
International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5782

337

Abstract—Traditional TCP/IP (Transmission Control Protocol/

Internet Protocol) does not cater the requirements of the IoT

(Internet of Things) application. This invoked development of

different protocols for IoT devices that satisfy specific purposes.

Within its domain, sensor network has constrained devices and

limited network bandwidth. Even though Message Queue

Telemetry Transport (MQTT) is light weight they need TCP/IP

stack to operate. They are heavy to be operated by small sensors

that requires big payload, retry mechanism, time to live for the

packets etc.

MQTT for Sensor Networks (MQTT-SN) is adapted to

incorporate devices with limited processing and storage resources.

It’s a publish-subscribe protocol that supports any network

having bi-directional data transfer service that does not need

TCP/IP. It is designed to work in similar way as MQTT but uses

UDP which is a connectionless protocol. The data are transmitted

based on function of contents and interests rather than network

addresses. When the communications to other networks are

required a gateway with MQTT-SN at the one side and the MQTT

at another end will suffice.

Index Terms— MQTT, MQTT-SN

I. INTRODUCTION

In the world of M2M (Machine to Machine) and IoT

protocols, there are many competing protocols vying for

attention. These protocols are designed to be light-weight for

the low power devices to take advantage of low bandwidth

constraints of the M2M world. One such protocol which is

specifically designed for very low power M2M devices is

MQTT-SN. The SN in the name indicates that this protocol is

specifically designed for sensor networks. The fact that the

headers and footers of the existing Internet based protocols is a

huge overhead is considered while designing this MQTT-SN

protocol.

As TCP-IP protocol is rather heavy weight for the M2M

sensor networks. The solution seems to be a protocol which can

ride on top of any other light-weight protocol. When the base

protocol does not guarantee that robustness the requirements

and implementation doesn’t fit in. In case of MQTT-SN these

are facilitated as and when required in the application layer. The

communication with different entities in a network will take

place without TCP-IP and when the communication with the

cloud or certain such entity is required, then a gateway with

MQTT-SN at the one side of the suite and the TCP-IP and the

other end of the suite will be the requirement of the day.

MQTT-S or MQTT-SN is an extension for sensor networks

of Message Queuing Telemetry Transport (MQTT). Both

MQTT and MQTT-SN are client-server protocols, for which a

server is needed to distribute message between the client

applications. To enable the server to run on machines which do

not have capacity for running a JVM, MQTT and MQTT-SN

are written in C and sensors and actuators, which are very small

and lacking in power, are often the sources and destinations.

MQTT and MQTT-SN also using the publish-subscribe

paradigm, rather than queuing mechanism.

MQTT-SN improves upon the base MQTT by adding many

new features such as error status, concise message header etc.

The broker acts as a conduit and controls the message to and

from the client based on pub-sub mechanism and registration of

topics. Even if very few clients are connected, the above said

mechanism is necessary to support robustness. [3]

To reduce the size of the payloads, the data packets are

numbered by numeric topic ids rather than long topic names.

This particular feature which is different from the MQTT

reduces the readability of the topics, but elegantly reduces the

size of the packets. The negotiation for the topic ids has to

happen from the client side. The protocol does not guarantee

any kind of operation when a restart happens, which might have

erased all the topics. These kinds of operations have to be taken

care at the application level.

In place of topic name that is used by MQTT, MQTT-SN

supports topic ID. The client can give a registration request to a

broker with topic name and topic ID (2 octets). After

registration, instead of topic name which is larger the client can

use topic ID that refer to topic name. This helps to saves device

memory and media bandwidth as it is quite expensive to keep

and send topic name e.g.: home/livingroom/socket2/meter in

memory for each publish message [2].

Topic ID can be preconfigured in MQTT-SN gateway in

place of Topic name which helps to avoid even registration

message before publish. Rather than TCP/IP stack, MQTT-SN

can be used over a serial link, with simple link protocol. It is

needed to differentiate devices on the line that results in very

small overhead. Alternatively, it can be executed over UDP but

it need gateway, acts as a transparent link between a sensor

network of low power devices and a MQTT broker (like

mosquitto). This allows to seamlessly integrate sensor devices

with existing MQTT applications and libraries.

II. LITERATURE REVIEW

The document [1] specifies basic open and lightweight

publish/subscribe protocol that is designed specifically for

MQTT-SN Protocol - A Review

Maria K Tom

Student, Department of Computer Science, School of Computer Sciences, Kottayam, India

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5782

338

machine-to-machine and mobile applications. It is optimized

for communications over networks where bandwidth is at a

premium or where the network connection could be

intermittent.

MQTT-SN is designed in such a way that it is agnostic of the

underlying networking services. Any network which provides a

bi-directional data transfer service should be able to

demonstrate MQTT-SN. For example, a simple datagram

service which allows a source endpoint to send a data message

to a specific destination endpoint should be sufficient. A

broadcast data transfer service is only required if the gateway

discovery procedure is employed. To reduce the broadcast

traffic created by the discovery procedure, it is desirable that

MQTT-SN could indicate the required broadcast radius to the

underlying layer.

In the research [2], they implemented an IPv6 over BLE

experimental environment, and then run MQTT and MQTT-SN

on top of IPv6/BLE. Specifically, build an IPv6 over Low

Power Wireless Personal Area Network, in which the

6LoWPAN Border Router (6LBR) distributes IPv6 addresses

to all 6LoWPAN Nodes (6LN), as well as plays the role of a

heterogeneous gateway to bridge the BLE subnet and the

Internet. On top of that, IoT devices collect environmental data,

and then send the data to the MQTT broker using MQTT-SN

protocol.

The network architecture in experimental system in The BLE

network consists of three Raspberry Pi 3 development boards:

one acts as the 6LBR which plays the role of a gateway between

the BLE network and the Internet, the other two are used as

6LNs which are connected with environmental sensors. It also

set up a web server to collect the environmental data from the

sensor nodes.

In paper [3] authors have discussed about MQTT-SN, a

pub/sub protocol developed based on the following design

points:

1) As close as possible to MQTT: This allows a seamless

connection of the SA devices to an MQTT broker, thus

enabling a smooth integration of the WSNs with the existing

communication infrastructure. This also enables a very

simple and lossless implementation of the gateways.

2) Optimized for tiny SA devices: The protocol is designed in

such a way that it can be implemented for low- cost, battery-

operated devices with limited processing and storage.

Whenever complexities are required, they reside on the

gateway/broker’s side; the client running on the SA devices

is kept as simple as possible.

3) Consideration of wireless network constraints such as high

link failure rates, low bandwidth, and short message

payload.

Procedures should be defined to reduce the risk of having

SAs disconnected from the infrastructure owing to link failures

or network congestion. Moreover, to be resistant against

transmission errors, wireless networks have a much shorter

packet length than wired networks.

4) Network independent: MQTT-S is designed to run on any

network that provides the two following services:

a) Point-to-point data transfer service: A datagram

service that allows the transport of messages between

any two points based on their network address. The

two points involved may be multiple hops away from

each other.

b) One-hop broadcast data transfer service: This is in

principle supported by all wireless networks;

messages sent by a node can be received by all nodes

within the transmission range. In contrast to MQTT,

MQTT-S does not assume a connection-oriented

service, and does not rely on message segmentation,

nor in-order delivery of those segments.

In the paper [4] it modelled an exemplary end-to-end e-health

system and analysed the service performances; the content

delivery delay and content delivery probability, This derived

the delivery probability and delay theoretically as a function of

MQTT protocol and other system parameters, This study

unveils the impact of various parameters, e.g." content

publishing/request process, content/request possession time,

etc." on the end-to-end delivery performances, This analysis

will give system designer a flexibility to devise various

admission , and service control policies . This modelling also

facilitates the system designer on designing the server to meet

the service assurances, Real time implementation of the MQTT

SN and comparing the theoretical and simulation results against

real time experimental results.

III. MQTT

It is lightweight broker-based publish/subscribe messaging

protocol designed to be open, simple, lightweight and easy to

implement. It is ideal for use in constrained environments with

low or unreliable expensive network as it has minimal

overhead. It is easy to implement on the client side that utterly

applies to embedded devices with limited processor or memory

resources. It is useful for use with low power sensors, but is

applicable to many scenarios. [4]

The MQTT protocol is based on the principle of publishing

messages and subscribing to topics, or "pub/sub". Multiple

clients connect to a broker and subscribe to topics that they are

interested in. Clients also connect to the broker and publish

messages to topics. Many clients may subscribe to the same

topics and do with the information as they please. The broker

and MQTT act as a simple, common interface for everything to

connect to. Messages in MQTT are published on topics. There

is no need to configure a topic, publishing on it is enough.

Topics are treated as a hierarchy, using a slash (/) as a separator.

This allows sensible arrangement of common themes to be

created, much in the same way as a file system. For example,

multiple systems may all publish their hard drive utilization

information on the following topic, with their own computer

and hard drive name being replaced as appropriate: sensors/

COMPUTER_NAME/ utilization/ HARDDRIVE_ NAME.

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5782

339

Clients can receive messages by creating subscriptions. A

subscription may be to an explicit topic, in which case only

messages to that topic will be received, or it may include wild

cards. Two wild cards are available, + or #. + can be used as a

wild card for a single level of hierarchy.

IV. WHY MQTT-SN?

In the world of M2M and IoT protocols, there are many

competing protocols vying for attention. These protocols are

designed to be light-weight for the low power devices to take

advantage of low bandwidth constraints of the M2M world.

One such protocol which is specifically designed for very low

power M2M devices is MQTT-SN. The SN point out that it is

specifically devised for sensor networks.

MQTT protocol is implemented over TCP/IP which can be

used for LAN network or over Internet. MQTT-SN protocol is

more fitted for sensors network like ZigBee, Z-Wave and so on.

When we try to omit TCP to cut down on costs of small devices,

there is currently only a small selection of non-proprietary

protocols available. One of TCP-less communication protocol

is MQTT-SN that is designed for constrained sensor networks.

MQTT-SN allows building up a network of constrained devices

with a central broker connected to many clients. Message

distribution is controlled by a message bus like pub-sub

mechanism and topic registration [5].

Fig. 1. Depiction of the flow from the sensor to the processor and to the

network

Hence a need was felt to create a protocol which does not rely

on TCP-IP and still provides value in terms of being robust

enough to carry data in the M2M domain.

The guarantees provided by TCP-IP protocol is rather heavy

weight for the M2M sensor networks. So, the solution seems to

be a protocol which can ride on top of any other light-weight

protocol. But there is a catch. Where will be the requirements

fit in and how they will be implemented when the base protocol

does not guarantee that robustness? The answer is that these

will be implemented as and when required, in the application

layer. The communication with different entities in a network

will take place without TCP-IP and when the communication

with the cloud or certain such entity is required, then a gateway

with MQTT-SN at the one side of the suite and the TCP-IP and

the other end of the suite will be the requirement of the day.

MQTT-SN is designed to be as close as possible to MQTT,

but is adapted to the particular behaviour of wireless

communication network such as low bandwidth, high link

failures, short message length etc. Second, MQTT-SN is

optimized for the implementation on low cost, battery-operated

devices with limited processing and storage resources. Third,

MQTT-SN demands a bridge to translate MQTT-SN data

messages to MQTT messages that can be used further.

MQTT-SN, formerly known as MQTT-S is aimed at

embedded devices on non-TCP/IP networks, such as Zigbee. It

follows the same publish-subscribe method but works on UDP,

rather than requiring a TCP connection.

MQTT−SN consists of MQTT-SN client which is a Publisher

device which sends the messages to a Gateway which in turn

converts the MQTT-SN message to a MQTT message and

forwards it to Broker. Subsequently, Broker delivers message

to the MQTT-SN clients (which are Subscribers from another

Gateway). Here Gateway acts as a protocol converter from

MQTT to MQTT-SN and vice versa [5].

Fig. 2. Client-Server Communication over MQTT-SN using Raspberry Pi

as MQTT-SN Gateway

MQTT-SN has been developed for wireless sensor networks.

It can be considered as a version of MQTT adapted to the

peculiarities of wireless communication environment. Unlike

MQTT, in MQTT-SN system, the end nodes are connected to

Gateway using MQTTSN protocol over wireless and then the

Gateway is connected to Server/broker using MQTT protocol

over wired network. In addition, MQTT-SN uses UDP

connection mainly because UDP best suits for the simple

message transmission requirement of MQTT-SN. In addition,

UDP is faster, simpler, more efficient and much light weight

than TCP over a wireless link, with the compromise of

reliability suited for sensors applications.

 MQTT-SN supports topic ID instead of topic name that

saves media bandwidth and device memory. Topic name to

topic ID can be preconfigured in MQTT-SN gateway, so that

even registration message can be skipped before publish.

MQTT-SN does not require TCP/IP stack. Alternatively, it can

be used over UDP, which is less hungry than TCP.

 But this needs any sort of gateway, which is nothing else

than a TCP or UDP stack moved to a different device. Also,

MQTT-SN is not well supported.

 MQTT-SN is distinguished by given differences:

1) MQTT-SN accepts topic ID to use instead of topic name in

MQTT. Firstly, client sends a registration with topic name

and topic ID (2 octets) to the broker. After registration, these

clients can referrer these topic name by topic ID. It saves

bandwidth and device memory. The usage of topic names

like home/room1/section1/meter are expensive to keep and

send in each publish messages [6].

2) The pre-configuration allows to set topic ID instead of Topic

name that help to avoid even the registration message before

publishing.

International Journal of Research in Engineering, Science and Management

Volume-1, Issue-10, October-2018

www.ijresm.com | ISSN (Online): 2581-5782

340

3) If the clients are not pre-configuring the server/gateway’s

address, discovery procedure support clients to find the

network address of operating server/gateway. More than one

gateway will ru n at the same time in single wireless system

with sharing of load or stand-by mode.

4) The broker to client connection is established through a

gateway device, which is located inside the same network.

V. CONCLUSION

To make IoT applications feasible and pervasive, one of the

most important considerations is the low power consumption of

IoT devices so they can last a long time without replacing

batteries. MQTT is a protocol which is designed to be light

weight, but needs TCP/IP stack to operate. But if the sensor

nodes cannot hold the TCP/IP stack then MQTT-SN which does

not depend on TCP/IP is optimum. .MQTT-SN is exclusively

designed for sensor networks. They are using UDP which is

connectionless that reduced connection overhead compared to

TCP/IP. Similarly, auto discovery of brokers and use of topic

ID’s, reduces the size of every packet that is transferred using

MQTT-SN. The packet size reduction highly reduces the

amount of power required to create and communicate data. The

use of Gateway in addition to the broker will enable the sensor

network to communicate with other MQTT clients and even to

other networks.

REFERENCES

[1] A. Stanford-Clark and H. L. Truong,” MQTT for sensor networks

(MQTTs)”, http://www.mqtt.org/MQTT-SN_spec_v1.2.pdf, Oct. 2013.

[2] Kai-Hung Liao; Chi-Yi Lin: “Implementation of IoT Applications based

on MQTT and MQTT-SN in IPv6 over BLE”, International Journal of

Design, Analysis and Tools for Integrated Circuits and Systems, Vol. 6,

No. 1, October 2017

[3] U. Hunkeler; H.-L. Truong; and A. Stanford-Clark; “MQTT-S: A

publish/subscribe protocol for wireless sensor networks”, In Workshop on

Information Assurance for Middleware Communications (IAMCOM

‘08), Bangalore, India, January 2008.

[4] Kannan Govindan; and Amar Prakash Azad; “End-to-end Service

Assurance in loT MQTT-SN”,12th Annual IEEE Consumer

Communications and Networking Conference (CCNC)2015

[5] Deepsubhra Guha Roy; Bipasha Mahato; Debashis De; Rajkumar

Buyya;” Application-aware end-to-end delay and message loss estimation

in Internet of Things (IoT) — MQTT-SN protocols”, Future Generation

Computer Systems 89 (2018) 300–316

[6] https://www.hivemq.com/

[7] https://jpinjpblog.wordpress.com

[8] https://www.engineersgarage.com/

