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Abstract: Mobile devices have grown exponentially in terms of 

functionality in the recent years, since they provide almost all the 

functions that a computer provides. Among the various operating 

systems employed, Android has become a prominent one in the 

recent years due to its huge user base, since the availability of 

android applications is free in the android application market. Due 

to this huge user base it has become a very likely target for 

attackers. Among the available applications a vast majority of 

them are not authenticated formally and hence are malicious. 

These applications may steal the private information from the 

user’s device. The proposed framework ensures that these kind of 

applications are detected at high accuracy, it provides a machine 

learning-based malware detection system on Android to detect the 

malicious applications to enhance security and privacy of 

smartphone users. The proposed framework monitors various 

permissions related to the android applications and analyses the 

features by using machine learning classifiers to authenticate the 

applications. 

 

Keywords: Machine learning, Association rule analysis, 

Malware, Benign, Classification algorithm. 

1. Introduction 

Now-a-days the role of mobile phones in the human lives has 

increased. Android has become an inseparable part of the 

current mobile systems, due to the openness of free source. 

Android covers around 85% of world’s smartphone market 

until 2018. At the same time, the open source availability is also 

a bait since it attracts a lot of attackers. According to the recent 

report, in 2018, 360 Internet Security Center intercepted about 

4.342 million new malware on mobile terminals, or about 

12,000 per day. These malicious apps are created to perform 

different types of attacks such as stealing private information, 

sending message without the user permission, baiting users to 

malicious websites, etc., which may be serious threat to the 

privacy of users. By time these malicious applications have 

become hard to detect or even prone to detection, and even 

some malicious apps have more than 50 variants, making it hard 

for detection. Therefore, the detection techniques must be 

rationalized to detect these types of malwares in every 

circumstances. The researches based on permissions and intents 

of Android apps are more prone to false positives, since benign 

apps also require sensitive permissions, which make them to be  

 

misclassified as malware easily. An Android malware detection 

method based on method-level correlation relationship of 

application’s API calls is proposed. The behavior of an 

application is determined by the source code through the user-

defined methods, and each of the methods implement specific 

operations by invoking API calls. The process of differentiating 

the combinations of API calls in the method of malicious and 

benign apps is the key to establish the detection system. 

Therefore, association rule is introduced to analyze technology 

and characterize the API calls’ relationships in the same method 

and capture app’s behavioral information. 

2. Related Work 

Hanqing Zhang et. al [1] presents a system which first splits 

each android application’s source code into function methods, 

and the abstracted API calls of them is formed into a set of 

abstracted API calls transactions, whose confidence of 

association rule is calculated to form the behavioral semantics 

for describing an application. Further using machine learning 

the system can differentiate between benign and malicious 

applications. 

Zarni Aung et. al [2] presents a method in which the features 

from the Android. apk files are extracted. The extracted features 

are added in a dataset, which forms the basis of the malware 

detection framework. Using machine learning approaches the 

validation process is done. 

Pengbin Fen et. al [3] presents a dynamic analysis framework 

called Android, based on dynamic behavior features. Android 

uses ensemble learning algorithm to distinguish between 

malicious and benign. It also employs feature selection 

algorithm which removes unwanted noise and features and 

extracts critical behavior features. 

Gianluca Dini et.al[4] differentiates malwares into different 

classes based on their actions. MADAM a host based malware 

detection system is employed which simultaneously analyses 

the features at different levels, such as kernel, application, user 

and package. MADAM employs a very huge dataset thus this 

system ensures safety from almost every malware 
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3. System Overview 

The system uses association rule analysis technique to extract 

the co-occurrence relationship between API calls in each 

Android application method and form behavioral semantics to 

describe Android application’s behaviors, which can effectively 

detect evolving malware with good time efficiency. The APK 

files such as: AndroidManifest.xml, META-INF, res, lib, 

assets, classes.dex, resources.arsc. ‘‘classes.dex’’ are extracted 

as API calls and a dataset is created. The vector representation 

of the Android application is obtained by using association rule 

analysis techniques, and the malware classification is 

completed by the Random Forest algorithm. The building of 

function call graphs is a high time consuming process. Thus 

major advantage of this system is that rather than using call 

graphs, the system transforms each app’s source code into a set 

of abstracted API calls and then calculates the strength of 

association rules between every two abstracted API call 

transactions to get the confidence matrix.  

 

 
Fig. 1.  Data flow diagram 

 

The dataset describes the process of extracting features from 

the Android .apk files and to create a dataset from the extracted 

feature of Android applications  in  order to develop android 

malware detection framework .  In preprocessing, the raw data 

are removed from the data set. Feature extraction is based on 

associated analysis of the API call’s behavior. Malware and 

benign usually show different behavioral patterns in the 

construction of function method. By using classification 

algorithm, the converted data set is Classified as benign and 

malicious. 

4. Modules Implementation 

The system implements an android malware detection 

method based on the method-level correlation relationship of 

application’s API calls. The behaviors of an app are determined 

by the app’s source code through user-defined methods, and 

each of the method implements specific operations by invoking 

the API calls. The process of analyzing the differences between 

the combinations of API calls in the method of malicious and 

benign apps is the key to establish the detection system. 

Therefore, association rule is introduced to analyse and to 

characterize the API calls. In addition, considering the 

excessive number of Android API calls and frequent API 

changes in Android framework, the method of abstracting API 

calls to represent app’s behaviors is implemented instead of 

directly using specific API calls. If an app invokes an API call 

with attribution ‘‘android/net’’, it means that the app will do 

network-related operations whatever concrete API calls the app 

invokes. In the systems, API calls are abstracted to their 

attributions, abstraction granularity can be determined 

depending on the need of the situation.  

A. Block diagram description 

1. Pre-processing  

2. Feature Extraction  

3. Classification  

 

1) Pre processing 

Dataset is collected from kaggle, Since APK files cannot be 

analyzed directly, some pre-processing is required before 

feature extraction. Unlike the application for desktop based 

Portable Executable(PE) files, Android app also called as APK 

file is in zip file, and it can be opened with unzipping tools such 

as WinRar. After decompressing the APK file, the following 

files are obtained: AndroidManifest.xml, META-INF, res, lib, 

assets, clssses.dex, resources.arsc. ‘‘classes.dex’’ file is 

generated after compiling the code written for Android and 

could be interpreted by the DalvikVM. In order to get the 

Android app’s behavioral data, there the dex file is to be 

converted to analyzable format. Smalli code can be decompiled 

directly from APK files, and contains all the needed 

information, thus, it becomes the target format. 

Thus used for creating a dataset from extracted features of 

Android applications in order to develop android malware 

detection framework. For each Android application, several 

selected features are retrieved from the corresponding 

application package (APK) file. The values of selected features 

are stored as a binary number (0 or 1), which is represented as 

a sequence of comma separated values. Each item includes the 

name of a feature, the data type of the feature, and data of the 

feature.  

A sample features are described here: 

Android.permission.INTERNET,  

Android.permission.CHANGE_CONFIGURATION,     

Android.permission.WRITE_SMS, 

Android.permission.SEND_SMS. 

 

2) Feature extraction 

The basic unit of application’s behavioral semantics the 

method defined in the app’s source code. The behavioral pattern 

of the malware and benign applications differs in the process of 

construction of the function methods, manifested in different 

API combinations owned by different function method. A 

method level associated analysis is used for the construction of 

the characteristics, since there is a need to discover the pattern 

of behavior. The steps involved in feature extraction are as 

follows:  

1. Item set 

2. Support Count 

3. Association Rul 
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4. Confidence 

Item set: 

Every other type of API call can be called an item, such as 

‘‘java.io’’, ‘‘android.net’’. The collection of all abstract API 

types is called an itemset. Let I = [I1,I2 · · · Id ] be the set of all 

items in abstracted API calls. A sample contains a huge number 

of methods, and we call this collection of API calls in each 

method a transaction. If an APK file contains n methods, we 

can use T = [t1, t2, t3 · · · tn] to represent the APK file. 

Transaction tn contains a subset of items chosen from the 

itemset I. According to association analysis, a collection of zero 

or more items is termed as an itemset. If an itemset contains n 

items, it is called a n−itemset. In thesystem, if a method 

contains i API calls, it is called i−itemset.  

 

Support count: 

 Transaction width is theavailable number of items present 

in a transaction. A transaction such as tn is said to contain an 

itemset X if X is a subset of tn. In associated analysis, an 

important property of an itemset is its support count. Support 

count is the number of transactions that contain a particular 

itemset in the whole transactions. Mathematically, the support 

count: σ(X), for an itemset X can be stated as follows:  

 

σ(X) = |{ti |X ∈ ti, ti∈ T }|, 

 

where the symbol ‘‘|.|’’ denotes the number of elements in a 

set. 

 

Association rule: 

 An association rule is an implication expression of the 

form X to Y, where X and Y are disjoint itemsets, and X or Y 

is the subset of I. In our system, since the confidence of the rules 

between the two API calls has enough information to express 

their behavioral semantics, and also to maximize the detection 

efficiency at the same time, we only care about the rules 

between two items such as {java.io} to {java.net}, 

{android.net} to {org.xml}. 

 

Confidence: 

 The strength of an association rule is measured in terms of 

its confidence. The support determines how frequently items in 

Y appear in transactions that contain X and it measures the 

reliability of the inference, which is the key representation of 

the characteristics of the Android app’s behaviors in the system. 

 

 Confidence, c(X → Y ) = σ(X ∪ Y ) σ(X) (2) 

 

3) Classification 

Classification is the last step in the system. In the 

classification stage, the system uses the classifier to label apps 

as either malicious or benign The features are extracted from 

the datasets and is used to train the model with different 

classification algorithms such as the well-known Decision Tree 

and Random Forest. 

 
Table 1 

Performance indices of different android malware systems 

 
 

Among the equations, FP is the number of apps that are 

mistakenly classified as malicious; FN is the number of apps 

that are mistakenly classified as benign; TP is the number of 

apps that are correctly classified as malicious; TN is the number 

of apps that are correctly classified as benign. 

5. Result 

The model is tested against a collection of 400 sample 

Android applications. The proposed framework is evaluated by 

conducting number of tests using the machine learning 

algorithms. 

 

 
Fig. 2.  Random Forest implementation 

 

The random forest algorithm runs the datasets for a number 

of times proportional to the number of estimators, and the 

average of scores is taken from all the obtained scores from the 

algorithm.  

 
Table 2 

Confusion matrix for Decision Tree 

 
 

From the above table its evident that the total number of apps 

are 132 in the dataset, out of which 56 are correctly classified 

as benign, 10 are mistakenly classified as malicious, 6 are 

mistakenly classified as benign and 60 are correctly classified 
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as malicious. 

The table below is obtained by predicting the obtained value 

and the tested dataset value. The 0 indicates benign and the 1 is 

for malicious. For benign the precision value is 0.9, the recall 

value is 0.85, F1-score is 0.88 and accuracy is 0.87. For 

malicious the precision value is 0.86, recall value is 0.91, F1-

score 0.88 and accuracy is 0.87. 

 
Table 3 

Classification report for Decision Tree 

 
 

Table 4 

Confusion matrix for Random Forest 

  
 

From the above table its evident that the total number of apps 

are 132 in the dataset, out of which 55 are correctly classified 

as benign, 11 are mistakenly classified as malicious, 4 are 

mistakenly classified as benign and 62 are correctly classified 

as malicious. 

 
Table 5 

Classification report for Random Forest 

 
 

In the above table is obtained by predicting the obtained 

value and the tested dataset value. The 0 indicates benign and 

the 1 is for malicious. For benign the precision value is 0.93, 

the recall value is 0.83, F1-score is 0.88 and accuracy is 0.88. 

For malicious the precision value is 0.85, recall value is 0.94, 

F1-score 0.89 and accuracy is 0.88. 

 

 
Fig. 3.  Comparison of accuracy between random forest 

 

In the above figure, the green line indicates the prediction 

and accuracy flow of the Random Forest Classifier. Whereas 

the blue line indicates the prediction and accuracy flow of the 

decision tree classifier. The graph differentiates the two 

classifiers for the inputs. 

6. Conclusion 

In this paper, a framework is developed for classifying 

Android applications as benign or malicious applications using 

machine-learning techniques. The applications are downloaded 

from the android application market. To generate the models, 

several features from these applications are extracted. Some of 

the malware applications are taken from malware sample 

database and both malware and normal applications are 

classified by using machine learning techniques. In order to 

validate the methods used,200 samples of Android applications 

are collected and the features are extracted for each application 

and the trained models will evaluate them. 

References 

[1] H. Zhang, S. Luo, Y. Zhang and L. Pan, “An Efficient Android Malware 

Detection System Based on Method-Level Behavioral Semantic 

Analysis” in IEEE Access, vol. 7, pp. 69246-69256, 2019. 

[2] Zarni Aung, Win Zaw, “Permission-Based Android Malware Detection” 

International Journal of Scientific & Technology Research 2(3):228-234, 

January 2013. 

[3] Pengbin Feng, Jianfeng Ma, Cong Sun, Xingpeng Xu, And Yuwan Ma “A 

Novel Dynamic Android Malware Detection System with Ensemble 

Learning,” (2018). IEEE Access, 6, 30996–31011.  

[4] Saracino Andrea, Sgandurra Daniele, Dini Gianluca, Martinelli Fabio 

“MADAM: Effective and Efficient Behavior-based Android Malware 

Detection and Prevention,” IEEE Transactions on Dependable and Secure 

Computing.                     

[5] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Lorenzo 

Cavallaro” The Evolution of Android Malware and Android Analysis 

Techniques,” ACM Computing Surveys, January 2017.  

[6] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupe, Mario 

Polino, Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. 2016. 

Going native: Using a large-scale analysis of Android apps to create a 

practical native-code sandboxing policy. In Proceedings of the ISOC 

Network and Distributed System Security Symposium (NDSS). San 

Diego, CA. 

[7] Soussi Ilham, Ghadi Abderrhim, Boudhir Anour Abdhelakim. 

“Permission based malware detection in android devices”. SCA '18: 

Proceedings of the 3rd International Conference on Smart City 

Applications, October 2018, pp. 1–6. 

[8] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM: 

Effective and efficient behavior-based Android malware detection and 

prevention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, pp. 83–

97, Jan./Feb. 2018. 

[9] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant 

permission identification for machine-learning-based Android malware 

detection’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225, Jul. 

2018. 

[10] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, ‘‘A combination method for 

Android malware detection based on control flow graphs and machine 

learning algorithms,’’ IEEE Access, vol. 7, pp. 21235–21245, 2019 

[11] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis 

of current Android malware’’ in Proc. Int. Conf. Detection Intrusions 

Malware, Vulnerability Assessment. Cham, Switzerland: Springer, 2017, 

pp. 252–276.  

[12] K. Zhao, D. Zhang, X. Su, et W. Li, « Fest: A feature extraction and 

selection tool for Android malware detection », in 2015 IEEE Symposium 

on Computers and Communication (ISCC), 2015. 

 

 


