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Abstract: GPU has evolved through the years to have 

applications in new domains such as Bioinformatics. The 

computational power required by these domains often exceeds that 

available on traditional CPUs. An emerging alternative is 

represented by General Purpose scientific computing on Graphics 

Processing Unit (GPGPU). The aim of this paper is to provide a 

comprehensive comparison of serial and parallel implementations 

of well-known Longest Common Subsequence (LCS) algorithms 

and study their behaviour on different GPU architectures. A 

major computational approach for solving the LCS problem is 

dynamic programming. Many dynamic programming methods 

have been proposed to have reduced time and space complexity. 

The succeeding topics explores the proposed dynamic 

programming solutions to Sequence Alignment problem and our 

approach for parallelization of the discussed solutions. 

 

Keywords: Dynamic Programming, GPU, LCS, Sequence 

Alignment. 

1. Background 

Sequence Alignment [1] is a fundamental technique for 

biologists to discover the similarity of various species. For 

computational purposes biological sequences are represented as 

strings. For instance, DNA sequences (genes) can be 

represented as sequences of four letters A, T, G and C 

corresponding to four sub-molecules which collectively form a 

DNA. When a new DNA sequence is found, biologists are 

inquisitive to know what other sequences it is most familiar to. 

One way of detecting similarity between two genes is to find 

their LCS which is a dynamic programming method. 

The LCS [2] problem is to find a substring that is common to 

two or more input strings and is longest one of such strings. 

LCS is a special case of global sequence alignment. The 

dynamic programming [4] approach to solve LCS problem 

includes filling of scoring matrix through a predefined scoring 

mechanism. The best core is the length of the LCS and the 

subsequence can be found by tracing back the table. Consider 

the length of two input DNA sequence that are to be compared 

as m and n. The time and space required to find the LCS of input 

strings is O (m*n). The scoring mechanism involved in finding 

the LCS s given below. 

 

 

 

 

 
Where F is two-dimensional scoring matrix of size m+1 * 

n+1 and is filled according to the scoring mechanism given 

above. The common sequence is found by backtracking this F 

matrix. 

Sequence alignment is of two types: Global Sequence 

Alignment (GSA) and Local Sequence Alignment (LSA). GSA 

attempt to align the entire sequence i.e. end to end alignment. If 

two sequences have approximately the same length and are 

quite similar, they are suitable for GSA. GSA is usually done 

for comparing homologous genes like comparing two genes 

with same function (in human vs. Mouse) or comparing two 

proteins with similar function. Needleman-Wunsch is a 

common GSA algorithm. LSA finds local regions with the 

highest level of similarity between the two sequences. It aligns 

a substring of the query sequence to a substring of the target 

sequence. Any two sequences can be locally aligned as local 

alignment finds stretches of sequences with high level of 

matches without considering the alignment of rest of the 

sequence regions. It is used for finding out conserved patterns 

in DNA sequences for conserved domains or motifs in two 

proteins. Smith-Waterman algorithm is a common LSA 

algorithm. These algorithms are implemented on traditional 

CPUs. But their implementation on GPGPUs has been limited. 

This is because these problems fall under dynamic 

programming. In dynamic programming, there are data 

dependencies i.e. unless previous data value has not been 

calculated the algorithm cannot proceed to calculate further 

values. This limits parallelisation. However, attempts have been 

made to parallelize despite these dependencies by using wave 

fronts. Consider LCS for example in which unless the cell 

above, left and diagonally above left has not been calculated the 

current cell value cannot be found. To break this dependency 

wave front of anti-diagonals are calculated in parallel. There are 

still dependencies between wave fronts however each wave 

front can be parallelized. 
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2. Introduction 

This part of the paper discusses about basic concepts of 

technology related to parallel algorithms and the proposed 

dynamic programming solutions to LCS. 

A. Smith-Waterman Algorithm 

Smith-Waterman algorithm [5] is the most sensitive 

algorithm for local sequence alignment; that is for determining 

similar regions between two strings of protein or DNA. Smith 

Waterman provides a score of similarity between two 

sequences. This similarity score is sometimes referred to as the 

Smith Waterman score. Let A and B be the sequences to be 

aligned, where n and m are the lengths of A and B respectively. 

S (a, b) is the similarity score of the elements that constituted 

the two sequences. Wk is the penalty of a gap that has length k. 

A scoring matrix H is constructed and first row and column are 

initialized to 0. The size of the scoring matrix is (n+1) *(m+1). 

Note the 0-based indexing. Scoring matrix is filled with 

following recursion. 

Hi, j = max {Hi-1, j-1 + S (ai, bj), (north-west dependencies) 

Hi-1, j – W,             (north dependency) 

Hi, j-1 –W,             (west dependency)  

0}                                (1) 

In equation (1), “i” is the current position in the sequence A, 

and “j” is the position in the sequence B. Hi, j is the Smith 

Waterman similarity score for A[i] and B[j]. S (ai, bj) is a 

similarity score for a given residue combination as provided by 

a substitution matrix. A substitution matrix is a matrix which 

contains scores for every possible combination of residues. 

These scores are pre-determined by the life sciences 

community. If the maximum score for a given cell is based on 

the west or north cells, a gap is created thus causing a gap 

penalty (W) to occur. In the equation, a “zero” is added as the 

fourth parameter to prevent any cells in the matrix from going 

negative. 

 
Fig. 1.  [5] Shows the dependency and scoring method for single cell in 

Smith-Waterman Algorithm 

B. Needleman-Wunsch Algorithm 

Needleman-Wunsch [6] globally aligns two sequences and is 

often used in bioinformatics to align protein or DNA sequences. 

To find the alignment with the highest score, a two-

dimensional array (or matrix) F is allocated. The entry in row i 

and j is denoted by Fi, j. As the algorithm progresses, the Fi, j will 

be assigned to be the optimal score for alignment of the first 

i=0……. n characters in A and the first j=1……. m characters 

in B. Recursion, based on the principle of optimality:  

Fi, j =max (Fi-1, j-1  + S (Ai +Bj ), Fi, ,j-1 + d, Fi-1,j + d ). 

Scores for aligned characters are specified by a similarity 

matrix. Here, S(a, b) is the similarity of characters a and b. It 

uses a linear gap penalty, here called d. 

C. CUDA 

CUDA [7] is a parallel computing platform and 

programming model designed for NVIDIA for general 

computing on graphical processing units (GPUs). In GPU-

accelerated applications, the sequential part of the workload 

runs on the CPU-which is optimized for single-threaded 

performance-while the compute intensive portion of the 

application runs on thousands of GPU cores in parallel. CUDA 

GPUs [14] are organized in multiprocessors, which group 

multiple streaming processors, the basic execution units (Fig. 

3).  

 
Fig. 2.  Plain C vs. CUDA code for implementing a simple code 

 

CUDA executes the same program on all the 

multiprocessors: the code for the program (kernel) is the same 

but both the data and the execution flow can be different and 

diverge. CUDA launches multiple instances of the same kernel, 

called threads. Threads are grouped in warps for execution on a 

multiprocessor. Threads are runtime instances of the same 

kernel, and therefore they execute the same program code; 

furthermore, all the threads in a warp are executed by one 

multiprocessor in a fashion that they must execute exactly the 

same instruction at the same time, although on different data. If 

threads diverge (taking, for example, different branches of an if 

statement), they will be split into different warps, leading 

possibly to under-utilization of the multiprocessors.  

Fig. 2. Shows a comparison between serial and parallel 

version of same algorithm. Fig. 3. Describes about threads and 

blocks. 

Those applications that process large amounts of data or 

objects, and perform the same operations on all of them, will fit 

well on a GPU: to keep all the streaming processors busy, and 

therefore to obtain good performances, tens of thousands of 

threads need to be executed concurrently. Therefore, the 

applications based on the execution of disparate, short tasks will 

cause the fragmentation of warps and lead to the under-

utilization of multiprocessors. Similarly, the applications that 

process a small subset of data at each time will fail in feeding 

the streaming processors with enough data. All the architectural 

details (threads, warps, multiprocessor, etc.) are hidden to the 
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end user; CUDA instead exposes the notions of blocks, grids 

and threads to ease the decomposition of the problem domain. 

As depicted in Fig. 3, threads are both the ‘physical’ and 

‘logical’ basic units of execution; the GPU groups and 

schedules threads in warps, while CUDA offers a higher-level 

view of grids and blocks. Grids and blocks can be used by the 

programmer to map the subdivisions inherent in the problem 

domain (in particular, spatial subdivisions) in a convenient way. 

Each thread is then provided with variables representing the 

block and grid coordinates on which it needs to operate; using 

these coordinates, a thread can access and process a single item 

or subset of the problem domain. As an example, consider the 

simple and common scenario of porting computationally 

intensive loops to the GPU. In order to enable efficient 

execution, loops have to be transformed, strip-mining or 

unrolling them. After unrolling each thread executes a single, 

distinct iteration of the original loop. For instance, Table 2 

shows a simple algorithm that takes a vector ‘a’ of length ‘N’ 

and a value ‘b’ and increments each value of ‘a’ by ‘b’. As 

expected, the sequential algorithm on the left accesses the 

elements of ‘a’ one by one. Instead, the kernel code on the right 

spawns ‘N’ parallel threads, each of them incrementing a single 

value of ‘a’. The position in the array ‘a’ that the thread T has 

to increment is obtained using a common pattern to compute a 

linear index: multiply the block index of T (blockIdx.x) by the 

number of threads per block (blockDim.x) and finally add the 

current index of T within the block (threadIdx.x). 

 

 
Fig. 3. Physical and logical allocation of a thread 

3.  Related work 

Farrar presents an implementation in [10] which is written 

for Intel processors supporting SSE2 instructions. SSE2 

instructions are a set of single instruction multiple data 

instruction sets (SIMD). These instructions allow for the usage 

of 128-bit wide SIMD registers, which Farrar utilized to speed 

up SW. 

Manavski [11] implements SW on a GPU (NVIDIA GeForce 

8800 GTX), and compares it against a serial version of SW and 

Farrar’s implementation. Manavski uses a maximum query 

length of 567 characters in this implementation. It is at this 

length they achieve an execution time of 11.96(s) (30x speedup 

over serial version) using dual GPUs, and 23.32(s) using a 

single GPU. They report 20(s) of execution time for Farrar’s 

SIMD implementation running on an Intel Quad Core 

processor. For both single and dual GPU configurations, 

Manavski utilizes the help of an Intel Quad Core processor by 

distributing the workload among GPU(s) and the Quad Core 

processor. Manavski’s design with a single GPU configuration 

performs worse than Farrar’s implementation. They achieve 

only two times speedup with the dual GPU configuration 

against Farrar’s implementation which only uses a single 

processor core. This indicates that their program architecture is 

not fitting on the GPU architecture well. 

There has been attempt to parallelise the algorithm despite 

being dependencies in stages through the concept of Linear 

Tropical Dynamic Programming and Rank Convergence [8]. 

They have achieved speedups of up to 80 times by using up to 

128 cores. However, the speedup is not significant on 

commonly available GPUs. 

Data-intensive applications are believed to be less well suited 

than arithmetic-intensive applications. Nevertheless, a highly 

data-intensive application MUMmerGPU [9] achieves 

significant speedup over the serial CPU-based application. A 

large part of this speedup is due to tuning techniques that may 

be used in any GPGPU application. The enormous volume of 

sequencing reads produced by next generation sequencing 

technologies demands new computational methods. Our 

software enables individual life science researchers to analyse 

genetic variations using the supercomputer hidden within their 

desktop computer.  

4. Implementation 

This part of the paper describes our approach for parallelizing 

the dynamic programming solutions to LCS problem. Here, we 

describe the parallelization of LCS done by Fine-grain 

Parallelism [12] also sometimes termed as wave front method. 

Using equation (1), The LCS problem can be solved using a 

two-dimensional memorization space F. Given by the 

formulation from equation (1), we can conclude that all 

elements are dependent on:  

1) Element directly above F[i-1, j] 

2) Element directly left F[I, j-1] 

3) Element directly to northwest  

F[i-1, j-1] This dependency creates a diagonal computation 

chain across the problem space, forming a wave front. The 

dependency and computation direction are shown in figure. 

 

 
Fig. 4.  Wave fronts [13] formed by dependencies in LCS problem 
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The parallel computation for LCS problem will assign each 

processing unit with a block of columns. Block size will be 

smaller than m/p, where m is number of columns and p is the 

number of processing units. Small blocks sizes will allow the 

columns to be cyclically assigned to the processors in round 

robin fashion. For sufficiently small block sizes, the uneven 

workload of each columns will be compensated by next cyclic 

distributed block. 

5. Results  

Exhaustive tests have been performed to compare 

performances of Smith-Waterman and Needleman-Wunsch 

algorithms on CUDA using anti-diagonal parallelization with 

the performances on multi-core CPU. 

We have tested our solution on a workstation, with 2.71 GHz 

Intel Core i5-7200 processor and a single Nvidia GeForce 

940MX graphic card which is capable of executing 

(1024x1024x64) blocks with 1024 threads each in a single 

launch. 

By applying anti-diagonal parallelization, we observed that 

the speed-up increased for longer sequences as the overheads 

became negligible compared to the computation time. 

Moreover, the utilization of GPU resources increased with 

longer sequences. 

A. Smith-Waterman Algorithm 

We tested our solution on five DNA sequences whose length 

ranges from 5000 to 15000. The substitution function 

mentioned in the above section and a gap-penalty of 2 were 

used. 

The table below shows the timings noted for computing the 

score matrix for Smith-Waterman algorithm for same length of 

strings. 

B. Needleman-Wunsch Algorithm 

Similar five sequences with lengths ranging from 5000 to 

15000 were tested with a gap penalty 1 and a substitution matrix 

mentioned in the above section. 

The table shows the timings noted for computing the score 

matrix for Needleman-Wunsch algorithm for same length of 

strings. 

 

 
Fig. 5.  Comparisons between serial and parallel version of algorithms for 

Smith-Waterman Algorithm 

 

 
Fig. 6.  Comparisons between serial and parallel version of algorithms for 

Needleman-Wunsch Algorithm 

 

 
Fig. 7.  Comparisons between serial and parallel version of algorithms for 

LCS Algorithm 

 

The table below shows the timings noted for computing the 

score matrix for Smith-Waterman algorithm for different length 

of strings. 

Table 1 

Timings noted for computing the score matrix for Smith-Waterman 

algorithm for same length of strings 

Sequence Length Execution Time 

CUDA(s) 

Execution Time 

CPU(s) 

5000 0.15 0.216 

7000 0.243 0.501 

10000 0.405 0.89 

13000 0.536 1.44 

15000 0.677 1.89 

 

 

Table 2 

Timings noted for computing the score matrix for Needleman-Wunsch 

algorithm for same length of strings. 

Sequence Length Execution Time 

CUDA(s) 

Execution Time 

CPU(s) 

5000 0.188 0.251 

7000 0.365 0.545 

10000 0.74 1.47 

13000 1.213 2.11 

15000 1.522 2.54 

 

 

Table 3 

Timings noted for computing the score matrix for Smith-Waterman 

algorithm for different length of strings 

Sequence Length Execution Time 

CUDA(s) 

Execution Time 

CPU(s) 

3000x6000 0.12 0.19 

5000x10000 0.25 0.45 

7000x14000 0.43 0.9 

9000x18000 0.52 1.28 
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Fig. 8.  Comparison between serial and parallel version of algorithms for 

Smith-Waterman Algorithm for different length of strings 

 

The table below shows the timings noted for computing the 

score matrix for Needleman-Wunsch algorithm for different 

length of strings. 

 

 
Fig. 9.  Comparison between serial and parallel version of algorithms for 

Needleman-Wunsch Algorithm for different length of strings 

6. Conclusion 

Our implementation was able to achieve 2.5-3x speed-up in 

these algorithms. Further improvements can be achieved by 

better utilization of the GPGPU’s processing power. 

Even though dynamic programming algorithms are difficult 

to parallelize new methods such as wave front method can be 

used to parallelize it to an extent. Further developments in this 

area will open gateways to a wide range of applications in 

bioinformatics. One such development is Linear Tropical 

Dynamic Programming. 
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Table 4 

Timings noted for computing the score matrix for Needleman-Wunsch 

algorithm for different length of strings 

Sequence Length Execution Time 

CUDA(s) 

Execution Time 

CPU(s) 

3000x6000 0.14 0.23 

5000x10000 0.33 0.61 

7000x14000 0.64 1.14 

9000x18000 1.14 1.65 

 

 


