
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

189

Abstract: A Fibonacci heap is a specific implementation of the

heap data structure that makes use of Fibonacci numbers.

Fibonacci heaps are used to implement the priority queue element

in Dijkstra’s algorithm, giving the algorithm a very efficient

running time. Fibonacci heaps have a faster amortized running

time than other heap types. Fibonacci heaps are similar to

binomial heaps but Fibonacci heaps have a less rigid structure.

Binomial heaps merge heaps immediately but Fibonacci heaps

wait to merge until the extract-min function is called. While

Fibonacci heaps have very good theoretical complexities, in

practice, other heap types such as pairing heaps are faster. This is

because even in the simplest implementation, Fibonacci heaps

require four pointers for each node, other heaps need two or three

[1].

Keywords: Nodes Fibonacci heaps and image

1. Objectives

Fibonacci heaps but binary heaps are used in the priority

queues. Priority queues are widely used in the real systems. One

known example is process scheduling in the kernel. The highest

priority process is taken first.

Fig. 1. Fibonacci heaps

2. Methodology

Here is how Fibonacci heaps implement the basic

functionalities of heaps and the time complexity of each

operation. The children of each node are also related using a

linked list. For each node, the linked list maintains the number

of children a node has and whether the node is marked. The

linked list also maintains a pointer to the root containing the

minimum key. A node is marked to indicate if any of its

children were removed. This is important so the heap can keep

track of how far removed its shape is becoming from a binomial

heap. If a Fibonacci heap is too different from a binomial heap,

it loses many of the efficient time operations that their binomial

nature gives it. These operations are described in terms of a min

Fibonacci heap, but they could easily be adapted to be max

Fibonacci heap operations [2].

A. Find Minimum

The linked list has pointers and keeps track of the minimum

node, so finding the minimum is simple and can be done in

constant time [2].

B. Merge

In Fibonacci heaps, merging is accomplished by simply

concatenating two lists containing the tree roots. Compare the

roots of the two heaps to be merged, and whichever is smaller

becomes the root of the new combined heap. The other tree is

added as a sub tree to this root. This can be done in constant

time [2].

C. Extract Minimum

Fig. 2. Extract minimum

Extract-min is one of the most important operations

regarding Fibonacci heaps. Much of a Fibonacci heap speed

advantage comes from the fact that it delays consolidating

heaps after operations until extract-min is called. Binomial

heaps, on the other hand, consolidate immediately.

Consolidation occurs when heap properties are violated, for

example, if two heaps have the same order, the heaps must be

adjusted to prevent this. [2] Deleting the minimum element is

done in three steps. The node is removed from the root list and

the node’s children are added to the root list. Next, the

minimum element is updated if needed. Finally, consolidate the

trees so that there are no repeated orders. If any consolidation

occurred, make sure to update the minimum element if needed.

Delaying consolidation saves times. The two images below

show the extract-min function on the Fibonacci heap shown in

the introduction [2].

Fibonacci Heap and its Applications

K. N. Hemanth Rao1, Raghavendra2, Pratyush Singh3, Sanket V. Salankimatt4

1,2,3,4Student, Department of CSE, R. V. College of Engineering, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

190

D. Insert

Insertion to a Fibonacci heap is similar to the insert operation

of a binomial heap. A heap of one element is created and the

two heaps are merged with the merge function. The minimum

element pointer is updated if necessary. The total number of

nodes in the tree increases by one. [2]

E. Remove

To delete an element, decrease the key using decrease key to

negative infinity, and then call extract-min. When the node has

a value of negative infinity, since the heap is a min heap, it will

become the root of the tree. Extract-min will remove the top

element, so doing this deletes the node in question. [2]

F. Decrease Key

There are two situations that can arise when decreasing the

key the change will cause a heap violation or it will not.

 If the heap properties aren’t violated, simply decrease

xx.

 If a violation does occur, remove the node its parent.

If the parent is not a root, mark it. If it has been marked

already, it is removed as well and its parent is marked,

and so on. Continue this process up the tree until either

the root or an unmarked node is reached. Next, set the

minimum pointer to the decreased value if it is the new

minimum. [2].

Fig. 3. Minimum decrease key

The decrease key function marks a node when its child is

removed. This allows it to track some history about each node.

Essentially the marking tracks if:

 The node has had no children removed (unmarked)

 The node has had a single child removed (marked)

 The node is about to have a second child removed

(removing a child of a marked node.

3. Implementation

Make-Fibonacci-Heap()

n[H] := 0

min[H] := NIL

return H

Fibonacci-Heap-Minimum(H)

return min[H]

Fibonacci-Heap-Link(H,y,x)

remove y from the root list of H

make y a child of x

degree[x] := degree[x] + 1

mark[y] := FALSE

CONSOLIDATE(H)

for i:=0 to D(n[H])

 Do A[i] := NIL

for each node w in the root list of H

 do x:= w

 d:= degree[x]

 while A[d] <> NIL

 do y:=A[d]

 if key[x]>key[y]

 then exchange x<->y

 Fibonacci-Heap-Link(H, y, x)

 A[d]:=NIL

 d:=d+1

 A[d]:=x

min[H]:=NIL

for i:=0 to D(n[H])

 do if A[i]<> NIL

 then add A[i] to the root list of H

 if min[H] = NIL or key[A[i]]<key[min[H]]

 then min[H]:= A[i]

Fibonacci-Heap-Union(H1,H2)

H := Make-Fibonacci-Heap()

min[H] := min[H1]

Concatenate the root list of H2 with the root list of H

if (min[H1] = NIL) or (min[H2] <> NIL and min[H2] <

min[H1])

 then min[H] := min[H2]

n[H] := n[H1] + n[H2]

free the objects H1 and H2

return H

Fibonacci-Heap-Insert(H,x)

degree[x] := 0

p[x] := NIL

child[x] := NIL

left[x] := x

right[x] := x

mark[x] := FALSE

concatenate the root list containing x with root list H

if min[H] = NIL or key[x]<key[min[H]]

 then min[H] := x

n[H]:= n[H]+1

Fibonacci-Heap-Extract-Min(H)

z:= min[H]

if x <> NIL

 then for each child x of z

 do add x to the root list of H

 p[x]:= NIL

 remove z from the root list of H

 if z = right[z]

 then min[H]:=NIL

 else min[H]:=right[z]

 CONSOLIDATE(H)

 n[H] := n[H]-1

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-11, November-2018

www.ijresm.com | ISSN (Online): 2581-5792

191

return z

Fibonacci-Heap-Decrease-Key(H,x,k)

if k > key[x]

 then error "new key is greater than current key"

key[x] := k

y := p[x]

if y <> NIL and key[x]<key[y]

 then CUT(H, x, y)

 CASCADING-CUT(H,y)

if key[x]<key[min[H]]

 then min[H] := x

CUT(H,x,y)

Remove x from the child list of y, decrementing degree[y]

Add x to the root list of H

p[x]:= NIL

mark[x]:= FALSE

CASCADING-CUT(H,y)

z:= p[y]

if z <> NIL

 then if mark[y] = FALSE

 then mark[y]:= TRUE

 else CUT(H, y, z)

 CASCADING-CUT(H, z)

Fibonacci-Heap-Delete(H,x)

Fibonacci-Heap-Decrease-Key(H,x,-infinity)

Fibonacci-Heap-Extract-Min(H) [3]

4. Conclusion and summary

Table 1

Running times of Fibonacci heaps

References

[1] Stergiopoulos S. Algorithm for Fibonacci Heap Operations. Retrieved

June 7, 2016.

[2] Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to

Algorithms (2nd edition) (pp. chapter 20). The MIT Press.

[3] Fredman, M., Sedgewick, R., Sleator, D., & Tarjan, R. The Pairing Heap:

A New Form of Self-Adjusting Heap. Retrieved June 7, 2016.

