
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

406

Abstract: This paper is intended to present an algorithm of

searching files in file space system of an offline system to make

search easy and faster as compared to the existing file search space

algorithms. DES systems are highly time consuming and are very

complicated as they require to visit each and every file space of the

computer system and hence uses a lot of memory resources of a

system. In this paper the algorithm used for the DES operation is

based on parallel computing and hence requires less time to search

any workspace.With the rapid rise in computer hard drive

capacity, the amount of statistics deposited on personal computers

as digital photos, text files, and multimedia has amplified

considerably. It has become time consuming to search for a

specific file in the sea of files on hard disks. This has headed to the

growth of numerous desktop search engines that help trace files on

a desktop efficiently. In this paper, the presentation of five desktop

search engines, Yahoo, Copernic, Archivarius, Google, and

Windows are estimated. A recognized dataset, TREC 2004 Robust

track, and a set of files demonstrating a classic desktop have been

used to achieve comprehension experimentations. A typical set of

evaluation procedures including recall precision averages,

document level precision and recall, and precise exactness and

recall over recovered set are used. The estimations performed by

a typical evaluation package deliver an exhaustive presentation

comparison of the desktop search engines by illustrative statistics

retrieval procedures.

Keywords: Parallel Computing, Data Storage, Data Mining, File

Search Indexing, File Extension Indexing

1. Introduction

Desktop search engines, are also called localized search

engines which only search within the given the user desktop

hard disk search area and are independent of the internet

services, index and search files in a personal computer (pc). The

data search algorithms are highly important and complex as the

algorithm constructed are very critical and keeps themselves

busy with continuous switching between the directories. To

conduct file searches on the pc’s hard drive, presentation of the

desktop search engine in relations of information retrieval (ir)

procedures, e.g. precision and recall, play a significant role in

computing the correctness of the examine outcomes. Numerous

corporations have unconfined their forms of desktop search

engines like Microsoft Windows desktop search, Yahoo

desktop search, Copernic desktop search, Google desktop

search, Archivarius 3000, and Ask Jeeves. Of all these

obtainable tools, the presentation of five, Windows desktop

search, Google desktop search, Archivarius, Yahoo desktop

search and Copernic desktop search are assessed and examined

in this paper using standard Information Retrieval assessment

procedures. The document Starts from here. And the section 2

continues accordingly.

2. Techniques used in past

The five desktop search engines are measured on the

following standard and procedures on TREC documents:

 Recall-precision average

 Document-level precision

 R-Precision

 Document-level recall

 Mean Average Precision (MAP)

 Exact precision and recall over retrieved set

 Fallout-recall average

 Document-level relative precision

 R-based precision

These procedures are nominated for appraisal as they will be

accountable for understandings into how desktop search

engines incrementally improve documents and shape their

outcome sets for a cluster of requests and the effect that has on

the exactness of ultimate query outcome sets. The estimation on

classic user desktop documents is complete with average recall

and average precision procedures over all queries. We appraise

the succeeding desktop search engines founded on the overhead

principles. Microsoft’s Windows desktop search (WDS) is

closely interlinked with the Operating System versions from

Microsoft be it for the desktops, tablets or for smartphones.

Time taken by them to make a search is very huge as they stores

the complete index of the system and scans every directories

and the sub directories of the system hence took longer time,

also it does not allow any search space customization. Yahoo

desktop search (YDS) is established on X1 desktop search.

YDS take a "reductive" methodology to demonstrating results.

It benefits in selecting directory which only encompasses the

content that has been certain like files, emails, IMs, contacts and

to set distinct indexing options for each type of content. YDS

delivers fine filtered and detailed control over indexing

possibilities like specifying the folders, that must be indexed or

the file kinds that can be indexed. YDS permits saving queries

Desktop Exhaustive Search Algorithm for

Offline Systems with N File Extensions

Abhishek Sharma1, Swapnil Singhal2

1Research Scholar, Department of Computer Science, Jaipur Institute of Technology, Jaipur, India
2Associate Professor, Department of Computer Science, Jaipur Institute of Technology, Jaipur, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

407

for future use, and shaping these hunts together with the general

requests in the hunt pane. Copernic desktop search (CDS)

agrees files types to be selectively indexed. Operator can select

to index video, audio, images, and documents. It permits third

party designers to create plug-ins that allow new file type

indexing. For commercial use, Coveo, a spin-off company from

Copernic, delivers enterprise desktop search produces with

improved safety, manageability, and network capability.

Google desktop search tool permits users to scan their own

computers for statistics much the same way as they do for using

Google to search the Web. Out of the much topography this tool

delivers, noteworthy features include recurring search fallouts

concise and characterized into dissimilar reinforced file types

with a total count of competitions related with each type.

Archivarius desktop search is a full-feature application

designed to search documents and e-mails on the desktop

computer as well as network and detachable disks. It permits

files to be investigated on many progressive characteristics like

alteration date, file size, and scrambling.

3. Literature survey

Search engines acts as medium between a user and a

documents present in a system disk space. Without desktop

search no information can be retrieved on time or when it is

needed. Since the size of the disks is increasing and to

remember the path of each and every file into the system is not

an easy task. Desktop Search searches the database for the

desired keyword, ranks it according to the similar content and

then returns the required information with the best possible

solution. Different types of search engines available are

Crawler based search engines, Human powered directories,

Meta search engines, and Hybrid search engines. Crawler based

search engines create their listings automatically with the help

of web crawlers. It uses a computer algorithm to rank all pages

retrieved. These search engines are huge and retrieve a lot of

information. It also contains some filters and ranking algorithm

rank results in the best possible form.

Human powered directories are built by human selection i.e.

they depend on humans to create (form) the repository. These

directories can be organized or may be even unorganized

depending upon the way by which they had been created, in

desktop search where the files have been made by user and also

the root and the sub root and sub directories as well, then the

crawler based search engines might not be able to perform that

well and also will take a lot of time to, and as generally too the

crawler based searching is way too slow, to overcome these

issues the crawler based search is infused with the spider search

algorithm which is a more faster and reliable searching

algorithm. Spider algorithm enlist the root directories present in

the current search space and then crawls the files in those

directories, it forms a tree like structure which helps in indexing

files and folders structure of the current root folder and its

subsidiaries too. Three main parts of a parser based search

engine are Parser, Indexer and Searcher. The parser follows

documents across the hard disk collecting information from

different documents. Starting from a basic drive on the desktop,

and recursively follow all the files and folders to other

documents. This makes it possible to reach most of the hard

drive in a relatively short time. The indexer takes the web pages

collected by the parser and parses them into a highly efficient

index. In the index, the terms are given an importance

weighting by the search engine’s ranking algorithm. The

searcher (query engine or retrieval engine) returns results of a

query to the user. Because of these different term weighting and

document selection methods, bias is introduced in the search

engines. Different search engines also have different ranking

algorithms and apply run-time filters to their results.

Fig. 1. Architecture of a typical web search engine

Desktop search engine the crawler is given a hard disk of the

user from which it can extract documents one by one, parse and

analyze these pages. On the other hand it provides a handle to

the user to add a drive for extraction. It also extracts all the

embedded URLs found in the page and add them to the list of

URLs to be extracted. It uses in-place updating to maintain

freshness of the database. A good indexing technique is used

for searching the database with minimum possible time. The

main working of base work search engine is shown in Figure 2

using a ‘0 level’ data flow diagram. The user submits query to

the search engine and it searches for that query in the database

of the crawler, and displays the result.

Fig. 2. 0 level DFD of proposed desktop search engine

The working of User operations and Admin operations is

shown in Figure 3 using ‘1 level’ data flow diagram. In Admin

Operation it shows scanning hard disk for files, parsing the text

files from the drive and updating database. In User operations

it shows submitting the Query and output operations. It also

provides a handle to the user to select a hard disk for scanning

as well as parsing the text files which are already there in the

database of the search engine. The working of the crawler for

base search engine is shown in Fig. 4. It starts with the base

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

408

drive of the computer i.e. C Drive. First, a document is fetched

from list of documents and checks for availability of that

document in the database. If document is in the database then it

uses the old page_id otherwise creates a new page_id. Now, the

document is parsed for the text. The titles are inserted in the

page table and the words of the page are extracted and placed

in word table. If word is already in word table use the same

word_id otherwise create a newword_id. Place the occurrences

of the words in the occurrence table till all the words present in

the file table are registered. These words are used in ranking.

Fetch another document from FILE table. If the link already

present in file table, then delete it from FILE table otherwise

more links from FILE table are extracted if more links are

present then they are extracted and whole process is repeated

otherwise the crawling process is stopped.

Fig.3. DFD representing administration operations and user’s operations

4. Proposed methodology

A. Filename fetch

The first function fetches the filename and extension of the

filename, to mark the search space attributes properly. Though

to reduce the user complexity file search algorithm will still be

operational without the extension keyword.

B. Extension flag

Algorithm for searching files includes a flag extension

module which lets the algorithm decide whether to search with

or without extension. Timings difference is always there in both

the cases.

C. Search algorithm

The search algorithm used here can be termed as a Recursive

File and Folder Search algorithm. The system initially reads the

system location and then defines a home directory for itself as

to return back from the search space folder to home folder. The

System then forms a directory list of each folder and then

separates out the files and the folders and then again enters a

sub directory if needed or if there is any sub folder directory

exists inside the root folder. The algorithm then takes a look

back at the directory list and scans each string and matches the

search query with the string list formed.

Algorithm: The algorithm coding steps are mentioned in this

part:

 First step is to clear out the garbage values and clear

the command window, history and the workspace.

 Step two is to determine the root folder for the

algorithm or for the system, user dependent variable.

 Step three is to look for the search type, with extension

or without extension.

 Step four is to take the user input for the filename.

 Step five is to take the user input for the filename

extension.

 Step 6 is to check the system that whether the filename

entered is in valid form or not empty.

 Step 7 is to check the system that whether the

extension entered is in valid form or not empty.

 Store the current time of the system for timing

calculations.

 Step nine is to start the timing internal clock for precise

start to end timing calculations.

 Step ten is to store the directory files string into a

variable “strt”.

 Step eleven is to determine the size of the search space.

 Step 12 now runs a loop starting from 4 to i; where ‘i’

is size of the dir, though the size of the dir means the

length of the root folder.

 Step 13 deals with the loop iteration for each string

length upto the last point i.

 Loop iteration success and failure algorithm gets

inserted into the string match algorithm as soon as the

exact string matches it should return the file; else it

should continue the loop iteration in the same folder.

It is very important to notice and analyze that the match string

algorithm will get developed over the time only as it may

include the some similar kind of string match such as ‘town’

and ‘place’ somewhat represents or interpret the same meaning

hence the similar group of strings can be merge into the single

group, another instance can be given of ‘eat’ and ‘cat’ they both

have different meanings but their spelling is only differ by the

first character so these can also be combined, considering the

error percentage of an average human in typing is to be around

4%.

5. Results

The algorithm shows different aspects of the desktop data

searching and hence provides better searching for the user.

The work has been done over the timing constraint and also

over the reducing complexities for the user in search criteria.

Also it helps in mapping down all the system files separately in

a different workspace and allows the algorithm to keep the track

record of the data saved in the system.

Table 1

Algorithm and time taken

Algorithm With File Extension Without File Extension

Recursive 0.12 seconds 0.03 seconds

Google 0.38 seconds 0.59 seconds

Yahoo 0.58 seconds 1.09 seconds

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

409

The search engines listed above are available only for the

online searching.

Fig. 4. Result section

However the recursive algorithm is available for the offline

search and with change in platform it can be implemented over

the online platforms as well.

6. Conclusion

Here from this paper it can be concluded that the timings has

been gone down for the search results but with migrating the

algorithm to a different platform such as Python, JavaScript or

Perl it can be implemented for the online search space and can

be proved out to be critical in terms of the search results

timings.

References

[1] O. Bergman, R. Byth-Marom, R. Nachmias and S. Whittaker, Improved

Search Engines and Navigation Preference in Personal Information

Management, ACM Transactions on Information Systems, vol. 26, issue

4, (2008).

[2] C. Borjigin, Y. Zhang, C. Xing, C. Lan and J. Zhang, Dataspace and its

Application in Digital Libraries, The Electronic Library, vol. 31, issue 6,

pp. 688–702, (2013).

[3] M. Burghardu, T. Scheidermeier and Chtistian Wolff, Usability

Guidelines for Desktop Search Engines, Proceedings of 15th International

Conference on Human-Computer Interaction, Springer, pp. 176–183,

LNCS 8004, (2013).

[4] Y. Cai, X. L. Dong, A. Halevy, J. M. Liu and J. Madhavan, Personal

Information Management with SEMEX, Proceedings of International

Conference on Management of Data, ACM SIGMOD, pp. 921–923,

(2005).

[5] H. D. Chau, B. Myers and A Faulring, What to do When Search Fails:

Finding Information by Association, Proceedings of SIGCHI Conference

on Human Factors in Computing Systems, pp. 999–1008, (2008).

[6] J. Chen, H. Guo, W. Wu and C. Xie, Search Your Memory! Associative

Memory Based Desktop Search System, Proceedings of the International

Conference on Management of Data, ACM SIGMOD, pp. 1099–1102,

(2009).

[7] B. Cole, Search Engines Tackles the Desktop, IEEE, (2005).

[8] http://www.copernic.com/en/products/desktopsearch/home/download.ht

ml

[9] E. Cutrell, D. C. Robbins, S. T. Dumais and R. Sarin, Fast, Flexible

Filtering with Phlat-Personal Search and Organization Made Easy,

Proceedings of SIGCHI Conference on Human Factors in Computing

Systems, pp. 261–271, (2006).

[10] J. P. Dittrich, L. Blunschi, M. Farber, O. R. Giradm, S. K. Karakashian,

M. Antonio and V. Salles, From Personal Desktops to Personal

Dataspaces: A Report on Building the iMeMex Personal Dataspace

Management System, Proceeding of BTW, pp. 292–308, (2007).

[11] J. P. Dittrich, iMeMex: A Platform for Personal Dataspace Management,

Proceedings of 2nd NSF sponsored Workshop on Personal Information

Management, ACM SIGIR, (2006).

[12] J. P. Dittrich and M. A. V. Salles, idm: A Unified and Versatile Data

Model for Personal Dataspace Management, Proceedings of 32nd

International Conference on Very Large Databases, pp. 367–378, (2006).

[13] D. Florescu, D. Kossman and I. Manolescu I, Integrating Keyword Search

into XML Query Processing, Proceedings of International World Wide

Web Conference, pp. 119–135, (2000).

[14] C. Hedeler, K. Belhajjame, N. W. Paton, A. Campi, A. A. A. Ferandes

and S. M. Embury, Chapter-7 Dataspaces, Search Computing, Berlin

Heidelberg Springer, pp. 114–134, LNCS 5950, (201).

[15] M. Kayest and S K Jain, A Proposal for Searching Desktop Data,

Proceedings of 3rd International Conference on Innovations in Computer

Science and Engineering (ICICSE), Springer, vol. 413, pp. 113–118,

(2015).

[16] B. Markscheffel, D. Buttner and D. Fishcher, Desktop Search Engines A

State of Art Comparison, Proceedings of the 6th International Conference

on Internet Technology and Secure Transactions, pp. 707–711, (2011).

[17] S. Pradhan, An Algebraic Query Model for Effective Retrieval of XML

Fragment, Proceedings of the 32nd International Conference on Very

Large Databases, pp. 295–306, (2006).

[18] S. Pradhan, Towards a Novel Desktop Search Technique, Proceedings of

18th International Conference on Database and Expert Systems

Applications, pp. 192–201, LNCS 4653, (2007).

[19] D. R. Virgilio, A. Maccioni and R. Torlono, A Unified Framework for

Flexible Query answering over Heterogeneous Data Sources, Proceedings

of 11th International Conference on Flexible Query Answering System,

vol. 400, pp. 283–294, (2015).

[20] http://www.microsoft.com/windows/products/winfamily/desktopsearch

default.mspx

[21] http://www.x1.com

[22] http://info.yahoo.com/privacy/in/yahoo/desktopsearch/, last visited on 10

January (2016).

