S > 0 SCAs that 

form an overlay layer and are arbitrarily deployed. The SCAs 

are equipped with NSCA antennas each, typically 1 < NSCA, < 

4, and characterized by strict power constraints that limit their 

coverage area (see below). In comparison, the BS has generous 

power constraints that can support high QoS targets in a large 

coverage area. The number of antennas, NBS, is anything from 

8 to several hundred the latter means that NBS >>K and is 

known as massive MIMO. This scenario is illustrated in Fig. 2.  

The channels to user k are modeled as block fading. We 

consider a single flat-fading subcarrier where the channels are 

represented in the baseband by a and 

for the BS and jth SCA, respectively. These are 

assumed to be perfectly known at both sides of each channel; 

extensions with   robustness to channel uncertainty can be 

obtained as in [8]. The received signal at user k  

 

 
where x0 , xj are the transmitted signals at the BS and jth SCA, 

respectively. The term is the circularly symmetric complex 

Gaussian receiver noise with zero-mean and variance  , 

measured in mill watt (mW). 

 

 
Fig. 2.  Illustration of a downlink macro-cell overlaid with S small cells 

 

The BS has NBS antennas and the SCAs have NSCA 

antennas. The K single antenna users (e.g., smartphones) can be 

served (non-coherently) by any combination of transmitters, but 

the circles indicate typical coverage areas.  

The information symbols from the BS and the jth SCA to user 

k are denoted xk,0 and xk,j , respectively, and originate from 

independent Gaussian codebooks with unit power (in mW); that 

is, xk,j ~ CN(0; 1) for j = 0,….,S. These symbols are multiplied 

with the beamforming vectors wk,0=CNbs*1 and Wk,j ( CNSCA*1 to 

obtain the transmitted signals  

 
The beamforming vectors are the optimization variables in 

this paper. Note that wk;j 6= 0 only for transmitters j that serve 

user k. This transmitter assignment is obtaine automatically and 

optimally from the optimization problem solved herein. 

C. Problem Formulation 

This paper considers minimization of the total power 

consumption while satisfying QoS constraints for each user. We 

will define both concepts before formulating the proble . The 

QoS constraints specify the information rate [bits/s/Hz] that 

each user should achieve in parallel. These are defined as is the 

aggregate signal-to-interference-and-noise ratio (SINR) of the 

kth user. The information rate log2(1 + SINRk) is achieved by 

applying successive interference cancellation on the own 

information symbols and treating co-user symbols as noise. 

Observe that this rate is obtained without any phase 

synchronization between transmitters, contrary to coherent joint 

transmission that requires very tight synchronization [10]. 

 
The power consumption (per subcarrier) can be modeled as 

Pdynamic + Pstatic [5]–[7] with the dynamic and static terms given 

by below  

 
The dynamic term is the aggregation of the emitted powers 

, each multiplied with a constant Pj >1 

accounting for the inefficiency of the power amplifier at this 

transmitter. The static term, Pstatic, is proportional to the number 

of antennas and Nj > 0 models the power dissipation in the 

circuits of each antenna (e.g., in filters, mixers, converters, and 

baseband processing). Pstatic is normalized with the total number 

of subcarriers   C > 1. Representative numbers on these 

parameters are given in Table I, [6], and [11] Each BS and SCA 

is prone to Lj power constraints  

 

  
    The weighting matrices given by below are positive and 

semi definite.  for j = 
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1,….,s.The corresponding limits are qj; _ 0. The parameters Qj,k,l 

are fixed and can describe any combination of per-antenna, per-

array, and soft shaping constraints [10]. We typically have qol 

>> qj.l for 1 < j < S, because the BS provides coverage. Our 

numerical evaluation considers per-antenna constraints of qj 

[mW] at the jth transmitter, given by L0 = NBS, Lj = NSCA, qj,l = 

qj^l`with one at `the diagonal element and zero elsewhere. We 

are now ready to formulate our optimization problem. We want 

to minimize the total power consumption while satisfying the 

QoS constraints and the power constraints,  

 

 
  In the next section, we will prove that (7) can be 

reformulated as a convex optimization problem and thus is 

solvable in polynomial time using standard algorithms. 

Moreover, the optimal power-minimizing solution is self-

organizing in the sense that only one or a few transmitters will 

serve each user. 

D. Low complexity algorithm for resource allocation 

This section derives algorithms for solving the optimization 

problem (7). The QoS constraints in (7) are complicated 

functions of the beamforming vectors, making the problem non-

convex in its original formulation. However, we will prove that 

it has an underlying convex structure that can be extracted using 

semi-definite relaxation. We generalize the original approach in 

[12] to spatial multiflow transmission. 

To achieve a convex reformulation of (7), we use the notation 

matrix should be positive semi-definite, denoted as Wk;j < 0, 

and have rank (Wk;j) < 1. Note that the rank can be zero, which 

implies that Wk;j = 0. By including the BS and SCAs in the same 

sum expressions, we can rewrite (7) compactly as 

 

The optimal beamforming for spatial soft-cell coordination 

can be computed in polynomial time using Theorem 1. This 

complexity is relatively modest, but the algorithm becomes 

infeasible for real-time implementation when NBS and S grow 

large. In addition, Theorem 1 provides a centralized algorithm 

that requires all channel knowledge to be gathered at the BS.  

Theorem 1 should be seen as the ultimate benchmark when 

evaluating low-complexity algorithms for non-coherent 

coordination. To demonstrate the usefulness, we propose the 

low-complexity non-iterative Multiflow-RZF beamforming: 

 

 
 

 
Fig. 3.  The single-cell scenario analyzed in Section 4  

 

The BS and SCAs are fixed, while the 10 users are randomly 

distributed as described above. This algorithm applies the 

heuristic RZF beamforming (see e.g., [2]) to transform (7) into 

the power allocation problem which has the same low 

complexity irrespectively of the number of antennas. The 

algorithm is non-iterative, but some scalar parameters are 

exchanged between the BS and SCAs to enable coordination. 

In practice, only users in the vicinity of an SCA are affected by 

it, thus only a few parameters are exchanged per SCA while all 

other parameters are set to zero. 

E. Energy harvesting and transfer 

Harvesting energy from the environment and converting it to 

electrical power is emerging as an appealing possibility to 

operate wireless communication systems. Indeed, although this 

approach does not directly reduce the amount of energy 

required to operate the system, it enables wireless networks to 

be powered by renewable and clean energy sources [11]. Two 

main kinds of energy harvesting have emerged so far in the 

context of wireless communications. Environmental energy 

harvesting: This technique refers to harvesting clean energy 
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from natural sources, such as sun and wind. Comprehensive 

surveys on this approach are [12] and [13] 

Radio-frequency energy harvesting: This technique refers to 

harvesting energy from the radio signals over the air, thus 

enabling the recycling of energy that would otherwise be 

wasted. In this context, interference signals provide a natural 

source of electromagnetic-based power. Surveys on this 

approach are [14] and [15]. The main challenge in the design of 

communication systems powered by energy harvesting is the 

random amount of energy available at any given time. This is 

due to the fact that the availability of environmental energy 

sources (e.g. sun or wind) is inherently a stochastic process, and 

poses the problem of energy outages. Unlike traditionally-

powered networks, communication systems powered by energy 

harvesting must comply with the so-called energy causality 

constraint, i.e. the 7 energy used at time t cannot exceed the 

energy harvested up to time t. Early works on environmental 

energy harvesting dealt with this problem by taking a so-called 

off-line approach, assuming that the amount of energy 

harvested at a given point in time is known in advance. 

Although difficult to meet in practice, this approach provides 

insight as to the ultimate performance of energy-harvesting 

systems. In [56] an offline power allocation algorithm termed 

directional waterfilling is proposed, while [57] addresses a 

similar problem but assuming a system in which the data to be 

transmitted is available at random times. In [58] and [59], the 

results of [57] are extended to the more realistic case of a battery 

with finite capacity, while the impact of energy leakages due to 

non-ideal batteries is considered in [60]. Previous results have 

been extended to multi-user networks in [61] and [62], to relay-

assisted communications in [23], and to multiple-antenna 

systems [24]. More recently, research efforts have been aimed 

at overcoming the off-line approach, developing on-line design 

policies, which do not assume any knowledge about the amount 

of energy harvested at specific times. Two main approaches 

have emerged in this context. Tools from stochastic 

optimization are used to develop design protocols assuming that 

the statistics of the energy process are known [25]–[27]. 

Alternatively, approaches based on learning theory provide the 

means to design energy.  The issue of energy randomness is also 

present as far as radio-frequency energy harvesting is 

concerned, because in general the amount of electromagnetic 

power available in the air is not known in advance. Indeed, 

several schemes have appeared in the literature in which a node 

opportunistically exploits the electromagnetic radiation over 

the air. In [30] an OFDMA system is considered, in which a 

hybrid BS is considered, which is partly powered by radio 

frequency energy harvesting. In [31] and [32] a relay-assisted 

network is considered, wherein the relay is powered by drawing 

power from the received signals. A cognitive radio system is 

considered in [33], in which the secondary network draws 

energy from the signals received from the primary network. 

However, radio-frequency energy harvesting offers an 

intriguing possibility, which also helps to reduce the 

randomness of wireless power sources. The idea is to combine 

energy harvesting with wireless power transfer techniques, 

thereby enabling network nodes to share energy with one 

another [34]. This has a two-fold advantage. First, it makes it 

possible to redistribute the network total energy, prolonging the 

lifetime of nodes that are low on battery energy [35], [36]. 

Second, it is possible to deploy dedicated beacons in the 

network, which act as wireless energy sources, thereby 

elimination or reducing the randomness of the radio-frequency 

energy source. This approach can be taken even further, 

superimposing the energy signals on regular communication 

signals, resulting in the so called simultaneous wireless 

information and power transfer (SWIPT) [37]–[39]. Several 

contributions to wireless power transfer are included in this 

special issue [40]–[42]. In [40], SWIPT in nonorthogonal 

multiple access networks is considered. The network nodes are 

assumed to be spatially randomly located over the covered area 

and a novel protocol is provided in which users close to the 

source act as energy harvesting relays to help faraway users. In 

141], the co-existence of a MISO femtocell system with a 

macro-cell system is considered. The femtocell simultaneously 

transmits information to some of its users and energy to the rest 

of its users, while also suppressing its interference to macro-cell 

devices. The system energy efficiency is maximized with 

respect to the system beamforming vectors by means of 

fractional programming theory. In [42], energy harvesting and 

wireless power transfer is studied in relay-assisted systems with 

distributed beamforming, proposing a novel power splitting 

strategy. 

F. Hardware solutions 

Energy-efficient hardware solutions refers to a broad 

category of strategies comprising the green design of the RF 

chain, the use of simplified transmitter/receiver structures, and, 

also, a novel architectural design of the network based on a 

cloud implementation of the radio access network (RAN) and 

on the use of network function virtualization. Attention has 

been given to the energy-efficient design of power amplifiers 

[143], [144], both through direct circuit design and through 

signal design techniques aimed at peak-to-average-power ratio 

reduction. The use of simplified transmitter and receiver 

architectures, including the adoption of coarse signal 

quantization (e.g. one bit quantization) and hybrid 

analog/digital beamformers, is another technique that is being 

proposed for increasing hardware energy efficiency, especially 

in systems with many antennas such as massive MIMO systems 

and mmWave systems. The paper [45], as an instance, presents 

an analysis of the spectral efficiency of single-carrier and 

OFDM transmission in massive MIMO systems that use one-

bit analog-to-digital converters (ADCs), while a capacity 

analysis of one-bit quantized MIMO systems with transmitter 

CSI is reported in [46]. One-bit ADCs coupled with high-

resolution ADCs are instead proposed and analyzed in the paper 

[47], from this special issue, to simplify receiver design in 

massive MIMO systems. The paper shows that the proposed 



International Journal of Research in Engineering, Science and Management  

Volume-1, Issue-12, December-2018  

www.ijresm.com | ISSN (Online): 2581-5792     

 

170 

mixed-ADC architecture with a relatively small number of 

high-resolution ADCs is able to achieve a large fraction of the 

channel capacity of the conventional architecture, while 

reducing the energy consumption considerably even compared 

with antenna selection strategies, for both single-user and multi-

user scenarios. For mmWave communications, given the 

required large number of antenna elements, the implementation 

of digital beamforming poses serious complexity, energy 

consumption, and cost issues. Hybrid analog and digital 

beamforming structures have been thus proposed as a viable 

approach to reduce complexity and, most relevant to us, energy 

consumption [14], [15], [49]. The paper [50], in this special 

issue, focuses on a mmWave MIMO link with hybrid decoding. 

Unlike previous contributions on the subject, which considered 

a fully-connected architecture requiring a large number of 

phase shifters, a more energy-efficient hybrid precoding  with 

sub-connected architecture is proposed and analyzed in 

conjunction with a successive interference cancellation (SIC) 

strategy. The paper also shows through simulation results that 

the proposed SIC-based hybrid precoding is near-optimal and 

enjoys higher energy efficiency than spatially sparse precoding 

[51] and fully digital precoding. Cloud-based implementation 

of the RAN is another key technology instrumental to making 

future 5G networks more energy-efficient. Spurred by the 

impressive spread of cloud computing, cloud-RAN (C-RAN) is 

based on the idea that many functions that are currently 

performed in the BS, can be actually transferred to a remote 

data-center and implemented via software [17], [52], [53]. The 

most extreme implementation of C RAN foresees light BSs 

wherein only the RF chain and the baseband-to-RF conversion 

stages are present; it is assumed that these light BSs are 

connected through high capacity links to the data-center, 

wherein all the baseband. Processing and the resource 

allocation algorithms are run. This enables a great deal of 

flexibility in the network, thus leading to substantial savings as 

far as both deployment costs and energy consumption are 

concerned. Mobile-edge computing [154] is also a recently 

considered approach that increases network flexibility 

potentially leading to considerable energy savings. The studies 

[55]–[58] are a sample of the many recent works that have 

addressed the energy-efficiency gains possible with a cloud-

based RAN. In this special issue, paper [159] investigates the 

role that cellular traffic dynamics play in efficient network 

energy management, and designs a framework for traffic-aware 

energy optimization. In particular, using a learning approach, it 

is shown that the C-RAN can be made aware of the near-future 

traffic, so that inactive or low-load BSs can be switched off, 

thus reducing the overall energy consumption. The proposed 

approach is also validated on real traffic traces and energy 

savings on the order of 25% are achieved. The paper [160], 

from this special issue, proposes a holistic sparse optimization 

framework to design a green C-RAN by taking into 

consideration the power consumption of the fronthaul links, 

multicast services, as well as user admission control. 

Specifically, the sparsity structures in the solutions of both the 

network power minimization and user admission control 

problems are identified, which call for adaptive remote radio 

head (RRH) selection and user admission, a problem that is 

solved through a nonconvex but smoothed `p minimization (0 

< p _ 1) approach to promote sparsity in the multicast setting. 

Finally, [16], again from this special issue, studies the energy 

efficiency of a downlink C-RAN, focusing on two different 

downlink transmission strategies, namely the data-sharing 

strategy and the compression strategy. The paper shows that C-

RAN signicantly improves the range of feasible user data rates 

in a wireless cellular network, and that both data-sharing and 

compression strategies bring much improved energy efficiency 

to downlink C-RAN as compared to nonoptimized Coordinated 

Multipoint (CoMP) 

4. Numerical evaluation and simulation results 

This section illustrates the analytic results and algorithms of 

this paper in the scenario depicted in Fig. 3. This figure shows 

a circular macro cell overlaid by 4 small cells. There are 10 

active users in the macro cell, whereof 6 users are uniformly 

distributed in the whole cell and each SCA has one user 

uniformly distributed within 40 meters. We evaluate the 

average performance over user locations and channel 

realizations. Table I shows the hardware parameters that 

characterize the power consumption and is based on [6, Table 

7] and [11]. 

 

  
The channels are modeled similarly to Case 1 for 

Heterogeneous deployments in the 3GPP LTE standard [16], 

but the small-scale fading is modified to reflect recent works on 

massive MIMO. We assume Rayleigh small-scale fading: hk,j 

< CN(0;Rk,j). The correlation matrix is spatially uncorrelated, 

Rk,j / I, between the jth SCA and each user k. The correlation 

matrix between the BS and each user is modeled according to 

the physical channel model where the main characteristics are 

antenna correlation and reduce drank channels. Note that the 

propagation loss is different for BS and SCAs; see Table II for 

all channel model parameters. We first analyze the impact of 
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having different number of antennas at the BS and SCAs: NBS 

belongs to {20; 30; : : : ; 100} 

 
 Fig. 4.  Average total power consumption in the scenario different NBS 

and NSCA, while the QoS constraints are 2 bits/s/Hz. 

 

Fig. 4 shows the average total power consumption (per 

subcarrier) in a scenario where the 10 users have QoS 

constraints of 2 bits/s/Hz. The optimal spatial multiflow 

transmission is obtained using Theorem 1.Fig. 4 demonstrates 

that adding more hardware can substantially decrease the total 

power consumption Pdynamic + Pstatic. This means that the 

decrease in the dynamic part, Pdynamic, due to better energy-

focusing and less propagation losses clearly outweigh the 

increase in the static part, Pstatic, from the extra circuitry. 

Massive MIMO brings large energy efficiency improvements 

by itself, but the same power consumption can be achieved with 

half the number of BS antennas (or less) by deploying a few 

single-antenna SCAs in areas with active users. Further 

improvements in energy efficiency are achieved by having 

multi-antenna SCAs; a network topology that combines 

massive MIMO and small cells is desirable to achieve high 

energy efficiency with little additional hardware. However, 

there are saturation points where extra hardware will not 

decrease the total power anymore. Note that the power is shown 

in dBm, thus there are 10-fold improvements in Fig. 4. 

 
Fig. 5.  Average total power consumption in the scenario of Fig. 3 with 

NBS = 50 and NSCA = 2. We consider different QoS constraints and 

beamforming 

 

Although the system allows for multiflow transmission, the 

simulation shows only a 0–3% probability of serving a user by 

multiple transmitters. This is in line with Corollary 1. The main 

impact of increasing NSCA is that each SCA is likely to being 

allocated more than one user to serve exclusively; the 

probability is 20–45% for NSCA=3 but decreases with NBS. 

Next, Fig. 5 considers NBS = 50 and NSCA = 2 for different 

QoS constraints. Three beamforming algorithms are compared: 

1) Optimal beamforming using only the BS; 2) Multiflow-RZF 

proposed in Section III-A; and 3) Optimal spatial soft-cell 

coordination from Theorem 1. As in the previous figure, we 

observe great improvements in energy efficiency by offloading 

users to the SCAs. The proposed Multiflow-RZF beamforming 

gives promising results for practical applications, because a 

majority of the energy efficiency improvements is achievable 

by judicious low-complexity beamforming techniques. 

5. Conclusion 

Wireless communications are undergoing a rapid evolution, 

wherein the quest for new services and applications pushes for 

the fast introduction of new technologies into the marketplace. 

Operators are just now starting to make initial profits from their 

deployed LTE networks, and already 5G demos and prototypes 

are being announced. Moreover, the wireless communications 

industry has begun to design for energy efficiency. The energy 

efficiency of cellular networks can be improved by employing 

massive MIMO at the BSs or overlaying current infrastructure 

by a layer of SCAs. This paper analyzed a combination of these 

concepts based on soft-cell coordination, where each user can 

be served by non-coherent beamforming from multiple 

transmitters. We proved that the power minimizing spatial 

multiflow transmission under QoS constraints is achieved by 

solving a convex optimization problem. The optimal solution 

dynamically assigns users to the optimal transmitters, which 

usually is only the BS or one of the SCAs. The analysis 

considered both the dynamic emitted power and static hardware 

consumption. We provide promising results showing that the 

total power consumption can be greatly improved by combining 

massive MIMO and small cells. Most of the benefits are also 

achievable by low-complexity beamforming, such as the 

proposed Multiflow-RZF beamforming. 

6. Future scope 

After having reviewed the state-of-the-art of the main 5G 

energy-efficient techniques, a natural question is: what are the 

next steps to be taken towards an energy efficient 5G? We 

review some of them in the following. 

A. The need for a holistic approach 

A holistic approach is thus necessary, in which all energy-

efficient techniques are combined. Indeed, as previously 

discussed, some works in this special issue go in this direction 

combining multiple energy-efficient techniques together. The 

GreenTouch project [8], [9] has taken an initial end-to-end 

perspective for the assessment of the network energy efficiency 

and energy consumption. More research in this direction is 

needed to understand the relative impact and the combined 

benefits of new technologies, architectures and algorithms 

being developed. 

B. Dealing with interference 

Unfortunately, 5G networks will be interference-limited, 
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since orthogonal transmission schemes and/or linear 

interference neutralization techniques are not practical due to 

the massive amount of nodes to be served. Thus, the 

potentialities of fractional programming must be extended. A 

promising answer is represented by the framework of sequential 

fractional programming, which provides a systematic approach 

to extend fractional programming to interference-limited 

networks with affordable complexity. Sequential fractional 

programming has been recently shown to be effective in 

optimizing the energy efficiency of a number of candidate 

technologies for 5G, such as C-RAN, CoMP, and multi-cell 

systems, also with multi-carrier transmissions [23], [47], multi-

cell massive MIMO systems [47], heterogeneous relay-assisted 

interference networks [46], full-duplex systems [45], and 

device-to-device systems [64], [62]. 

C. Dealing with randomness 

A second approach lies in the use of learning techniques, 

which deal with randomness by letting the devices learn from 

past observations of their surroundings and respond as 

appropriate in a self-organizing fashion. However, also in this 

case, very little research effort has been directed towards 

understanding the impact of this technique on energy-efficient 

network design. 

D. Emerging techniques and new energy models 

In addition, new emerging technologies can also be used for 

energy-efficient purposes. In particular, caching and mobile 

computing have shown significant potential as far as reducing 

energy consumption is concerned. By an intelligent distribution 

of frequently accessed content over the network nodes, caching 

alleviates the need for backhaul transmissions, which results in 

relevant energy consumption reductions. Instead, mobile 

computing does not directly reduce the energy consumption, 

but, similarly to wireless power transfer, it can prolong the 

lifetime of nodes that are low on battery energy. Nevertheless, 

in order to conclusively quantify the impact of these techniques 

on energy efficiency it is necessary to develop new energy 

consumption models which take into account the energy 

consumption associated with overhead transmissions over the 

backhaul, to feedback signaling, and to the execution of 

computing operations in digital signal processors. 
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