
International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

34

Abstract: Mobile devices have grown exponentially in terms of

functionality in the recent years, since they provide almost all the

functions that a computer provides. Among the various operating

systems employed, Android has become a prominent one in the

recent years due to its huge user base, since the availability of

android applications is free in the android application market. Due

to this huge user base it has become a very likely target for

attackers. Among the available applications a vast majority of

them are not authenticated formally and hence are malicious.

These applications may steal the private information from the

user’s device. The proposed framework ensures that these kind of

applications are detected at high accuracy, it provides a machine

learning-based malware detection system on Android to detect the

malicious applications to enhance security and privacy of

smartphone users. The proposed framework monitors various

permissions related to the android applications and analyses the

features by using machine learning classifiers to authenticate the

applications.

Keywords: Machine learning, Association rule analysis,

Malware, Benign, Classification algorithm.

1. Introduction

Now-a-days the role of mobile phones in the human lives has

increased. Android has become an inseparable part of the

current mobile systems, due to the openness of free source.

Android covers around 85% of world’s smartphone market

until 2018. At the same time, the open source availability is also

a bait since it attracts a lot of attackers. According to the recent

report, in 2018, 360 Internet Security Center intercepted about

4.342 million new malware on mobile terminals, or about

12,000 per day. These malicious apps are created to perform

different types of attacks such as stealing private information,

sending message without the user permission, baiting users to

malicious websites, etc., which may be serious threat to the

privacy of users. By time these malicious applications have

become hard to detect or even prone to detection, and even

some malicious apps have more than 50 variants, making it hard

for detection. Therefore, the detection techniques must be

rationalized to detect these types of malwares in every

circumstances. The researches based on permissions and intents

of Android apps are more prone to false positives, since benign

apps also require sensitive permissions, which make them to be

misclassified as malware easily. An Android malware detection

method based on method-level correlation relationship of

application’s API calls is proposed. The behavior of an

application is determined by the source code through the user-

defined methods, and each of the methods implement specific

operations by invoking API calls. The process of differentiating

the combinations of API calls in the method of malicious and

benign apps is the key to establish the detection system.

Therefore, association rule is introduced to analyze technology

and characterize the API calls’ relationships in the same method

and capture app’s behavioral information.

2. Related Work

Hanqing Zhang et. al [1] presents a system which first splits

each android application’s source code into function methods,

and the abstracted API calls of them is formed into a set of

abstracted API calls transactions, whose confidence of

association rule is calculated to form the behavioral semantics

for describing an application. Further using machine learning

the system can differentiate between benign and malicious

applications.

Zarni Aung et. al [2] presents a method in which the features

from the Android. apk files are extracted. The extracted features

are added in a dataset, which forms the basis of the malware

detection framework. Using machine learning approaches the

validation process is done.

Pengbin Fen et. al [3] presents a dynamic analysis framework

called Android, based on dynamic behavior features. Android

uses ensemble learning algorithm to distinguish between

malicious and benign. It also employs feature selection

algorithm which removes unwanted noise and features and

extracts critical behavior features.

Gianluca Dini et.al[4] differentiates malwares into different

classes based on their actions. MADAM a host based malware

detection system is employed which simultaneously analyses

the features at different levels, such as kernel, application, user

and package. MADAM employs a very huge dataset thus this

system ensures safety from almost every malware

An Efficient Android Malware Detection Using

Machine Learning

J. Angel Ida Chellam1, C. Sajith2, J. Sanjeev3*, A. Santha Kumar4

1Assistant Professor, Department of Information Technology, Sri Ramakrishna Engineering College,

Coimbatore, India
2,3,4Student, Department of Information Technology, Sri Ramakrishna Engineering College, Coimbatore, India

*Corresponding author: sanjeevjayaraj97@gmail.com

https://www.researchgate.net/profile/Gianluca_Dini

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

35

3. System Overview

The system uses association rule analysis technique to extract

the co-occurrence relationship between API calls in each

Android application method and form behavioral semantics to

describe Android application’s behaviors, which can effectively

detect evolving malware with good time efficiency. The APK

files such as: AndroidManifest.xml, META-INF, res, lib,

assets, classes.dex, resources.arsc. ‘‘classes.dex’’ are extracted

as API calls and a dataset is created. The vector representation

of the Android application is obtained by using association rule

analysis techniques, and the malware classification is

completed by the Random Forest algorithm. The building of

function call graphs is a high time consuming process. Thus

major advantage of this system is that rather than using call

graphs, the system transforms each app’s source code into a set

of abstracted API calls and then calculates the strength of

association rules between every two abstracted API call

transactions to get the confidence matrix.

Fig. 1. Data flow diagram

The dataset describes the process of extracting features from

the Android .apk files and to create a dataset from the extracted

feature of Android applications in order to develop android

malware detection framework . In preprocessing, the raw data

are removed from the data set. Feature extraction is based on

associated analysis of the API call’s behavior. Malware and

benign usually show different behavioral patterns in the

construction of function method. By using classification

algorithm, the converted data set is Classified as benign and

malicious.

4. Modules Implementation

The system implements an android malware detection

method based on the method-level correlation relationship of

application’s API calls. The behaviors of an app are determined

by the app’s source code through user-defined methods, and

each of the method implements specific operations by invoking

the API calls. The process of analyzing the differences between

the combinations of API calls in the method of malicious and

benign apps is the key to establish the detection system.

Therefore, association rule is introduced to analyse and to

characterize the API calls. In addition, considering the

excessive number of Android API calls and frequent API

changes in Android framework, the method of abstracting API

calls to represent app’s behaviors is implemented instead of

directly using specific API calls. If an app invokes an API call

with attribution ‘‘android/net’’, it means that the app will do

network-related operations whatever concrete API calls the app

invokes. In the systems, API calls are abstracted to their

attributions, abstraction granularity can be determined

depending on the need of the situation.

A. Block diagram description

1. Pre-processing

2. Feature Extraction

3. Classification

1) Pre processing

Dataset is collected from kaggle, Since APK files cannot be

analyzed directly, some pre-processing is required before

feature extraction. Unlike the application for desktop based

Portable Executable(PE) files, Android app also called as APK

file is in zip file, and it can be opened with unzipping tools such

as WinRar. After decompressing the APK file, the following

files are obtained: AndroidManifest.xml, META-INF, res, lib,

assets, clssses.dex, resources.arsc. ‘‘classes.dex’’ file is

generated after compiling the code written for Android and

could be interpreted by the DalvikVM. In order to get the

Android app’s behavioral data, there the dex file is to be

converted to analyzable format. Smalli code can be decompiled

directly from APK files, and contains all the needed

information, thus, it becomes the target format.

Thus used for creating a dataset from extracted features of

Android applications in order to develop android malware

detection framework. For each Android application, several

selected features are retrieved from the corresponding

application package (APK) file. The values of selected features

are stored as a binary number (0 or 1), which is represented as

a sequence of comma separated values. Each item includes the

name of a feature, the data type of the feature, and data of the

feature.

A sample features are described here:

Android.permission.INTERNET,

Android.permission.CHANGE_CONFIGURATION,

Android.permission.WRITE_SMS,

Android.permission.SEND_SMS.

2) Feature extraction

The basic unit of application’s behavioral semantics the

method defined in the app’s source code. The behavioral pattern

of the malware and benign applications differs in the process of

construction of the function methods, manifested in different

API combinations owned by different function method. A

method level associated analysis is used for the construction of

the characteristics, since there is a need to discover the pattern

of behavior. The steps involved in feature extraction are as

follows:

1. Item set

2. Support Count

3. Association Rul

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

36

4. Confidence

Item set:

Every other type of API call can be called an item, such as

‘‘java.io’’, ‘‘android.net’’. The collection of all abstract API

types is called an itemset. Let I = [I1,I2 · · · Id] be the set of all

items in abstracted API calls. A sample contains a huge number

of methods, and we call this collection of API calls in each

method a transaction. If an APK file contains n methods, we

can use T = [t1, t2, t3 · · · tn] to represent the APK file.

Transaction tn contains a subset of items chosen from the

itemset I. According to association analysis, a collection of zero

or more items is termed as an itemset. If an itemset contains n

items, it is called a n−itemset. In thesystem, if a method

contains i API calls, it is called i−itemset.

Support count:

 Transaction width is theavailable number of items present

in a transaction. A transaction such as tn is said to contain an

itemset X if X is a subset of tn. In associated analysis, an

important property of an itemset is its support count. Support

count is the number of transactions that contain a particular

itemset in the whole transactions. Mathematically, the support

count: σ(X), for an itemset X can be stated as follows:

σ(X) = |{ti |X ∈ ti, ti∈ T }|,

where the symbol ‘‘|.|’’ denotes the number of elements in a

set.

Association rule:

 An association rule is an implication expression of the

form X to Y, where X and Y are disjoint itemsets, and X or Y

is the subset of I. In our system, since the confidence of the rules

between the two API calls has enough information to express

their behavioral semantics, and also to maximize the detection

efficiency at the same time, we only care about the rules

between two items such as {java.io} to {java.net},

{android.net} to {org.xml}.

Confidence:

 The strength of an association rule is measured in terms of

its confidence. The support determines how frequently items in

Y appear in transactions that contain X and it measures the

reliability of the inference, which is the key representation of

the characteristics of the Android app’s behaviors in the system.

 Confidence, c(X → Y) = σ(X ∪ Y) σ(X) (2)

3) Classification

Classification is the last step in the system. In the

classification stage, the system uses the classifier to label apps

as either malicious or benign The features are extracted from

the datasets and is used to train the model with different

classification algorithms such as the well-known Decision Tree

and Random Forest.

Table 1

Performance indices of different android malware systems

Among the equations, FP is the number of apps that are

mistakenly classified as malicious; FN is the number of apps

that are mistakenly classified as benign; TP is the number of

apps that are correctly classified as malicious; TN is the number

of apps that are correctly classified as benign.

5. Result

The model is tested against a collection of 400 sample

Android applications. The proposed framework is evaluated by

conducting number of tests using the machine learning

algorithms.

Fig. 2. Random Forest implementation

The random forest algorithm runs the datasets for a number

of times proportional to the number of estimators, and the

average of scores is taken from all the obtained scores from the

algorithm.

Table 2

Confusion matrix for Decision Tree

From the above table its evident that the total number of apps

are 132 in the dataset, out of which 56 are correctly classified

as benign, 10 are mistakenly classified as malicious, 6 are

mistakenly classified as benign and 60 are correctly classified

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

37

as malicious.

The table below is obtained by predicting the obtained value

and the tested dataset value. The 0 indicates benign and the 1 is

for malicious. For benign the precision value is 0.9, the recall

value is 0.85, F1-score is 0.88 and accuracy is 0.87. For

malicious the precision value is 0.86, recall value is 0.91, F1-

score 0.88 and accuracy is 0.87.

Table 3

Classification report for Decision Tree

Table 4

Confusion matrix for Random Forest

From the above table its evident that the total number of apps

are 132 in the dataset, out of which 55 are correctly classified

as benign, 11 are mistakenly classified as malicious, 4 are

mistakenly classified as benign and 62 are correctly classified

as malicious.

Table 5

Classification report for Random Forest

In the above table is obtained by predicting the obtained

value and the tested dataset value. The 0 indicates benign and

the 1 is for malicious. For benign the precision value is 0.93,

the recall value is 0.83, F1-score is 0.88 and accuracy is 0.88.

For malicious the precision value is 0.85, recall value is 0.94,

F1-score 0.89 and accuracy is 0.88.

Fig. 3. Comparison of accuracy between random forest

In the above figure, the green line indicates the prediction

and accuracy flow of the Random Forest Classifier. Whereas

the blue line indicates the prediction and accuracy flow of the

decision tree classifier. The graph differentiates the two

classifiers for the inputs.

6. Conclusion

In this paper, a framework is developed for classifying

Android applications as benign or malicious applications using

machine-learning techniques. The applications are downloaded

from the android application market. To generate the models,

several features from these applications are extracted. Some of

the malware applications are taken from malware sample

database and both malware and normal applications are

classified by using machine learning techniques. In order to

validate the methods used,200 samples of Android applications

are collected and the features are extracted for each application

and the trained models will evaluate them.

References

[1] H. Zhang, S. Luo, Y. Zhang and L. Pan, “An Efficient Android Malware

Detection System Based on Method-Level Behavioral Semantic

Analysis” in IEEE Access, vol. 7, pp. 69246-69256, 2019.

[2] Zarni Aung, Win Zaw, “Permission-Based Android Malware Detection”

International Journal of Scientific & Technology Research 2(3):228-234,

January 2013.

[3] Pengbin Feng, Jianfeng Ma, Cong Sun, Xingpeng Xu, And Yuwan Ma “A

Novel Dynamic Android Malware Detection System with Ensemble

Learning,” (2018). IEEE Access, 6, 30996–31011.

[4] Saracino Andrea, Sgandurra Daniele, Dini Gianluca, Martinelli Fabio

“MADAM: Effective and Efficient Behavior-based Android Malware

Detection and Prevention,” IEEE Transactions on Dependable and Secure

Computing.

[5] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Lorenzo

Cavallaro” The Evolution of Android Malware and Android Analysis

Techniques,” ACM Computing Surveys, January 2017.

[6] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupe, Mario

Polino, Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. 2016.

Going native: Using a large-scale analysis of Android apps to create a

practical native-code sandboxing policy. In Proceedings of the ISOC

Network and Distributed System Security Symposium (NDSS). San

Diego, CA.

[7] Soussi Ilham, Ghadi Abderrhim, Boudhir Anour Abdhelakim.

“Permission based malware detection in android devices”. SCA '18:

Proceedings of the 3rd International Conference on Smart City

Applications, October 2018, pp. 1–6.

[8] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM:

Effective and efficient behavior-based Android malware detection and

prevention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1, pp. 83–

97, Jan./Feb. 2018.

[9] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant

permission identification for machine-learning-based Android malware

detection’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225, Jul.

2018.

[10] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, ‘‘A combination method for

Android malware detection based on control flow graphs and machine

learning algorithms,’’ IEEE Access, vol. 7, pp. 21235–21245, 2019

[11] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis

of current Android malware’’ in Proc. Int. Conf. Detection Intrusions

Malware, Vulnerability Assessment. Cham, Switzerland: Springer, 2017,

pp. 252–276.

[12] K. Zhao, D. Zhang, X. Su, et W. Li, « Fest: A feature extraction and

selection tool for Android malware detection », in 2015 IEEE Symposium

on Computers and Communication (ISCC), 2015.

