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Abstract: Pilot contamination creates a fundamental limit to the 

potential benefits on the performance of massive multiple-input 

multiple-output (MIMO) systems. Due to failure in accurate 

channel estimation the author proposed spares Bayesian learning 

(SBL) method on Gaussian framework. To address this problem, 

we propose to estimate channel coefficient by its own hyper 

parameter and also to its adjacent cells. The required estimation 

is, nonetheless, an underdetermined system. In this paper the 

simulation results show that the channel coefficients can be 

estimated more efficiently in contrast to the conventional channel 

estimators in terms of channel estimation with pilot 

contamination. A pilot design criterion is proposed to design the 

optimal pilot to improve the estimation accuracy of the proposed 

algorithm using the Lagrange multiplier optimization method. 

Results show that we can reduce the MSE of the SBL estimator by 

employing the optimal pilot sequence. As a result, if the signals are 

observed in the beam domain (using Fourier transform), the 

channel is approximately sparse, i.e., the channel matrix contains 

only a small fraction of large components, and other components 

are close to zero.  

 
Keywords: Spares Bayesian learning, Channel estimation, 

Gaussian Process, Massive MIMO, OFDM Modulation, Pilot 

contamination. 

1. Introduction 

Very large multiple-input multiple-output (MIMO) or 

“massive MIMO” systems [1] are widely considered as a future 

cellular network architecture, which are anticipated to be 

energy-efficient, spectrum-efficient, secure, and robust for a 

survey. Such systems employ a few hundred or more base 

station (BS) antennas to simultaneously serve many tens of user 

equipment’s (UEs) in the same radio channel. As such, the array 

gain is expected to grow unboundedly with the number of 

antennas at the BSs so that both multiuser interference and 

thermal noise for any given number of users and any given 

powers of the interfering users can be eliminated. The reports 

on the great benefits of massive MIMO systems, however, were 

based on the assumption that the BSs have an acceptable quality 

of channel knowledge, which in practice has to be estimated via 

finite-length pilot sequences. However, in cellular networks, 

pilot interference from neighboring cells limits the ability to 

obtain sufficiently accurate channel estimates, giving rise to the 

problem of “pilot contamination”. It was noted that pilot 

contamination [1] incurs an ultimate limit on the interference  

rejection performance on massive MIMO, even if the number  

 

of antennas grows without bound. In this paper, our focus is on 

the channel estimation problems with pilot contamination in the 

uplink, although there are other related issues in the downlink 

that also greatly limit the performance of massive MIMO 

systems. For the issues in the downlink, we refer the readers to 

several approaches have emerged to deal with pilot 

contamination in the uplink recently [10-15]. By exploiting the 

covariance information of user channels and applying a 

covariance-aware pilot assignment strategy among the cells 

[10], revealed that pilot contamination could disappear. 

Alternatively, using an eigenvalue decomposition of the sample 

covariance matrix of the received signals, claimed that pilot 

contamination can be effectively mitigated by projecting the 

received signal [11-13] onto an interference free subspace 

without the need of coordination amongst the cells. 

Nevertheless, rely heavily on the estimation of the channel or 

signal covariance matrices. Though the covariance matrices 

change slowly over time, the estimation problem under massive 

MIMO systems is far from trivial [5]. The reason is that a 

covariance matrix is typically estimated through the sample 

covariance matrix, and that the sample size should be increased 

proportionally to the dimension of the covariance matrices. In 

massive MIMO systems, the dimension of the covariance 

matrices may be comparable to the number of available samples 

within a coherence time. The sample covariance estimation 

method is thus no longer sufficient and more sophisticated 

techniques must be used. Different from the approaches based 

on covariance matrices, in this paper, we address the pilot 

contamination problem directly from a channel estimation 

perspective. We realize that pilot contamination results from 

performing channel estimation ignoring pilot interference from 

the neighboring cells so that the estimated channel contains 

channels of the interference. To overcome this, we therefore 

propose to estimate not only the channel parameters of the 

desired links in the target cell but also those of the interference 

links from adjacent cells. Although this strategy seems natural, 

the challenge remains that the required estimation problem 

forms an underdetermined linear system which generally has 

infinitely many solutions.   

To  get  an  accurate  solution,  we rely  on  a  key  

observation–The  channels  with  most  of  the multipath energy 

tend to be concentrated in relatively small regions within the 

channel angular spread due to limited local scatterers  at the 

BSs. An approximate sparsity of a channel can be obtained by 
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transforming the received signal into a beam domain. 

Exploiting the channel sparsity, we can obtain much more 

accurate channel estimates by leveraging on more recent 

techniques in compressive sensing. MIMO channel estimation 

based on CS techniques has been investigated. Most of the 

earlier works, exploited sparse channel estimation methods 

mainly to improve the performance of single-user MIMO 

systems. Under multiuser massive MIMO systems, CS 

techniques were used   in order to reduce the feedback overhead 

of the channel state information (CSI) at the transmitter side.   

the  authors  also advocated to estimate the channel parameters 

of the desired links  in  the  target  cell  and  those  of  the  

interference  links from adjacent cells. Nonetheless, they used 

a CS technique to estimate the MIMO channel based on low-

rank approximation, which is completely different from that of 

our interest. Other popular solvers in the CS literature, e.g., the 

ℓ1 optimization (L1) solver and the orthogonal matching pursuit 

(OMP) solver, also appear to be not so useful in the concerned 

channel estimation problem. For the L1 solver, the 

regularization parameter has to be chosen carefully to control 

the channel estimation errors while determining the best 

regularization parameter is difficult in practice. Meanwhile, the 

OMP solver greedily selects the best channel vectors for 

channel representation, and the best support number for channel 

representation is also difficult to obtain in practice. Whet her 

channel estimation in massive MIMO systems, suffered from 

pilot contamination, could be effectively addressed via CS 

techniques is not understood. 

A. The formulation of massive MIMO channel estimation with 

pilot contamination 

     Our contributions include the formulation of massive MIMO 

channel estimation with pilot contamination as a CS problem. 

Based on an observation of the received signals in the beam 

domain, we model the channel component in the beam domain 

as a Gaussian mixture, i.e., a weighted summation of Gaussian 

distributions with different variances. This model enables us to 

reconstruct the channel components based on the probabilistic 

Bayesian inference with the best mean-squared error (MSE) 

performance. For the optimal Bayesian inference, the 

computational complexity is not tractable and the statistical 

properties of the channel component are required. Hence, we 

employ the approximate message passing (AMP) algorithm to 

obtain the Bayesian inference and an expectation - 

maximization (EM) algorithm to learn the statistical properties. 

Unlike our Bayesian estimator does not require the availability 

of the channel covariance matrices and the background noise 

level. All the required channel knowledge will be learned as 

part of the estimation procedure. By a proper design on pilot 

sequences, the proposed estimator leads to a much reduced 

complexity without compromising performance. Numerical 

results will show that the developed approach pro-vides a huge 

gain in reducing the channel estimation errors. In addition, the 

achievable rates based on the developed channel estimator are 

comparable to those with perfect CSI. 

Notations: Throughout this paper, the set of complex numbers 

is denoted by C. For any matrix A ∈ CM×N, Ai j denotes the (i , 

j) th element, while AT , and AH return the transpose and the 

conjugate transpose of A, respectively. An identity matrix is 

denoted by I or IN if it is necessary to specify its dimension N. 

In addition, a random vector x having the proper complex 

Gaussian distribution of mean µ and covariance Ω is indicated 

by  

x (x; , )CN   Where 

1(x- ) (x- )1
(x; , )

det( )

H

CN e  
 



 


 

We simply denote NC (0; µ, Ω) by NC(µ, Ω) for 

conciseness. Finally, E{•} returns the expectation of 

an input random entity. 

B. Introduction to approximate message passing 

Approximate message passing (AMP) and its variants are a 

powerful class of algorithms for linear inverse problems and 

their generalizations. AMP methods were originally developed 

for compressed sensing problems of estimating sparse vectors 

from underdetermined linear measurements. They have now 

been extended to a wide range of estimation and learning 

problems including regularized least squares, generalized linear 

models, matrix completion, dictionary learning and estimation 

in networks of systems with linear and nonlinear blocks. The 

key appealing features of the methods are their computational 

scalability and generality. In addition, in certain large random 

instances, the performance of the methods can be precisely 

characterized with testable conditions for Bayes optimality, 

even in non-convex instances. 

           
Fig. 1.  Block diagram for AMP 

C. Introduction to least mean squares (LMS) algorithms 

The least mean squares (LMS) algorithms adjust the filter 

coefficients to minimize the cost function. Compared to 

recursive least squares (RLS) algorithms, the LMS algorithms 

do not involve any matrix operations. Therefore, the LMS 

algorithms require fewer computational resources and memory 

than the RLS algorithms. The implementation of the LMS 

algorithms also is less complicated than the RLS algorithms. 

However, the eigenvalue spread of the input correlation matrix, 

or the correlation matrix of the input signal, might affect the 

convergence speed of the resulting adaptive filter. 

D. Introduction to recursive least square (rls) algorithm 

The Recursive least squares (RLS) adaptive filter is an 

algorithm which recursively finds the filter coefficients that 

minimize a weighted linear least squares cost function relating 

to the input signals. The RLS algorithms are known for their 

excellent performance when working in time varying 

environments but at the cost of an increased computational 
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complexity and some stability problems. In this algorithm the 

filter tap weight vector is updated using Equations. 

 

w(n) = wT (n-1) + k(n) en-1(n) ..….. (a) 

 k(n) = u(n) / (λ+X T (n) u(n)) …………(b)  

  u(n) = wλ -1 (n-1) X(n) ....................(c) 

2. Problem definition and existing methods  

A. Recursive least square (RLS) algorithm: 

The recursive least square error (RLS) filter is a sample 

adaptive, time-update, version of the Wiener filter. For 

stationary signals, the RLS filter converges to the same optimal 

filter coefficients as the Wiener filter. For non-stationary 

signals, the RLS filter tracks the time variations of the process. 

The RLS filter has a relatively fast rate of convergence to the 

optimal filter coefficients. This is useful in applications such as 

speech enhancement, channel equalization, echo cancellation 

and radar where the filter should be able to track relatively fast 

changes in the signal process. Unlike the LMS filter, who 

updates the coefficients by single parameter μ, the recursive 

least square algorithm perform this update by a vector k(m) 

called the Kalman gain vector and the corresponding equation 

is given by 

( ) ( 1) ( ) ( )w n w n k n e n  
                                       (2) 

where 
1

1

( 1) ( )
( )

1 ( ) ( 1) ( )

rr

T

rr

M n r n
k n

r n M n r n








 
                                    (3) 

1

0( ) ( ) ( )N T

rr nM n r n r n


                                  (4) 

Is the autocorrelation Matrix of the noisy signal r(n). 

 

The Recursive least squares (RLS) adaptive filter is an 

algorithm which recursively finds the filter coefficients that 

minimize a weighted linear least squares cost function relating 

to the input signals. The RLS algorithms are known for their 

excellent performance when working in time varying 

environments but at the cost of an increased computational 

complexity and some stability problems. In this algorithm the 

filter tap weight vector is updated using Equations. 

 

                  w(n) = wT (n-1) + k(n) en-1(n) ..……... (a) 

                   k(n) = u(n) / (λ+X T(n) u(n)) …………(b)  

                   u(n) = wλ -1 (n-1) X(n) .......................  (c) 

1) Fast transversal RLS algorithm 

FTRLS algorithm involves the combined use of four 

transversal filters for forward and backward predictions, gain 

vector computation and joint process estimation. The main 

advantage of FTRLS algorithm is reduced computational 

complexity as compared to the other available solutions.  

B. Normalized LMS 

1) Fast block LMS 

Some adaptive filter applications, such as adaptive echo 

cancellation and adaptive noise cancellation, require adaptive 

filters with a large filter length. If you apply the standard LMS 

algorithm to the adaptive filter, this algorithm might take a long 

time to complete the filtering and coefficients updating process. 

This length of time might cause problems in these applications 

because the adaptive filter must work in real time to filter the 

input signals. In this situation, you can use the fast block LMS 

algorithm. The fast block LMS algorithm uses the fast Fourier 

transform (FFT) to transform the input signal x(n) to the 

frequency domain. This algorithm also updates the filter 

coefficients in the frequency domain. Updating the filter 

coefficients in the frequency domain can save computational 

resources. The fast block LMS algorithm differs from the 

standard LMS algorithm in the following ways: 

 The fast block LMS algorithm updates the coefficients 

of an adaptive filter block by block. The block size is 

exactly the same as the filter length. However, the 

standard LMS algorithm updates the filter coefficients 

sample by sample. 

 The fast block LMS algorithm requires fewer 

multiplications than the standard LMS algorithm. If 

both the filter length and block size are N, the standard 

LMS algorithm requires N(2N+1) multiplications, 

whereas the fast block LMS algorithm requires only 

(10Nlog2N+26N) multiplications. If N = 1024, the 

fast block LMS algorithm can execute 16 times faster 

than the standard LMS algorithm. 

The fast block LMS algorithm calculates the output signal 

and the error signal before updating the filter coefficients. The 

following diagram illustrates the steps that this algorithm 

completes to calculate these signals. 

 

 
Fig. 2.  Block diagram of fast block LMS  

In the previous figure, the fast block LMS algorithm 

completes the following steps to calculate the output and error 

signals. 

 Concatenates the current input signal block to the 

previous blocks. 

 Performs an FFT to transform the input signal blocks 

from the time domain to the frequency domain. 

 Multiplies the input signal blocks by the filter 

coefficients vector . 

 Performs an inverse FFT (IFFT) on the multiplication 

result. 

 Retrieves the last block from the result as the output 

signal vector . 

 Calculates the error signal vector  by comparing 

the input signal vector  with . 

After calculating the output and error signals, the fast block 

LMS algorithm updates the filter coefficients. The following 

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_aec/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_aec/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_noise_cancel/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_choose_algorithm/
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diagram shows the steps that this algorithm completes to update 

the filter coefficients. 

3. System model 

A. Massive MIMO 

Consider a wireless communication system with B cells, in 

which each cell contains a BS and K UEs. Each BS has N 

antennas, whereas each UE is equipped with a single antenna. 

In the considered uplink training phase, all UEs in the B cells 

simultaneously transmit pilot sequences of length T symbols. 

For ease of exposition, we let the first cell be our target cell. 

The pilot sequences used in the both cell can be represented by 

a T × K matrix, Sb, and the corresponding channel vector 

between the UEs in the bth cell and the target BS is denoted by 

Hb = [hb1 · · · hbK ]T ∈ CK×N , where hbk ∈ CN ×1 is the channel 

from UEk in cell b to the target BS. The received signals during 

uplink training at the target BS is written as 

     1

.
B

b b

b

Y S H Z SH Z


                        (5) 

Where Z ∈ CT ×N denotes the temporally and spatially white 

Gaussian noise with zero mean and element-wise variance . 

Also in (5), we have defined 1[ ..... ] T BK

BS S S     and  

1[ ..... ]H H H BK N

BH H H    for conciseness. 

A. Pilot contamination 

In massive MIMO, the statistical knowledge of the channel 

matrix would be practically unknown because the size of the 

channel matrix would mean that an unacceptably large number 

of samples would be required. In this case, the standard way of 

estimating H is to employ the least square (LS) approach. If 

orthogonal pilot sequences are adopted in the bth cell, i.e., SH
b 

Sb = IK , and the same pilot sequences are reused in all  B cells, 

i.e., S1 = · · · = SB , the outputs of the LS estimator at the targeted 

BS can be written as 

     1 1

1 1 1 1 1 1 1 1

1

ˆ ( ) ( ) .
B

H H

b

b

H S S S Y H H S S S Z 



                        (6) 

From the perspective of the LS estimator, the assumption of 

using the same set of pilot sequences makes no fundamental 

difference in terms of estimation performance compared with 

using different pilots in different cells [1]. Clearly, in (6), the 

interfering channels will leak directly to the desired channel 

estimate, which gives rise to “pilot contamination”. The 

fundamental effect of pilot contamination can also be 

understood from other perspective through linear estimation 

theory. First, we note that if the BK × N channel matrix H can 

be estimated from the T × N measurement matrix Y with 

sufficient accuracy, then the pilot contamination [1,4,10] effect 

can be mitigated or eliminated. A straightforward requirement 

for an accurate channel estimation is T ≥ BK; otherwise, 

unknown variables will outnumber measurements and in this 

case accurate channel estimation is clearly impossible. Un-

fortunately, the requirement for accurate channel estimation 

usually cannot be satisfied in the massive MIMO system 

because most scenarios of our interests have T ≈ K and B > 1.2 

the estimation of H from the noisy underdetermined 

measurement has infinitely many solutions. For this reason, 

many speculate that the pilot contamination problem will exist 

regardless of which channel estimation method is used [1,4]. 

Clearly, to get a correct solution, one must impose extra 

constraints in choosing the solution. In the next section, we will 

reveal that such additional constraint do exist, thanks to the 

propagation properties of the massive MIMO system. 

4. Beam domain channel estimation  

A. Sparsity characteristics 

In a typical cellular configuration, the channel from a UE to 

a BS is a correlated random vector with a covariance matrix that 

depends on the scattering geometry [5]. Following, the channel 

vectors hT
bk∈ C1×N can be modeled by 

  

1

2T T

bk bk bkh v R                                               (7) 

Where Rbk denotes a positive semi-definite channel covariance 

matrix and vbk ∼ NC (vbk; 0, IN). Let F denote the N × N discrete 

Fourier transform (DFT) matrix. Taking the DFT of the channel 

vectors hT
bk leads to 

             

1

2 .T T T

bk bk bk bkh h F v R F                                  (8) 

We refer to 
T

bkh  as the beam domain channel representation of 

T

bkh  . The nth element of 
T

bkh  corresponds to the channel 

response observed at the nth beam. The most crucial property 

of 
T

bkh  is that the elements of  
T

bkh  is approximately sparse, i.e., 

the channel vector contains only a small fraction of large 

components, and the other components are close to zero. The 

sparsity property stated above can be easily realized by the 

argument as follows: Consider that the BSs are equipped with a 

uniform linear array (ULA) of half wavelength spacing. With 

an infinite number of antennas at the BSs, the DFT matrix

[5]bkR . We illustrate the argument by an example, the 

covariance matrix is generated by       

 

   ( ) ( ) ( ) ,H

bk
A

R p a a d                                       (9) 

 

Where   
sin ( 1) sin( ) [1, ,..., ]j j N Ta e e      

 is the ULA steering 

vector [34], ( )p   denotes the power azimuth spread (PAS), 

and  ( / 2, / 2)     represents the angle of arrival (AOA) 

region see at the BS. Following the argument of [5,20], there is 

a one-to-one mapping between   and {0,1,....., 1}n N   

such that  sin ( / ) 0n N   as N   . Therefore,  ( )a   

can be served as a DFT basis and ( )p   is the corresponding 

eigenvalue. Let H

bk bkR F F  , where 
bk  is the diagonal 

matrix whose diagonal elements are the corresponding 

eigenvalues  
0,1,.... 1{ ( / )} .n Np n N  

  In typical outdoor 
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propagations, the PAS can be modeled by a Laplacian 

distribution is given by, 

       

2

1
( ) ,

2

AS

AS

p e

 









                                  

(10) 

 

Where θ corresponds to the mean AOA of the UE channel and 

AS   denotes the azimuth spread (AS). An example of p (θ) 

with θ = 0 and 3AS   is illustrated in Figure 1(a). As we see 

from the figure, most of the eigenvalues are (nearly) zero. Then 

we infer from (10) and 
H

bk bkR F F   that  

                       

1

2T T

bk bk bkh v F 
                                               

(11) 

is sparse. Though in a practical setting, the numbers of antennas 

at the BSs are finite but large, F still can be an approximate 

eigen vector matrix of bkR .Following   N=256, the 

corresponding channel magnitude in the beam domain 
T

bkh  is 

depicted. As  is expected, the channel vector is not perfectly 

sparse but approximately  sparse. Specifically, over 99% of the 

channel total power is located only within about 16% of the 

beam indices. The channel magnitude of the approximately 

sparse components highly depends on the number of antennas. 

The larger the number of antennas the better a ( ) matching to 

the DFT basis. Moreover, its sparsity property is related to the 

PAS of the channel model. Despite the fact that  laplacian  

distributions is the most popular model for the PAS. There are 

other c lasses of distribution which serve as better models under 

certain circumstances. From many experimental measurements 

of MIMO channels, it is believed that as the number of antenna 

increases , the channel responses in the beam domain tend to be 

sparse due to the limited number of local scatterers  at the BS. 

Taking the DFT of Y we can therefore obtain the received 

signel in the beam domain given by, 

 

               ,Y SH Z                                             (12) 

 

Where ,Y YF ,H HF  and  .Z ZF  because the DFT 

matrix is a unitary matrix, the statistical property of  Z  is the 

same as that of Z. Thus, the difference between   Y and Y  is 

only at the channel matrix. In contrast to H in Y, H  in Y  is 

approximately sparse. To gain an idea on H , we generate  

4 80B K    UEs whose PAS follow the Laplacian 

distribution (12) with 3AS   and    being the uniformly 

distributed random variable within[ 90 ,90 ) . The 

corresponding pseudeo color plot of the strength of 
320 250H   is depicted in. As expected, the channel matrix 

observed in the beam domain  H  is approximately sparse. 

   For ease of expression, we use
T

n
y  ,

T

ns  , 

BK

nh  , and Z   respectively. With the definitions, the 

received signals in the nth beam domain can be read  

 

        nnn
y Sh z                                                   (13) 

We aim to estimate nh  based on  
n

y  given the full knowledge 

of the pilot matrix S. Note that to get S, we should acquire the 

pilot sequence of the desired links and those of the adjacent 

cells. In the undetermined system of interest, the pilot sequence  

are  no longer orthogonal and thus are randomly generated. To 

proceed with the estimation process for each n, we set the 

element-wise variance of  nz  as n  even though we may have   

.n n    . Before proceeding, we find it useful to see a 

picture on   nh . Note that the row index of  H  corresponds to 

the beam index observed at the BS. Thus, the nth column of H  

represents the channel responses of the whole UEs observed at 

the nth beam. A realization of the real parts of nh at n = 140 is 

depicted. As can be seen from the figure, the elements of  

,[ ]n k nh h  contain only a small fraction of large components 

and the other components are close to zero. In addition, they 

seem to be statistically independent. Another important 

observation is that the interference links from adjacent cells also 

appear to have strong channels, which are the main source of 

serve pilot contamination. 

      It is evident that the conventional LS estimator will not be 

able to address such undetermined systems so that the strong 

interfering channels will leak to the desired   channel estimate. 

However, taking advantage of the approximate sparsity of   nh

, we can use CS to obtain a sufficiently accurate estimate of the 

channel responses from the undetermined system. CS can be 

thought of as a technique that can automatically focus on the 

estimate of the stronger channel responses while treating very 

weak channel responses as noise. As such, the underdetermined 

system reduces to the determined system and the pilot 

contamination effect can hence be mitigated.   

B. Bayesian channel estimation 

    Among various CS approaches, probabilistic Bayesian 

inference has recently attracted much attention for its 

outstanding recovery performance. In order to apply 

probabilistic Bayesian inference to (13), one requires to know 

the distribution of nh . To this end, the following two 

observations are useful. First, it can infer from (12) that each 

element of nh  consists of a Gaussian random variable, 

although one should particularly notice that nh  and 
T

bkh  in (12) 

are observed from different perspective. Second, we observe 
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that the elements of nh  have significantly different variances, 

i.e., some of them are very small but some are large. 

     Inspired by the two observations, we model the elements of 

,[ ]n kh h  by a Gaussian-mixture (GM) distribution: 

     2 2

, ,, ,

1

( ; , ) ( ;0, )
L

k n k nn n n l n l

l

p h N h   


                            (14)           

Where 
2

, ,( ;0, )k n n lN h  denotes a Gaussian probability 

density function (pdf) with zero mean and variance
2

,n l , and

,n l , is the mixing probability of the 
thl  GM component. The 

parameter 
2

,n l  can be set to a very small value so that 
,n l  

denotes the density of the components close to zero. The 

remaining GM components 
2

, , 2{ , }L

n l n l l    can be used to 

model the small fraction of large components. The value of L 

reflects the number of different variances in . We will discuss 

the setting of L in Section IV-B. Note that the true distributions 

of nh  could not be the GM distribution. However,   our 

numerical results will demonstrate that the choice of the GM 

distribution is perfectly fine. Finally, we assume that the BK-

dimensional nh contains independent and identically 

distributed (i.i.d.) components, so we have

      2

,

1

( ; ) ( ; ) , .
BK

n k nn n n n n

k

P h P h with    


                (15)              

For conciseness, we often omit n  from ( ; )n nP h  , and the 

index n from 
2

, ,, , , , .n l n l n n n      

As an example the empirical pdf based on the channel 

responses in both the estimated GM and Gaussian distributions 

are provided. The parameters are obtained from a learning 

algorithm to be described later while the variance of the 

Gaussian distribution is the sample variance. Clearly, the GM 

distribution provides a significantly better fit than the Gaussian 

distribution. 

      The Bayes-optimal way to estimate nh   that minimizes the 

MSE is given by  

          , , , ,
ˆ ( )k n k n k n k nh h Q h dh                                   (16) 

Where 

         
, ,( ) ( | )k n n i nn

i k

Q h P h y dh


                                   (17) 

Denotes the marginal pdf of the 
thk  variable under the posterior 

measure.  From Bayes theorem, the posterior distribution can 

be written as  

 

( | ) ( | ) ( ) / ( )n n nn n n
P h y P y h P h P y , 

Where the conditional distribution of 
n

y based on (10) reads 

21
1

( | )
( )

nn
n

y S h

n Tn
n

P y h e


 





. 

 

       There are two issues when implementing the optimal Bayes 

estimation (17). First, the optimal Bayes estimation (17) is not 

computationally tractable. Second, the prior parameters n  are 

unknown. To obtain an estimate of the marginal pdfs

,{ ( )}k nQ h , we adopt the AMP algorithm in which is an 

iterative message passing algorithm. Meanwhile, we use the 

EM algorithm to learn the prior parameters n . We describe the 

two algorithms and their connections in the remaining part of 

this subsection. 

We begin with the AMP algorithm. Suppose that the 

elements of nh  follows the GM distribution with prior 

parameters n . Then the updating rules for estimating 

,( )k nQ h  are given as (for the derivation with these notations, 

see : 
21

, , ,t t

m n mj j n

j

V S                                     (18a) 

1

,1

, , ,,
,

( ),

t

m nt t t

m n mj j n m nt m n
j n m n

V
S a y

V
 



   
 

                (18b) 

2

2 1 1

, 1

,

( ) [ ] ,
ikt

k n t
i n i n

S

V

 


 

 
                           (18c) 

* 1

,,1 2 1

, , , 1

,

( )
( ) ,

t

ik i ni nt t t

k n k n k n t
i n i n

S y
R a

V

 

 




  

 
                   (18d) 

1 2 1 1

, , ,(( ) , ; ),t t t

k n a k n k n na f R                           (18e) 

1 2 1 1

, , ,(( ) , ; ),t t t

k n c k n k n nf R                           (18f) 

where t = 0, 1, . . . represents the iteration index. Here, af  and 

cf  are some analytical functions depending on 
,( )k nP h  and 

will be given in (17) later in this subsection 

        AMP employs central limit theorem to approximate sum 

of many random variables as a Gaussian. To get an intuition on 

the algorithm, we provide an interpretation on each step of (16) 

while we refer the interested readers to for detailed derivations. 

First of all, we view the target estimate ,
ˆ

k nh  as a Gaussian with 

mean ,

t

k na  and variance ,

t

k nv  at the 
tht  iteration. Therefore, if 

we temporarily ignore the second term of (18b), 
1

,

t

m n 
 can be 

understood as a current mean estimate of the 
thm  element of 

nSh , which has variance 
1

,

t

m nV 
 given by (18a). Next, 

considering the conventional estimator by the matched filter, 

we get ˆ ˆ( ),
t t

H H

n nn n
S y h S y Sh    the approximation 
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follows from the fact that .HS S I  then (18d) can be read as 

the 
thk  element of 

              
1

,
ˆ [ ],

t
t

n k nh noise R                                (19) 

Where noise above is Gaussian distributed with zero mean and 

variance of 
2 1

,( )t

k n

 for its 
thk element. Clearly, 

1

,

t

k nR 
 in 

(18d) and 
2 1

,( )t

k n

  in (18c) are the mean and variance of the 

current estimate of 
,k nh without taking into account the prior 

information of  
,k nh  . Finally, in (18e)–(18f), we estimate the 

mean and the variance of 
1t

nh


 from (19) by taking into account 

the prior information of  
,k nh  . Specifically, from (19), the 

posterior probability of 
,k nh  after the observation of  

1

,

t

k nR 
 is 

given by 

       

, ,,

, .

, , ,,

2

, ,, ,

2

, , ,, ,

( | ) ( )
( | )

( | ) ( )

( ; , ) ( )
,

( ; , ) ( )

k n k nk n

k n k n

k n k n k nk n

k n k nk n k n

k n k n k nk n k n

P R h P h
P h R

P R h P h dh

N R h P h

N R h P h dh












        (20) 

Where .k nR  and 
2

,k n  change from one iteration to another 

while we have suppressed t for brevity. Plugging   the GM prior 

,( )k nP h (15) into (23), we get  

, ,

2 2 2

, , , ,

,, , 2 2 2 2
1 , , , ,

( | )

ˆ ; , ,

k n k n

L
n l k n n l k n

k nk n l

l n l k n n l k n

P h R

R
N h

 


 

 
      


          (21) 

Where  
 
 

2 2

, , , ,

, , 2 2

1 , , , ,

,
ˆ .

,

n l k n n l k n

k n l L

l n l k n n l k n

N R

N R

 


 



 
  

As a consequence the posterior mean variance of  
,k nh  are 

respectively given by  2

, ,, ;a k n k n nf R   and 

 2

, ,, ; ,c k n k n nf R   where  

 
 

 

2
2 2

1 2 2
2

2 2

1

,

, ;
,

L l
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l
a L

l l l

R
N R

f R
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
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
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
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  
 


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,

,
,

b
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l
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R
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




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  

 
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            (22b) 

     
2

2 2 2, ; , ; , ; .c b af R f R f R                                  (22c) 

        The procedures (20) in conjunction with af  and cf  in 

(21) lead to the AMP algorithm. After the convergence of the 

iterative equations (20) is established, we get the estimated 

marginal pdf
,( )k nQ h , which is approximated by a Gaussian 

distribution with mean ,

t

k na and variance ,

t

k n . Hence, the 

posterior mean estimate of 
,k nh is obtained as ,

t

k na . 

        Before proceeding, let us discuss the computational 

complexity for performing (18) in the massive MIMO 

application. First, notice that the iterative equations are general 

formulas for the sum and product of BK (or T) variables. In fact, 

a significant computational saving can be obtained if the pilot 

are designed as sequences of { } , where ξ is chosen to 

fulfil the power constraint, e.g., if 
2

1ks  then ξ = 1/T . In 

this case, one can effectively replace every 
2

ijs by ξ in (18a) 

and (18c). Thus, 
1

,

t

m nV 
and 

2 1

,( )t

k n

  are independent on the 

indices m and k. Therefore, we can define 
1 1

,

t t

n m nV V  , ∀m and 

2 1 2 1

,( ) ( )t t

n k n

    , ∀k so that (18a) and (18c) can take  a  

much  simpler  form  as  shown  in  Step  3 and  Step 5 of 

Algorithm 1, respectively. Now, the two steps only involve 

addition operations. No multiplication is required. In addition, 

(18b) and (18d) also take the simpler form as those in Steps 4 

and 6 of Algorithm 1, respectively. In the steps, the product 

between Sik and any number can work with a sign bit 

operation.Note that except for the second term in Step 4, where 

one multiplication is required for each m index (m = 1, . . . ,T ), 

all the other steps (i.e., Steps 3–6) can be implemented only 

through additions. In addition, Steps 7 and 8 involve sum and 

product of L terms for each k index (k = 1, . . . , B K). However, 

LS would not work in the underdetermined system to have 

acceptable performance. 

Here it is shown how to style a subsection and sub sub-

section also. 

5. Simulation results 

A. Bayesian estimator without pilot contamination 

In the previous subsections, computer simulations were 

presented under an artificial scenario, where the channel 

responses were generated   directly   from a GM distribution. 

Now, we provide simulation results to demonstrate the 

capability of the estimator in Algorithm 2 under the typical 

channel model defined at the beginning of Section IV. In this 

realistic case, we do not possess the true statistical knowledge 

of the channel responses. The true distributions of the channel 

responses are unknown and could not be the GM distribution. 

In the simulation, we considered the system with B = 1 (no pilot 

contamination) for various numbers of antennas at the BS  

 

       128,256,512 .N                                    (23) 

 

The Bayesian estimator uses different GM order L ∈ {2, 3, 

and 5} and operates under the case of random pilot sequences. 
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Figure3 displays the MSE versus the SNR.  Note that the MSE 

defined in (27) has been normalized for different numbers of   

 
Fig. 3.  The MSE versus the system SNR for the Bayesian estimator with B = 

1 (no pilot contamination) under different numbers of antennas at the BS 

 

UEs and antennas.  The  normalized  MSEs  are compared  

under  different  numbers  of  antennas  at  the BS. It can be 

observed from Figure4 that when the GM order L increases, the 

MSE of the Baysian estimator decreases. Increasing L from 3 

to 5 only gives minor improvement. In fact, through detailed 

numerical studies, we find that the choice of    L = 3 is well 

enough. In the same figure, we also show the MSE of the 

Baysian estimator when the prior of 
,k nh  is assumed to be 

Gauss-Bernoulli (GB), i.e., 

 

          2

, , ,,1 ,1 ,11 ;0, .k n k n k nn n nP h h N h                (24)

   

GB distribution has been widely adopted in prior works 

where the channels are modeled to be perfectly sparse instead 

of approximately sparse. The EM algorithm was also used to 

learn the prior parameters of (24).  Clearly, the Baysian 

estimator with the GB prior cannot work well. Finally, we 

observe that the MSE of the Baysian estimator decreases when 

we increase the number of antennas N. This is because when 

the number of antennas increases, the steering vector a (θ) 

becomes the DFT basis and therefore the channel responses in 

the beam domain tend to have the smaller
2

,1n . According to 

the discussion presented in Section IV-A, the smaller the
2

,1n , 

the lower the MSE at high SNR. 

B. Bayesian estimator under pilot contamination  

     Next, we fix N = 256 and repeat the previous simulations 

with B set to 4. In this case, channel estimation is performed 

under an underdetermined system. The regularized LS (R-LS) 

estimator 

    
1

1 1 1 1
ˆ HH S S I S Y



                     (25) 

 

is used to provide a performance reference, where α is the 

variance of the interference in the second term of (2). We 

assume that α is available in the R-LS estimator. Orthogonal 

pilot sequences are adopted in the R-LS estimator while random 

pilots are employed in the Baysian estimator.  

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 4.  The MSE versus system SNR for the Baysian estimator and the R-LS 

estimator under different training lengths T/K = 1, 1.1, 1.25, 1.5. a) B′ = B = 4 

for D = 1,  b) B′ =B = 4 for D = 2, and c) B′ = 2 for D = 4. 

6. Proposed simulation results 

In the simulation, we considered the system with B = 1 (no 

pilot contamination) for various numbers of antennas at the BS 

 
Fig. 5.  The MSE versus the system SNR for the Bayesian estimator with B = 

1 (no pilot contamination) under different numbers of antennas at the Base 

station. 

 

The Bayesian estimator uses different GM order L ∈ {2, 3, 
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and 5} and operates under the case of random pilot sequences. 

Figure 5 displays the MSE versus the SNR.  Note that the 

MSE has been normalized for different numbers of UEs and 

antennas.  The  normalized  MSEs  are compared  under  

different  numbers  of  antennas  at  the BS. It can be observed 

from Figure 6 that when the GM order L increases, the MSE of 

the   Baysian estimator decreases. Increasing L from 3 to 5 only 

gives minor improvement. In fact, through detailed numerical 

studies, we find that the choice of    L = 3 is well enough. 

Clearly, the Bayesian estimator with the GB prior cannot work 

well. Finally, we observe that the MSE of the Bayesian 

estimator decreases when we increase the number of antennas 

N. This is because when the number of antennas increases. 

 

 
Fig. 6.  The MSE versus the system SNR for the Bayesian estimator with B = 

1 (with pilot contamination) under different numbers of antennas at the Base 

station. 

 

Next, we fix N = 256 and repeat the previous simulations 

with B set to 4. In this case, channel estimation is performed 

under an underdetermined system. Orthogonal pilot sequences 

are adopted in the R-LS estimator while random pilots are 

employed in the Baysian estimator.  Figure 6 shows the channel 

estimation error under different interfering localization 

distances, i.e., the distance between an interfering UE and the 

target BS is given by d = D+U , where D = 1, 2, or 4 and U ∈ 

(0, 1). Recall that we have d < 1 for the desired users in the 

target cell. The settings of D = 1, 2, 4 would be close to a cell 

plan with the reuse factors of 1, 3 and 7, respectively. In the 

simulations, we used      L = 3. Finally, following the same 

settings as those of Figure 4, Figure 5 depicts the corresponding 

average user rate achievable by the MRC receivers. As a 

reference, we show the average user rate of the MRC receiver 

based on perfect channel knowledge. We see that the Baysian 

estimator shows the average user rates comparable to the 

perfect channel knowledge and provides significant gain over 

the R-LS estimator. We know that the pilot contamination 

resulting in poor user rate is because the estimated channel 

contains channels of strong interference from neighboring cells. 

Thus, the results of this figure indicate that the Baysian 

estimator presents a substantial decontamination in terms of the 

strong interference. 

7. Conclusion 

To address pilot contamination in massive MIMO systems, 

we proposed to estimate not only the channel parameters of the 

desired links in a target cell, but also that of the interference 

links from the adjacent cells. The channel estimation problem 

constitutes an underdetermined system. By transforming the 

received signals into the beam domain, we showed that the 

channel estimation problem can be solved using sparse 

Bayesian learning techniques. For the Bayesian approach, a 

good knowledge about the statistical properties of the channels 

is required. We modeled the channel component in the beam 

domain as a GM distribution and used EM to learn the prior 

parameters. Simulation results revealed that GM is much fine r 

than the conventional GB distribution in CS. In addition, to 

make the optimal Bayes estimation tractable, we employed the 

AMP algorithm, and a significant computational saving was 

obtained by designing the pilots appropriately. The proposed 

channel estimation approach does not require the availability of 

the channel covariance matrices, the background noise level, 

nor the need for coordination amongst the cells. Results 

illustrated that the developed channel estimator presents a 

substantial improvement over the conventional estimators in the 

presence of pilot contamination. 
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