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Abstract: A Fibonacci heap is a specific implementation of the 

heap data structure that makes use of Fibonacci numbers. 

Fibonacci heaps are used to implement the priority queue element 

in Dijkstra’s algorithm, giving the algorithm a very efficient 

running time. Fibonacci heaps have a faster amortized running 

time than other heap types. Fibonacci heaps are similar to 

binomial heaps but Fibonacci heaps have a less rigid structure. 

Binomial heaps merge heaps immediately but Fibonacci heaps 

wait to merge until the extract-min function is called. While 

Fibonacci heaps have very good theoretical complexities, in 

practice, other heap types such as pairing heaps are faster. This is 

because even in the simplest implementation, Fibonacci heaps 

require four pointers for each node, other heaps need two or three 

[1]. 
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1. Objectives 

Fibonacci heaps but binary heaps are used in the priority 

queues. Priority queues are widely used in the real systems. One 

known example is process scheduling in the kernel. The highest 

priority process is taken first. 

 
Fig. 1.  Fibonacci heaps 

2. Methodology 

Here is how Fibonacci heaps implement the basic 

functionalities of heaps and the time complexity of each 

operation. The children of each node are also related using a 

linked list. For each node, the linked list maintains the number 

of children a node has and whether the node is marked. The 

linked list also maintains a pointer to the root containing the 

minimum key. A node is marked to indicate if any of its 

children were removed. This is important so the heap can keep 

track of how far removed its shape is becoming from a binomial 

heap. If a Fibonacci heap is too different from a binomial heap,  

 

it loses many of the efficient time operations that their binomial  

 

nature gives it. These operations are described in terms of a min 

Fibonacci heap, but they could easily be adapted to be max 

Fibonacci heap operations [2]. 

A. Find Minimum 

The linked list has pointers and keeps track of the minimum 

node, so finding the minimum is simple and can be done in 

constant time [2]. 

B. Merge 

In Fibonacci heaps, merging is accomplished by simply 

concatenating two lists containing the tree roots. Compare the 

roots of the two heaps to be merged, and whichever is smaller 

becomes the root of the new combined heap. The other tree is 

added as a sub tree to this root. This can be done in constant 

time [2]. 

C. Extract Minimum 

 
Fig. 2.  Extract minimum 

 

Extract-min is one of the most important operations 

regarding Fibonacci heaps. Much of a Fibonacci heap speed 

advantage comes from the fact that it delays consolidating 

heaps after operations until extract-min is called. Binomial 

heaps, on the other hand, consolidate immediately. 

Consolidation occurs when heap properties are violated, for 

example, if two heaps have the same order, the heaps must be 

adjusted to prevent this. [2] Deleting the minimum element is 

done in three steps. The node is removed from the root list and 

the node’s children are added to the root list. Next, the 

minimum element is updated if needed. Finally, consolidate the 

trees so that there are no repeated orders. If any consolidation 

occurred, make sure to update the minimum element if needed. 

Delaying consolidation saves times. The two images below 

show the extract-min function on the Fibonacci heap shown in 

the introduction [2]. 
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D. Insert 

Insertion to a Fibonacci heap is similar to the insert operation 

of a binomial heap. A heap of one element is created and the 

two heaps are merged with the merge function. The minimum 

element pointer is updated if necessary. The total number of 

nodes in the tree increases by one. [2] 

E. Remove 

To delete an element, decrease the key using decrease key to 

negative infinity, and then call extract-min. When the node has 

a value of negative infinity, since the heap is a min heap, it will 

become the root of the tree. Extract-min will remove the top 

element, so doing this deletes the node in question. [2] 

F. Decrease Key 

There are two situations that can arise when decreasing the 

key the change will cause a heap violation or it will not.  

 If the heap properties aren’t violated, simply decrease 

xx.  

 If a violation does occur, remove the node its parent. 

If the parent is not a root, mark it. If it has been marked 

already, it is removed as well and its parent is marked, 

and so on. Continue this process up the tree until either 

the root or an unmarked node is reached. Next, set the 

minimum pointer to the decreased value if it is the new 

minimum. [2]. 

 
Fig. 3.  Minimum decrease key 

 

The decrease key function marks a node when its child is 

removed. This allows it to track some history about each node. 

Essentially the marking tracks if: 

 The node has had no children removed (unmarked) 

 The node has had a single child removed (marked) 

 The node is about to have a second child removed 

(removing a child of a marked node. 

3. Implementation 

Make-Fibonacci-Heap() 

n[H] := 0 

min[H] := NIL  

return H 

 

Fibonacci-Heap-Minimum(H) 

return min[H] 

 

Fibonacci-Heap-Link(H,y,x) 

remove y from the root list of H 

make y a child of x 

degree[x] := degree[x] + 1 

mark[y] := FALSE 

CONSOLIDATE(H) 

for i:=0 to D(n[H]) 

     Do A[i] := NIL 

for each node w in the root list of H 

    do x:= w 

       d:= degree[x] 

       while A[d] <> NIL 

           do y:=A[d] 

              if key[x]>key[y] 

                then exchange x<->y 

              Fibonacci-Heap-Link(H, y, x) 

              A[d]:=NIL 

             d:=d+1 

       A[d]:=x 

min[H]:=NIL 

for i:=0 to D(n[H]) 

    do if A[i]<> NIL 

          then add A[i] to the root list of H 

               if min[H] = NIL or key[A[i]]<key[min[H]] 

                  then min[H]:= A[i] 

 

Fibonacci-Heap-Union(H1,H2) 

H := Make-Fibonacci-Heap() 

min[H] := min[H1] 

Concatenate the root list of H2 with the root list of H 

if (min[H1] = NIL) or (min[H2] <> NIL and min[H2] < 

min[H1]) 

   then min[H] := min[H2] 

n[H] := n[H1] + n[H2] 

free the objects H1 and H2 

return H 

 

 

Fibonacci-Heap-Insert(H,x) 

degree[x] := 0 

p[x] := NIL 

child[x] := NIL 

left[x] := x 

right[x] := x 

mark[x] := FALSE 

concatenate the root list containing x with root list H 

if min[H] = NIL or key[x]<key[min[H]] 

        then min[H] := x 

n[H]:= n[H]+1 

 

Fibonacci-Heap-Extract-Min(H) 

z:= min[H] 

if x <> NIL 

        then for each child x of z 

             do add x to the root list of H 

                p[x]:= NIL 

             remove z from the root list of H 

             if z = right[z] 

                then min[H]:=NIL 

                else min[H]:=right[z] 

                     CONSOLIDATE(H) 

             n[H] := n[H]-1 
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return z 

 

Fibonacci-Heap-Decrease-Key(H,x,k) 

if k > key[x] 

   then error "new key is greater than current key" 

key[x] := k 

y := p[x] 

if y <> NIL and key[x]<key[y] 

   then CUT(H, x, y) 

        CASCADING-CUT(H,y)     

if key[x]<key[min[H]] 

   then min[H] := x 

 

CUT(H,x,y) 

Remove x from the child list of y, decrementing degree[y] 

Add x to the root list of H 

p[x]:= NIL 

mark[x]:= FALSE 

 

CASCADING-CUT(H,y) 

z:= p[y] 

if z <> NIL 

  then if mark[y] = FALSE 

       then mark[y]:= TRUE 

       else CUT(H, y, z) 

            CASCADING-CUT(H, z) 

 

Fibonacci-Heap-Delete(H,x) 

Fibonacci-Heap-Decrease-Key(H,x,-infinity) 

Fibonacci-Heap-Extract-Min(H)        [3] 

4. Conclusion and summary 

Table 1 

Running times of Fibonacci heaps 
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