
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

623

Abstract: GPU has evolved through the years to have

applications in new domains such as Bioinformatics. The

computational power required by these domains often exceeds that

available on traditional CPUs. An emerging alternative is

represented by General Purpose scientific computing on Graphics

Processing Unit (GPGPU). The aim of this paper is to provide a

comprehensive comparison of serial and parallel implementations

of well-known Longest Common Subsequence (LCS) algorithms

and study their behaviour on different GPU architectures. A

major computational approach for solving the LCS problem is

dynamic programming. Many dynamic programming methods

have been proposed to have reduced time and space complexity.

The succeeding topics explores the proposed dynamic

programming solutions to Sequence Alignment problem and our

approach for parallelization of the discussed solutions.

Keywords: Dynamic Programming, GPU, LCS, Sequence

Alignment.

1. Background

Sequence Alignment [1] is a fundamental technique for

biologists to discover the similarity of various species. For

computational purposes biological sequences are represented as

strings. For instance, DNA sequences (genes) can be

represented as sequences of four letters A, T, G and C

corresponding to four sub-molecules which collectively form a

DNA. When a new DNA sequence is found, biologists are

inquisitive to know what other sequences it is most familiar to.

One way of detecting similarity between two genes is to find

their LCS which is a dynamic programming method.

The LCS [2] problem is to find a substring that is common to

two or more input strings and is longest one of such strings.

LCS is a special case of global sequence alignment. The

dynamic programming [4] approach to solve LCS problem

includes filling of scoring matrix through a predefined scoring

mechanism. The best core is the length of the LCS and the

subsequence can be found by tracing back the table. Consider

the length of two input DNA sequence that are to be compared

as m and n. The time and space required to find the LCS of input

strings is O (m*n). The scoring mechanism involved in finding

the LCS s given below.

Where F is two-dimensional scoring matrix of size m+1 *

n+1 and is filled according to the scoring mechanism given

above. The common sequence is found by backtracking this F

matrix.

Sequence alignment is of two types: Global Sequence

Alignment (GSA) and Local Sequence Alignment (LSA). GSA

attempt to align the entire sequence i.e. end to end alignment. If

two sequences have approximately the same length and are

quite similar, they are suitable for GSA. GSA is usually done

for comparing homologous genes like comparing two genes

with same function (in human vs. Mouse) or comparing two

proteins with similar function. Needleman-Wunsch is a

common GSA algorithm. LSA finds local regions with the

highest level of similarity between the two sequences. It aligns

a substring of the query sequence to a substring of the target

sequence. Any two sequences can be locally aligned as local

alignment finds stretches of sequences with high level of

matches without considering the alignment of rest of the

sequence regions. It is used for finding out conserved patterns

in DNA sequences for conserved domains or motifs in two

proteins. Smith-Waterman algorithm is a common LSA

algorithm. These algorithms are implemented on traditional

CPUs. But their implementation on GPGPUs has been limited.

This is because these problems fall under dynamic

programming. In dynamic programming, there are data

dependencies i.e. unless previous data value has not been

calculated the algorithm cannot proceed to calculate further

values. This limits parallelisation. However, attempts have been

made to parallelize despite these dependencies by using wave

fronts. Consider LCS for example in which unless the cell

above, left and diagonally above left has not been calculated the

current cell value cannot be found. To break this dependency

wave front of anti-diagonals are calculated in parallel. There are

still dependencies between wave fronts however each wave

front can be parallelized.

Speed-up of Sequence Alignment Algorithms on

CUDA Compatible GPUs

Pradyot Patil1, Prasad Pattiwar2, Sahil Khan3, Varad Panch4

1,2,3,4Student, Department of Computer Science and Engineering, Shri Ramdeobaba College of Engineering and

Management, Nagpur, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

624

2. Introduction

This part of the paper discusses about basic concepts of

technology related to parallel algorithms and the proposed

dynamic programming solutions to LCS.

A. Smith-Waterman Algorithm

Smith-Waterman algorithm [5] is the most sensitive

algorithm for local sequence alignment; that is for determining

similar regions between two strings of protein or DNA. Smith

Waterman provides a score of similarity between two

sequences. This similarity score is sometimes referred to as the

Smith Waterman score. Let A and B be the sequences to be

aligned, where n and m are the lengths of A and B respectively.

S (a, b) is the similarity score of the elements that constituted

the two sequences. Wk is the penalty of a gap that has length k.

A scoring matrix H is constructed and first row and column are

initialized to 0. The size of the scoring matrix is (n+1) *(m+1).

Note the 0-based indexing. Scoring matrix is filled with

following recursion.

Hi, j = max {Hi-1, j-1 + S (ai, bj), (north-west dependencies)

Hi-1, j – W, (north dependency)

Hi, j-1 –W, (west dependency)

0} (1)

In equation (1), “i” is the current position in the sequence A,

and “j” is the position in the sequence B. Hi, j is the Smith

Waterman similarity score for A[i] and B[j]. S (ai, bj) is a

similarity score for a given residue combination as provided by

a substitution matrix. A substitution matrix is a matrix which

contains scores for every possible combination of residues.

These scores are pre-determined by the life sciences

community. If the maximum score for a given cell is based on

the west or north cells, a gap is created thus causing a gap

penalty (W) to occur. In the equation, a “zero” is added as the

fourth parameter to prevent any cells in the matrix from going

negative.

Fig. 1. [5] Shows the dependency and scoring method for single cell in

Smith-Waterman Algorithm

B. Needleman-Wunsch Algorithm

Needleman-Wunsch [6] globally aligns two sequences and is

often used in bioinformatics to align protein or DNA sequences.

To find the alignment with the highest score, a two-

dimensional array (or matrix) F is allocated. The entry in row i

and j is denoted by Fi, j. As the algorithm progresses, the Fi, j will

be assigned to be the optimal score for alignment of the first

i=0……. n characters in A and the first j=1……. m characters

in B. Recursion, based on the principle of optimality:

Fi, j =max (Fi-1, j-1 + S (Ai +Bj), Fi, ,j-1 + d, Fi-1,j + d).

Scores for aligned characters are specified by a similarity

matrix. Here, S(a, b) is the similarity of characters a and b. It

uses a linear gap penalty, here called d.

C. CUDA

CUDA [7] is a parallel computing platform and

programming model designed for NVIDIA for general

computing on graphical processing units (GPUs). In GPU-

accelerated applications, the sequential part of the workload

runs on the CPU-which is optimized for single-threaded

performance-while the compute intensive portion of the

application runs on thousands of GPU cores in parallel. CUDA

GPUs [14] are organized in multiprocessors, which group

multiple streaming processors, the basic execution units (Fig.

3).

Fig. 2. Plain C vs. CUDA code for implementing a simple code

CUDA executes the same program on all the

multiprocessors: the code for the program (kernel) is the same

but both the data and the execution flow can be different and

diverge. CUDA launches multiple instances of the same kernel,

called threads. Threads are grouped in warps for execution on a

multiprocessor. Threads are runtime instances of the same

kernel, and therefore they execute the same program code;

furthermore, all the threads in a warp are executed by one

multiprocessor in a fashion that they must execute exactly the

same instruction at the same time, although on different data. If

threads diverge (taking, for example, different branches of an if

statement), they will be split into different warps, leading

possibly to under-utilization of the multiprocessors.

Fig. 2. Shows a comparison between serial and parallel

version of same algorithm. Fig. 3. Describes about threads and

blocks.

Those applications that process large amounts of data or

objects, and perform the same operations on all of them, will fit

well on a GPU: to keep all the streaming processors busy, and

therefore to obtain good performances, tens of thousands of

threads need to be executed concurrently. Therefore, the

applications based on the execution of disparate, short tasks will

cause the fragmentation of warps and lead to the under-

utilization of multiprocessors. Similarly, the applications that

process a small subset of data at each time will fail in feeding

the streaming processors with enough data. All the architectural

details (threads, warps, multiprocessor, etc.) are hidden to the

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

625

end user; CUDA instead exposes the notions of blocks, grids

and threads to ease the decomposition of the problem domain.

As depicted in Fig. 3, threads are both the ‘physical’ and

‘logical’ basic units of execution; the GPU groups and

schedules threads in warps, while CUDA offers a higher-level

view of grids and blocks. Grids and blocks can be used by the

programmer to map the subdivisions inherent in the problem

domain (in particular, spatial subdivisions) in a convenient way.

Each thread is then provided with variables representing the

block and grid coordinates on which it needs to operate; using

these coordinates, a thread can access and process a single item

or subset of the problem domain. As an example, consider the

simple and common scenario of porting computationally

intensive loops to the GPU. In order to enable efficient

execution, loops have to be transformed, strip-mining or

unrolling them. After unrolling each thread executes a single,

distinct iteration of the original loop. For instance, Table 2

shows a simple algorithm that takes a vector ‘a’ of length ‘N’

and a value ‘b’ and increments each value of ‘a’ by ‘b’. As

expected, the sequential algorithm on the left accesses the

elements of ‘a’ one by one. Instead, the kernel code on the right

spawns ‘N’ parallel threads, each of them incrementing a single

value of ‘a’. The position in the array ‘a’ that the thread T has

to increment is obtained using a common pattern to compute a

linear index: multiply the block index of T (blockIdx.x) by the

number of threads per block (blockDim.x) and finally add the

current index of T within the block (threadIdx.x).

Fig. 3. Physical and logical allocation of a thread

3. Related work

Farrar presents an implementation in [10] which is written

for Intel processors supporting SSE2 instructions. SSE2

instructions are a set of single instruction multiple data

instruction sets (SIMD). These instructions allow for the usage

of 128-bit wide SIMD registers, which Farrar utilized to speed

up SW.

Manavski [11] implements SW on a GPU (NVIDIA GeForce

8800 GTX), and compares it against a serial version of SW and

Farrar’s implementation. Manavski uses a maximum query

length of 567 characters in this implementation. It is at this

length they achieve an execution time of 11.96(s) (30x speedup

over serial version) using dual GPUs, and 23.32(s) using a

single GPU. They report 20(s) of execution time for Farrar’s

SIMD implementation running on an Intel Quad Core

processor. For both single and dual GPU configurations,

Manavski utilizes the help of an Intel Quad Core processor by

distributing the workload among GPU(s) and the Quad Core

processor. Manavski’s design with a single GPU configuration

performs worse than Farrar’s implementation. They achieve

only two times speedup with the dual GPU configuration

against Farrar’s implementation which only uses a single

processor core. This indicates that their program architecture is

not fitting on the GPU architecture well.

There has been attempt to parallelise the algorithm despite

being dependencies in stages through the concept of Linear

Tropical Dynamic Programming and Rank Convergence [8].

They have achieved speedups of up to 80 times by using up to

128 cores. However, the speedup is not significant on

commonly available GPUs.

Data-intensive applications are believed to be less well suited

than arithmetic-intensive applications. Nevertheless, a highly

data-intensive application MUMmerGPU [9] achieves

significant speedup over the serial CPU-based application. A

large part of this speedup is due to tuning techniques that may

be used in any GPGPU application. The enormous volume of

sequencing reads produced by next generation sequencing

technologies demands new computational methods. Our

software enables individual life science researchers to analyse

genetic variations using the supercomputer hidden within their

desktop computer.

4. Implementation

This part of the paper describes our approach for parallelizing

the dynamic programming solutions to LCS problem. Here, we

describe the parallelization of LCS done by Fine-grain

Parallelism [12] also sometimes termed as wave front method.

Using equation (1), The LCS problem can be solved using a

two-dimensional memorization space F. Given by the

formulation from equation (1), we can conclude that all

elements are dependent on:

1) Element directly above F[i-1, j]

2) Element directly left F[I, j-1]

3) Element directly to northwest

F[i-1, j-1] This dependency creates a diagonal computation

chain across the problem space, forming a wave front. The

dependency and computation direction are shown in figure.

Fig. 4. Wave fronts [13] formed by dependencies in LCS problem

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

626

The parallel computation for LCS problem will assign each

processing unit with a block of columns. Block size will be

smaller than m/p, where m is number of columns and p is the

number of processing units. Small blocks sizes will allow the

columns to be cyclically assigned to the processors in round

robin fashion. For sufficiently small block sizes, the uneven

workload of each columns will be compensated by next cyclic

distributed block.

5. Results

Exhaustive tests have been performed to compare

performances of Smith-Waterman and Needleman-Wunsch

algorithms on CUDA using anti-diagonal parallelization with

the performances on multi-core CPU.

We have tested our solution on a workstation, with 2.71 GHz

Intel Core i5-7200 processor and a single Nvidia GeForce

940MX graphic card which is capable of executing

(1024x1024x64) blocks with 1024 threads each in a single

launch.

By applying anti-diagonal parallelization, we observed that

the speed-up increased for longer sequences as the overheads

became negligible compared to the computation time.

Moreover, the utilization of GPU resources increased with

longer sequences.

A. Smith-Waterman Algorithm

We tested our solution on five DNA sequences whose length

ranges from 5000 to 15000. The substitution function

mentioned in the above section and a gap-penalty of 2 were

used.

The table below shows the timings noted for computing the

score matrix for Smith-Waterman algorithm for same length of

strings.

B. Needleman-Wunsch Algorithm

Similar five sequences with lengths ranging from 5000 to

15000 were tested with a gap penalty 1 and a substitution matrix

mentioned in the above section.

The table shows the timings noted for computing the score

matrix for Needleman-Wunsch algorithm for same length of

strings.

Fig. 5. Comparisons between serial and parallel version of algorithms for

Smith-Waterman Algorithm

Fig. 6. Comparisons between serial and parallel version of algorithms for

Needleman-Wunsch Algorithm

Fig. 7. Comparisons between serial and parallel version of algorithms for

LCS Algorithm

The table below shows the timings noted for computing the

score matrix for Smith-Waterman algorithm for different length

of strings.

Table 1

Timings noted for computing the score matrix for Smith-Waterman

algorithm for same length of strings

Sequence Length Execution Time

CUDA(s)

Execution Time

CPU(s)

5000 0.15 0.216

7000 0.243 0.501

10000 0.405 0.89

13000 0.536 1.44

15000 0.677 1.89

Table 2

Timings noted for computing the score matrix for Needleman-Wunsch

algorithm for same length of strings.

Sequence Length Execution Time

CUDA(s)

Execution Time

CPU(s)

5000 0.188 0.251

7000 0.365 0.545

10000 0.74 1.47

13000 1.213 2.11

15000 1.522 2.54

Table 3

Timings noted for computing the score matrix for Smith-Waterman

algorithm for different length of strings

Sequence Length Execution Time

CUDA(s)

Execution Time

CPU(s)

3000x6000 0.12 0.19

5000x10000 0.25 0.45

7000x14000 0.43 0.9

9000x18000 0.52 1.28

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-12, December-2018

www.ijresm.com | ISSN (Online): 2581-5792

627

Fig. 8. Comparison between serial and parallel version of algorithms for

Smith-Waterman Algorithm for different length of strings

The table below shows the timings noted for computing the

score matrix for Needleman-Wunsch algorithm for different

length of strings.

Fig. 9. Comparison between serial and parallel version of algorithms for

Needleman-Wunsch Algorithm for different length of strings

6. Conclusion

Our implementation was able to achieve 2.5-3x speed-up in

these algorithms. Further improvements can be achieved by

better utilization of the GPGPU’s processing power.

Even though dynamic programming algorithms are difficult

to parallelize new methods such as wave front method can be

used to parallelize it to an extent. Further developments in this

area will open gateways to a wide range of applications in

bioinformatics. One such development is Linear Tropical

Dynamic Programming.

References

[1] J. Xiong, Essential Bioinformatics, Sequence Alignment. Cambridge,

UK: Cambridge University Press, pp. 31-49, 2006.

[2] N. C. Jones, P. A. Pevzner, “An Introduction to Bioinformatics

Algorithm, Dynamic Programming Algorithms, Longest Common

Subsequence. Pp. 180-184, 2004.

[3] Computer Science Department of University of Maryland. [Online].

https://www.cs.umd.edu/class/fall2011/cmsc858s/Alignment.pd

[4] https://en.wikipedia.org/wiki/Dynamic_programming

[5] https://en.wikipedia.org/wiki/SmithWaterman_algorithm

[6] https://en.wikipedia.org/wiki/NeedlemanWunsch_algorithm

[7] https://developer.nvidia.com/about-cuda

[8] S. Maleki, M. Musuvathi, T. Mytkowicz, Parallelizing Dynamic

Programming Through Rank Convergence

[9] Farrar, M.: Striped Smith-Waterman speeds database searches six times

over other SIMD implementations. Bioinformatics 23, pp. 156, 161,

(2007).

[10] C. Trapneli, M.C. Schatz, Optimizing Data Intensive GPGPU

Computations for DNA Sequence Alignment.

[11] G.M. Striemer, A. Akoglu, Sequence Alignment with GPU: Performance

and Design Challenges.

[12] Manavski, S.S., Valle, G.: Cuda compatible GPU cards as efficient

hardware accelerators for Smith-Waterman sequence alignment. BMC

Bioinformatics 2008, 9(Suppl 2): S10 (2008).

[13] Engineering at Illinois.

http://web.engr.illinois.edu/~snir/patterns/wavefront.pdf

[14] https://en.wikipedia.org/wiki/Graphics_processing_unit

Table 4

Timings noted for computing the score matrix for Needleman-Wunsch

algorithm for different length of strings

Sequence Length Execution Time

CUDA(s)

Execution Time

CPU(s)

3000x6000 0.14 0.23

5000x10000 0.33 0.61

7000x14000 0.64 1.14

9000x18000 1.14 1.65

