
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

353

Abstract: Refactoring’s are behavior-preserving program

transformations that improve the design of a program.

Refactoring engines are tools that automate the application of

refactoring’s: first the user chooses a refactoring to apply, then the

engine checks if the transformation is safe, and if so, transforms

the program. Refactoring engines are a key component of modern

IDEs, and programmers rely on them to perform refactoring’s.

Usually, compilation errors and behavioral changes are avoided

by preconditions determined for each refactoring transformation.

However, to formally define these preconditions and transfer them

to program checks is a rather complex task. In practice,

refactoring engine developers commonly implement refactorings

in an ad hoc manner since no guidelines are available for

evaluating the correctness of refactoring implementations. A bug

in the refactoring engine can have severe consequences as it can

erroneously change large bodies of source code. We present an

agent based technique to test Java refactoring engines and also

informs the developer about the safety of refactoring. It automates

test input generation by using JDolly, a Java program generator

that exhaustively generates programs for a given scope of Java

declarations. The refactoring under test is applied to each

generated program. The technique uses an agent based approach

for detecting behavioral changes, as an oracle to evaluate the

correctness of these transformations. Finally, the technique

classifies the failing transformations with the help of Bug

Categorizer Agent by the kind of behavioral change or

compilation error introduced by them and informs the developer

about the safety of refactoring.

Keywords: Refactoring, automated testing, program generation,

Agent Based approach

1. Introduction

Refactoring is the process of change a software system in

such way that improves its internal structure without changing

its external behavioral. Each refactoring may have

preconditions that guarantee the behavioral preservation. For

example, the Push down Method refactoring moves a method

from the super class to the subclasses. Before we apply this

change, we need to check if others methods with same signature

already exist in the subclasses. Most used IDEs such as Eclipse,

Net Beans, IntelliJ, and JBuilder automate a number of

refactorings. They automatically check the preconditions and

perform the transformation.

However, IDEs may perform incorrect transformations that

introduce compilation errors or change the program behavior.

Compilation errors are easier to detect; we only need to compile

the refactored program. On the other hand, behavioral changes

are more difficult to detect, since they are silently introduced by

the tool. Currently, each IDE implements refactoring’s based

on an informal set of preconditions, because establishing it with

respect to a formal semantics is prohibitive. An evidence of this

fact is that some IDEs allow some transformations, and others

do not identifying all refactoring preconditions for complex

languages as Java is not trivial and formally verifying them is

indeed a challenge. The current practice to avoid behavioral

changes in refactoring’s relies on solid tests. However, often

test suites do not catch behavioral changes during

transformations. They may also be refactored (for instance,

rename method) by the tools since they may rely on the program

structure that is modified by the refactoring. In this case, the

tool changes, method invocations on the test suite and the

original and refactored programs are checked against different

test suites. This scenario is undesirable since the refactoring

tool may change the test suite meaning. In this work, we

propose a technique and algorithm (IntelRefact) for improving

confidence that a refactoring is sound. It analyzes the

transformation and generates unit tests suited for detecting

behavioral changes. Moreover, we propose a program generator

(JDolly) useful for generating inputs for testing refactoring

tools. It is based on Alloy, a formal specification language, and

ASTGen, an imperative framework for generating Java

programs. We have evaluated Intel Refact and JDolly in two

experiments. First, we evaluated Intel Refact on ten refactorings

of real Java programs (from 3 to 100 KLOC) performed by

developers that used refactoring tools and unit tests to guarantee

the behavior preservation. Finally, we used Intel Refact and

JDolly to test 12 refactoring’s implemented by Eclipse 3.4.2.

As result, we have detected that many transformations

performed by Eclipse change program behavior. In summary,

the main contributions of this paper are the following:

 A technique and tool for improving the confidence that

a refactoring is sound.

 A Java program generator useful for automated testing

refactoring implementations.

 An evaluation of 10 refactoring’s applied to real Java

programs.

 An evaluation of our approach on automated testing 12

Agent based Monitoring and Ensuring Safety in

Refactoring Engines

V. Banumathy1, A. Mary Christina2

1Lecturer, Dept. of Computer Engineering, A. D. J. Dharmambal Polytechnic College, Nagapattinam, India
2Lecturer, Dept. of Computer Engineering, Srinivasa Subbaraya Govt. Polytechnic College, Puthur, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

354

refactoring implemented by Eclipse.

 The performance analysis between existing system

and our proposed system.

2. Existing methods

Many papers have proposed many techniques and tools for

this problem. A review of better technique will be discussed

below:

A. Automated behavioral testing of refactoring engines [12]

They present a technique to test Java refactoring engines. It

automates test input generation by using a Java program

generator that exhaustively generates programs for a given

scope of Java declarations. The refactoring under test is applied

to each generated program. The technique uses

SAFEREFACTOR, a tool for detecting behavioral changes, as

an oracle to evaluate the correctness of these transformations.

Finally, the technique classifies the failing transformations by

the kind of behavioral change or compilation error introduced

by them. They have evaluated this technique by testing 29

refactorings in Eclipse JDT, NetBeans, and the JastAdd

Refactoring Tools. We analyzed 153,444 transformations, and

identified 57 bugs related to compilation errors, and 63 bugs

related to behavioral changes.

B. Working of safe refactor [12]

In this step, their technique evaluates the correctness of each

applied transformation. For this purpose, it uses

SAFEREFACTOR [12]. First, SAFEREFACTOR checks for

compilation errors in the resulting program and reports those

errors; if no errors are found, it analyzes the results and

generates a number of tests suited for detecting behavioral

changes. SAFEREFACTOR identifies the methods with

matching signature (methods with exactly the same modifier,

return type, qualified name, parameter types, and exceptions

thrown) before and after the transformation. Next, it applies

Randoop [21], a Java unit test generator, to produce a test suite

for those methods. Randoop randomly generates tests for a set

of methods given a time limit. The default time limit is 2

seconds. Finally, SAFEREFACTOR runs the tests before and

after the transformation and evaluates the results. If results are

divergent, the tool reports a behavioral change and displays the

set of unsuccessful tests. Otherwise, developers have their

confidence on behavior preservation improved. Assuming the

programs as input, SAFEREFACTOR first identifies the

methods with matching signatures on both versions: Next, it

generates unit tests for those methods within a time limit of 2

seconds. Finally, it runs the test suite on both versions and

evaluates the results.

C. Working of bug categorizer

The previous step may detect a number of transformations

that change behavior or introduce compilation errors. Several

of those failures may be caused by a single bug in the

refactoring. To manually analyze all failed refactoring’s in

order to identify whether these errors have been caused by a

single bug is both time consuming and error-prone. Next, we

describe a more efficient way of classifying the failing

transformations.

1) Compilation errors

They used an automatic approach proposed by Jagannath et

al. [22] to classify compilation errors. It consists of splitting the

failing tests based on messages from the test oracle. The goal is

to group together the failing tests related to the same bug. Their

approach ignores (package, class, method, or field) names

within quotes. If the same refactoring is applied to two different

programs, and they result in compilation error messages

following the same template, a single bug is assigned to these

two failures. We developed a tool to automate this grouping.

2) Behavioral changes

Additionally, they propose an approach to classify behavioral

changes by analyzing each detected change based on the

characteristics of each pair source program-target program.

Their approach is based on a set of filters; a filter checks

whether the programs follow a specific structural pattern. For

example, there are filters for transformations that enable or

disable overloading/overriding of a method in the target

program, relatively to the source program. They defined those

filters by analyzing bugs found through the use of their

approach, in addition to other bug reports from refactoring

engines the filters may be applied in any order. The bug

category of a behavior changing transformation is then

designated by the filters matched by its source and target

programs. When a transformation does not fit any of these

filters, conventional debugging is demanded from refactoring

engine developers. The set of filters is not complete. Currently,

they focus on the Java constructs supported by JDOLLY. New

filters can be proposed based on additional bugs found by

refactoring engine developers. Currently, the classification of

behavioral changing transformations is carried out manually.

The process consists of analyzing each pair of programs and

testing every filter for matches.

3. Proposed frame work

Fig. 1. Proposed architecture

In our agent based approach, the relative approach is

followed. But to enhance the testing suite, we have proposed an

agent based testing suite which effectively detect the behavioral

changes as well as the compilation errors. And also, we have

proposed an approach to classify the bugs automatically and

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

355

effectively using the BC Agent (Bug categorizer Agent). For

input program generation, we are also using the JDOLLY, the

JAVA program generator. The overall working of our approach

is given in the following,

The overall working is given in steps as follows:

 Input program generation by JDOLLY.

 Refactoring is applied to each generated program by

the refactoring tool which they want to test.

 Then we uses our agent based technique to generate

the test cases and execute on the original program as

well as the target program and collect the results.

 And finally, with the help of BC Agents (Our

proposal), the failing transformations are classified

based on the behavioral changes and compilation

errors.

A. Review of JDOLLY

JDOLLY is a Java program generator that exhaustively

generates programs, up to a given scope. The Alloy

specification language [24] is employed as the formal

infrastructure for generating programs; a Meta model for Java

is encoded in Alloy, and the Alloy Analyzer finds solutions,

which are translated into programs by JDOLLY, for user-

specified constraints. An Alloy model or specification is a

sequence of paragraphs of two kinds: signatures and

constraints. Each signature denotes a set of objects associated

to other objects by relations declared in the signatures. Each

signature paragraph represents a type, and may declare a set of

relations along with their types and other constraints on their

included values.

1) Well-formed ness rules

Well-formed ness rules are specified within Alloy facts. For

example a Java class cannot have two fields with the same

identifier, as declared in the fact no Class Two- Fields Same Id.

Fact no Class Two Fields Same Id

{

all c: Class | all f1,f2: c.fields |

.id

}

The Alloy model is then used to generate Java programs

using Alloy’s run commands, specifically with the generate

predicate. By default, the scope of at most three objects is used

for each signature. The Alloy Analyzer searches for solutions.

The Alloy Analyzer does not automatically convert an Alloy

instance into a Java program. In fact, we use its API to generate

every possible solution. To complete the generation step, we

reused the syntax tree available in Eclipse JDT for generating

programs from those solutions. For example, the Alloy objects

Class and Package are mapped to a type declaration and a

Package Declaration, respectively. The imports are

automatically calculated from each Alloy instance generated;

they are included in each program. With JDOLLY, we can

specify different scopes to limit program generation. For

instance, if we are not interested in fields, we can specify the

scope of zero. Besides, the generation can be further

constrained. Suppose a context in which programs are needed

with at least one class (C2) extending another one (C1) and

declaring at least a method (M1); we can specify these

constraints by using the following Alloy fragment. This

particular specification is useful for testing the Pull Up Method

refactoring, considering M1. For each instance, we pass the

value given to M1 to the refactoring.

one sig C1, C2 extends Class {}

one sig M1 extends Method {}

pred generate[]

{C1 in C2.extend

M1 in C2.methods}

2) Agent based approach

We have proposed an algorithm named Intel Refact for this

approach. It consists of 8 modules. They are as follows

 GUI Console.

 Monitor Agent.

 Test Case Generator Agent (TCG).

 Test Controller Agent (TC).

 Test Execution Agent(s) (TE).

 Test Collector Agent (Built-in Agent of Monitor

Agent).

 Bug Categorizer Agent.

 Safety Agent.

3) Intel refact algorithm

The IntelRefact algorithm is as follows: Algorithm

IntelRefact (Source_Prog, Target_Prog)

//Input: Source program and the target program (i.e., the

program after refactoring)

//Output: Classification of Bugs and the information about

the safety of refactoring transformations.

GUI(Source_Prog, Target_Prog)

{

File Src_Pro, Tar_Pro;

//Invokes Monitor Agent

MC (Src_Pro, Tar_Pro)

{

String Conditions;

File Input1, Input2, TCase;

//Invokes Test Case generator Agent

TCG (Input1, Input2)

{

recursive hybrid GE Algorithm (Input1, Input2);

return TCase;

end;

}

//Invokes Test Controller Agent

TC (TCase, Conditions,Src_Pro,Tar_Pro)

{

Generate (TCase, Conditions);

//Invokes required Test execution agents for both Source

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

356

Program and Target program.

TEx1(TCase,Src_Pro)

{

execute();

return result;

end;

}

TEx2(TCase,Src_Pro)

{

execute();

return result;

end;

}

…

…

…

TEy1(TCase, Tar_Pro)

{

 execute();

return result;

end;

}

TEy2(TCase,Tar_Pro)

{

execute();

return result;

end;

}

…

…

…

report_to_MC ();

}

//Invokes the test collector agent

TCollect (result)

{

Collect();

end TC;

Classify_Correct_Fail();

{

File Correct, Fail;

}

//Invokes the Bug Categorizer Agent.

BC(Fail)

{

Classify();

Report();

end;

}

//Invokes the Safety Agent.

Safety(Correct, Fail)

{

Indicate();

end;

}

end;

}

end;

}

end;

}

4) Evaluating the fitness of an individual

The fitness of an individual is evaluated as follows:

 The individual’s encoding of the three parameters is

decoded into three integers

 The SUT is run on these integers as parameters

 The lines of code that are executed by the SUT called

on these parameters.

 The induced path is compared to the target path, and a

similarity measure is computed.

 The fitness of an individual is directly proportional to

how similar it is to the target path (as indicated by the

similarity measure)

 The hybrid algorithm presented by them outperforms an

existing method in run-time. This is because it harnesses a

logarithmic decay in the computational cost of the fitness

function owing to the recursive classification of target paths

into sub-bins. This method is better suited for testing SUTs with

many paths, each of which have many constraints on them.

Further, since the runs of the ESs and GAs at any given level of

bin classification are independent of each other, this method is

highly parallelizable. In addition, the binning allows for an

approximately logarithmic decay in the number of target paths

to be included in the fitness function. This implies that the

fitness values of individuals in a population are computed faster

as elapsed execution time progresses. This, however, is not the

case for the other method, which maintains a constant-sized set

of target paths throughout execution. This is one reason why the

hybrid algorithm completed execution significantly faster,

despite having computed significantly more fitness values. The

bubble sort algorithm was used as a benchmarking SUT to

illustrate this. With 64 target paths, the existing method was

required to compare the path induced by each individual in

every generation of the population with 64 target paths. A

population size of 1000 therefore drives 64000 path

comparisons per generation. However, with the hybrid, a GA is

only invoked on a single target path. Thus, even with 1000

individuals in the population, only 1000 fitness evaluations are

made. Further, due to the threshold values, the logarithmic

nature of the decay of bin sizes forces the hybrid algorithm to

perform progressively fewer fitness evaluations on every

successive call to the ES on the target paths in a bin. Ultimately,

the algorithm presented by them discovers inputs that induce a

set of paths that contains at least all the paths induced by the

inputs discovered by the other method. It is of interest to note

that fewer fitness evaluations are performed by the hybrid

algorithm on the Min- Max SUT. This is not anomalous. Rather,

it is an artifact of the algorithm refusing to perform fitness

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

357

evaluations after an individual that induces the required target

path has been discovered. Thus, since the path coverage is much

higher in the case of the hybrid algorithm, there are more

occasions when it stops early, explaining the lower number of

fitness evaluations.

4. Experiment and results

We have evaluated our approach with refactoring

transformations in Eclipse, Net Beans and on real programs.

The results are tabulated in the Figure 5 and Figure 6. The

performance analysis between our approach and the existing

system is given in the following graph

Fig. 2. Number of test cases generated

Fig. 3. Amount of time taken

Fig. 4. Performance analysis in terms of test cases

For each refactoring, we used the same set of programs to

evaluate Eclipse and Net Beans. Even though Eclipse and Net

Beans have their own test suites, our technique identified

unique bugs. Table 1 summarizes the bugs reported to Eclipse

JDT, Net Beans, and JRRT. Our approach detects bugs related

to transformation failures or weak preconditions. Our bug

categorizer takes a few seconds to automatically classify all

failures of a refactoring. For instance, our technique detected

many compilation failures in the Push down Method refactoring

implementation of Eclipse JDT. Consequently. In Eclipse JDT,

the Rename Class refactoring contains three bugs; In Net

Beans, three refactoring’s contain four bugs each.” The Rename

Field, Pull Up Field, and Move Method implemented by

JRRTv1 have more bugs than the similar implementation of

Eclipse JDT” said by the existing system. We have founded

more bugs, all related to behavioral changes. We devised an

additional, automatic bug categorizer to classify these bugs. For

each refactoring, it took approximately 10 minutes to

automatically classify behavioral changes (depends upon LOC

and bugs, so it may vary. We have presented it for maximum

LOC and bugs). The number of test cases generated by us was

optimized and feasible and efficient when compared with the

existing system. As it is the agent based technique and it follows

the approach proposed by enhancing the Efficiency of

Regression testing [12] and it uses MINTS [25] tool for

optimizing the test cases. The amount of time taken to generate

the test cases was minimum when compared with the existing

system. We have presented the algorithm and it is clear that

when the agent’s respectable duty, it will terminate itself. So we

can maintain the trade-off between the space complexity and

time complexity. So, the users need not worry about the

execution of our technique or tool. We have proposed a

performance analysis graph between the existing system and

proposed system by From that graph, it is visualized that our

existing system generates more number of test cases in

minimum amount of time.

A. Bug categorizer

As it is an agent and we have feed the knowledge (i.e. filters),

it can automatically classifies the bugs in minimum amount of

time. It is a learning agent, so it can learn from the experience

and refresh itself. It can automatically update itself. As it is an

agent and we have feed the knowledge (i.e. filters), it can

automatically classifies the bugs in minimum amount of time.

It is a learning agent, so it can learn from the experience and

refresh itself. It can automatically update itself. As it is an agent

and we have feed the knowledge (i.e. filters), it can

automatically classifies the bugs in minimum amount of time.

It is a learning agent, so it can learn from the experience and

refresh itself. It can automatically update itself. As it is an agent

and we have feed the knowledge (i.e. filters), it can

automatically classifies the bugs in minimum amount of time.

5. Conclusion

In this paper, we propose a technique to test Java refactoring

engines. This technique is made up of JDOLLY, a Java program

generator and an agent based technique and algorithm, a test

suite for refactoring’s and Bug Categorizer for classifying the

bugs. For each refactoring, the technique generates a number of

Java programs, followed by the application of the refactoring,

with these programs as target. It uses our approach to evaluate

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

358

the correctness of the transformations. Finally, the technique

classifies the failing transformations by kind of behavioral

change or compilation error introduced by them with the help

of Bug Categorizer agent (BC). We propose a Java program

generator (JDOLLY [13]) to run the program generation step of

our technique. It create programs for a given scope of elements

(packages, classes, fields, and methods).

We have evaluated our technique by testing many refactoring’s,

and found many bugs related to compilation errors and

behavioral changes, respectively when compared with the

existing sy stem. Implementing refactoring’s is not simple.

Even refactoring engines written with correctness in mind, such

as JRRT, still have bugs. We have demonstrated how the

combination of JDOLLY and Agent based approach is

powerful to detect bugs in refactoring’s. In the absence of

formal proofs, our technique can be useful for the improvement

of previous solutions.

References

[1] Alex Groce, Gerard Holzmann, and Rajeev Joshi,"Randomized

Differential Testing as a Prelude to Formal Verification", International

Journal of Computer Science & Engineering Survey (IJCSES) Vol.2,

No.1, Feb 2011. 2008.

[2] Amit Sharma and Miriam A. M. Capretz, “Application Maintenance

Using Software Agents”, IEEE, Florence, Italy, 2001, pp. 55-64.

[3] Brett Daniel Danny Dig Kely Garcia Darko Marinov,"Automated Testing

of Refactoring Engines",In Proc. International Symposium on Software

Testing and Analysis (ISSTA), July 2002.

[4] Carlos Pacheco Michael D. Ernst,"Randoop: Feedback-Directed Random

Testing for Java"2006

[5] Chia-En Lin, Krishna M. Kavi, Frederick T. Sheldon, Kris M. Daley and

Robert K. Abercrombie,” A Methodology to Evaluate Agent Oriented

Software Engineering Techniques”, Proceedings of the 40th Hawaii

International Conference on System Sciences – 2007.

[6] Cristinel Mateis, Markus Stumptner, Dominik Wieland, "JADE – AI

Support for Debugging Java Programs",2006.

[7] Darko Marinov and Sarfraz Khurshid,"TestEra: A Novel Framework for

Automated Testing of Java Programs"2002.

[8] David Coppit, Jinlin Yang,"Software Assurance by Bounded Exhaustive

Testing",IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 31, NO. 4, APRIL 2005.

[9] Dhavachelvan, "Complexity system for software measures: towards multi

agent based software testing“IEEE Transactions on SE, 2013.

[10] Gao Jing, Sch. of Comput. & Inf. Eng., Inner Mongolia Agric. Univ.,

Huhhot, China ; Lan Yuqing,"Agent-Based Distributed Automated

Testing Executing Framework",Computational Intelligence and Software

Engineering, 2009. CiSE 2009.

[11] Gordon Fraser, Andreas Zeller, "Exploiting Common Object Usage in

Test Case Generation"2011.

[12] Gustavo Soares, Student Member, IEEE, Rohit Gheyi, and Tiago

Massoni,"Automated Behavioral Testing of Refactoring Engines",IEEE

transactions on software engineering, vol. 39, no. 2, february 2013.

[13] Hitesh Tahbildar1 and Bichitra Kalita2,"AUTOMATED SOFTWARE

test data generation: direction of research", International Journal of

Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb

2011.

[14] K. Karnavel, V. Divya, Gnanakeerthika and P. Karthika,"Agent Based

Software Testing Framework (ABSTF) for Application Maintenance",

IJREAT International Journal of Research in Engineering & Advanced

Technology, Volume 1, Issue 1, March, 2013.

[15] T.M.S.Ummu Salima, A.Askarunisha, N.Ramaraj,"Enhancing The

Efficiency Of Regression Testing Through Intelligent Agents"2008.

