
International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

477

Abstract: Simulation of fluids is quite a challenging task because

unlike solid objects liquid shows a drastic amount of change per

frame hence rendering liquids becomes quite a computationally

expensive task. Over the years many new and improved fluid

simulation algorithms have been introduced but most of them are

fairly complex and put a heavy computational load on the CPU

and GPU. In this paper we are going to examine the two most

popular fluid simulation algorithms, the lagragian based particle

approach and the euler based grid approach. These algorithms are

particularly popular because of their simplicity and low

computational loads; we will be testing these algorithms by

providing real-time interactive workloads to compare their

performance.

Keywords: Euler model, Fluid simulation, Gaussian kernel,

Grid fluids, Lagragian model, Smooth particle hydrodynamics,

Staggered grids, Volumetric Raycasting.

1. Introduction

Animated fluids are used for a variety of applications which

include games, machine modeling and fluid mechanics. Fluids

are one of the highly disoriented states of matter because their

particles move about in a haphazard motion and colliding with

everything around them whether it be a liquid or gas. Animation

of such fluids are very difficult because of the nature of these

states of matter, it is also very difficult to animate their

interactions with solid objects like walls, boundaries etc

because one must accurately depict how the liquid will behave

under such conditions. Although the liquid surface seems like a

continuous film but instead the liquid consists of several small

particles moving about in motion, the entire behavior of the

liquid is determined by the motion and interaction of these

small particles.

Fluid simulation use actual hydrodynamics equations to

animate the movement of fluid particles, since they are many

ways to model fluid particles there are many algorithms to

simulate fluids but in our study we are focusing on grid based

euler approach where the fluid particles were monitored and

updated as they passed through certain grid cells and the particle

based lagragian approach where discrete blobs of fluids

particles are used for simulation and tracking. Over the years

there have many new developments in these algorithms. Chen

[1] proposed an improved SPH solver that included vorticity

confinement to capture the small scale details.

The motion of the fluid which is usually not captured by the

standard SPH algorithms. Shao [2] suggested a smoothing

constant to be added to the SPH vorticity equation that help

reduce the unstable boundary problems. Li [3] suggested some

kernel functions and field quantity equations that could help

with surface rendering. Chen [4] proposed a nearest neighbor

octree searching method that reduces the time required by the

algorithm to find and compute pressure forces from close

particles. Mould [5] suggested to use a regular grid on top of

tall cells that would help render the volume below the liquid

surface without using extra compute power. Chentanez [6]

suggested to use a grid simulation technique where the grid

cells would be deformed to help in the boundary transitions of

the fluid. Kipfer [7] suggested a technique to remove unused

cells from a grid to help lower the computations performed per

second. We will be incorporating all these works into our

algorithm so that we can compare the most updated techniques

and find out areas of improvement and possible areas of

application for both the techniques.

A. Governing Equations

The base governing equations for both the algorithms is the

Navier stokes equation normally used in fluid particle

hydrodynamics. In this study however we are neglecting some

of the highly complex features like turbulence, surface tension

etc. Also since we are simulating a single fluid ie water we are

considering the fluid to be incompressible which helps save a

lot of compute power and has a little effect on the visual

appearance of the fluid.

The grid based and particle -based approaches are based on

the Navier stokes fluid mechanics equations, but since we are

dealing with animated fluids therefore we can remove some

aspects like slightly compressible and treat them like

incompressible and also viscosity is removed from the Navier

stokes equations because of the single fluid nature of the test

set. The resulting Navier stokes equations are-

𝜕�⃗⃗�

𝜕𝑡
+

1

𝜌
 ∇𝑝 = 𝐹 and ∇. �⃗� = 0 (1)

A Comparative Performance Study of Grid-

based and Particle-based Fluid Simulation

Algorithms

Tushar Singh1*, Nalin Pandohi2

1,2Student, Department of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
*Corresponding author: tusharone21@gmail.com

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

478

These equations denote the conservation of momentum and

mass, where F represents the external forces like gravity, 𝜌 is

the density and �⃗� is fluid velocity while p being the pressure

inside the fluid. These reduced equations are used in this

algorithm to predict the movement of fluid particles. As far as

the notations are concerned we will be using standard physics

notations to represent the equations and all symbols are

properly defined after an equation is introduced.

2. Fluid Simulation Algorithms

In this section we will discuss in detail the steps involved in

both the algorithms and also indicate the modifications done by

including relevant algorithms from previous papers.

In abstract terms, we can define the grid based and particle

based algorithms with an example- suppose if we want to

capture the movement of a bird in a park, we could use two

approaches to do that firstly we can set up a camera at a specific

point in a park and capture the birds movement but we will be

unable to track it once it moves outside the camera view. This

is the grid approach we define certain grid cells where the

moving particles are monitored and then updated in terms of

their properties. Secondly we could follow the bird around this

forms the particle basis of particle based approach, we are

looking at the simulation from a particle in a fluid flow point of

view. This method is simpler and faster because no extra

computations need to be performed to account for loss of

information.

A. Grid-based Algorithms

The grid based algorithms sample the scalar and vector fields

at various fixed points in space and interpolates the values in

between these points. Now we will discuss the implementation

details of these algorithms.

1) Data Structures

The grid based approach stores the data of different particles

namely velocity, pressure, direction etc for this they use an

approach called the staggered MAC grid which is suggested by

Mould[5], this grid is quite different from a single grid as such

that the pressure is stored the very centre of the grid cells but

the velocity of the fluid particles is stored on the sides, these

velocities are the normal component of the particle velocity

passing through the cell. They use this data structure because

since the grids monitor the particles at specific positions if they

want to find velocity at point i between two points in the grids

then we can calculate the derivative in such cases by using the

two grid point values but the actual value at I is ignored but with

the staggered grid we can find the derivative without loss of

information.

𝜕𝑤

𝜕𝑥𝑖
 ≈

𝑤
𝑖+

1
2

− 𝑤
𝑖−

1
2

2∆𝑥
 (2)

Where w is a any fluid property sampled at different

locations in the simulations space w0…..wn, i denotes the point

where we need the central difference. We use central

differences because to find the gradient we must find the change

in property and the two sides of the MAC cell stores these

values. As we can see the formulae uses half indices but in a

practical sense these indices will not work they only exist in a

theoretical sense therefore, equations must be defined to map

these to real values.

𝑝[𝑖][𝑗][𝑘] = 𝑝𝑖,𝑗,𝑘 (3)

𝑢𝑥[𝑖][𝑗][𝑘] = 𝑢
𝑖−

1

2
,𝑗,𝑘

 (4)

𝑢𝑦[𝑖][𝑗][𝑘] = 𝑢
𝑖,𝑗−

1

2
,𝑘

 (5)

Where u represents the velocity of the fluid particle and i, j,

k are the components in three dimensions. These equations help

us map half indices to actual values in the staggered grids.

2) Time-step

Now we will try and explain the steps involved in the

algorithm, first an accurate timestep must be chosen the

timestep tells that at what intervals must the particle properties

be recalculated and updated, this must be chosen as such so that

the particle is updated when it reaches the next grid point

without skipping any cells in between.

∆𝑡 =
∆ℎ

�⃗⃗� 𝑚𝑎𝑥
 (6)

∆𝑡 = 𝑘𝐶 𝐹 𝐿
∆ℎ

�⃗⃗� 𝑚𝑎𝑥
 (7)

𝑓(𝑣, 𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑖𝑛) = 𝜅𝑚𝑖𝑛(𝑣 − 𝑣𝑚𝑖𝑛)
𝜅𝑚𝑎𝑥 − 𝜅𝑚𝑖𝑛

𝑣𝑚𝑎𝑥− 𝑣𝑚𝑖𝑛
 (8)

�⃗� 𝑚𝑎𝑥 = max(|�⃗� |) + √Δℎ|𝐹|⃗⃗⃗⃗ (9)

Where ∆t is the time step, ∆h the distance moved by the

particle during the time step. The 𝑘𝐶 𝐹 𝐿 is the factor that helps

satisfy eqn(6) while choosing a time step of your choice.

Equations (8) and (9) help us calculate the velocity max and the

time step factor by plugging in the respective values.

3) Advection

Next up is the process of advection, this is the process of

determining the value of nay quantity let it be pressure, velocity

at a later time. Let Q be any measurable quantity of a fluid then

to predict it at later time ∆t, we use backwards trace method but

it requires an extra copy of the properties be stored in each cell.

The following equations are used to predict the quantity Q at

any later time where Qn and Qn+1 is the quantity after time step

∆𝑡.So an overall fluid flowing through the pipe etc will be

rendered using the advection rules given below and for the

boundary conditions we simply clamp the grid coordinates

hence the algorithm does not perform well with boundaries

present.

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

479

𝑄𝑛+1 = 𝑎𝑑𝑣𝑒𝑐𝑡 (𝑄𝑛 , Δ𝑡,
𝜕𝑄𝑛

𝜕𝑡
) (10)

The new value is simply computed by finding the gradient of

the previous values and using the timestep in all the three

dimensions and then simply update the particle properties as

such.

4) Calculating Pressure

Now that we defined a way to predict the properties of the

particles at different times, now we must take care of the

pressure and incompressibility conditions. The particles

moving around in the grid space must not cause the overall

volume to increase because as indicated earlier we have

considered the fluid to be incompressible. Therefore, in the next

step we try to maintain the constant volume by defining the

pressure relations among the different particles moving around

the grid points. As per physics the incompressibility relations

are-

∇ (�⃗�)𝑛+1 = 0 𝑎𝑛𝑑 (�⃗�)𝑛+1. �̂� = 𝑢𝑠𝑜𝑙𝑖𝑑⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ . �̂� (11)

These two equations define the boundary conditions as well,

now as per our advection equation we must update the velocity

of the fluid particles at after time ∆𝑡, here we see that we have

no information about any cell that does not any fluid therefore

we must assume that the pressure in those cells is zero, now

using this information we can compute an equation to update

the pressure in very grid cell. The following equations for 2D

grid can be defined by using the incompressibility condition.

�⃗�
𝑖+

1

2
,𝑗

𝑛+1 = �⃗�
𝑖+

1

2
,𝑗

𝑛 − Δ𝑡
1

𝜌

𝑝𝑖+1,𝑗−𝑝𝑖,𝑗

Δℎ
 (12)

𝑣
𝑖,𝑗+

1

2

𝑛+1 = 𝑣
𝑖,𝑗+

1

2

𝑛 − Δ𝑡
1

𝜌

𝑝𝑖,𝑗+1−𝑝𝑖,𝑗

Δℎ
 (13)

And for 3D the equations can be defined as –

�⃗�
𝑖+

1

2
,𝑗,𝑘

𝑛+1 = �⃗�
𝑖+

1

2
,𝑗,𝑘

𝑛 − Δ𝑡
1

𝜌

𝑝𝑖+1,𝑗,𝑘−𝑝𝑖,𝑗,𝑘

Δℎ
 (14)

𝑣
𝑖,𝑗+

1

2
,𝑘

𝑛+1 = 𝑣
𝑖,𝑗+

1

2
,𝑘

𝑛 − Δ𝑡
1

𝜌

𝑝𝑖,𝑗+1,𝑘−𝑝𝑖,𝑗,𝑘

Δℎ
 (15)

�⃗⃗�
𝑖,𝑗,𝑘+

1

2

𝑛+1 = �⃗⃗�
𝑖,𝑗,𝑘+

1

2

𝑛 − Δ𝑡
1

𝜌

𝑝𝑖,𝑗,𝑘+1−𝑝𝑖,𝑗,𝑘

Δℎ
 (16)

Where the p indicates the pressure at a certain point in the

grid and the rest of the symbols indicate the usual meanings

with u, v, w be the three components of velocity in three

dimensions.

At the same time we also must take care of the boundary

conditions and realize what should happen if the particle ever

hits the boundary, for this process we will Dirichlet’s condition

and Neumann conditions to realize inter particle collision and

collision with a solid wall.

Here also we use the compressibility equation to bound the

particles within the grid and by making sure that the spatial

derivatives are zero, we can approximate the divergences of the

updated properties to satisfy the condition, hence we can use

the difference equation eqn (2) and update it to come up with a

approximation formulae.

(∇. �⃗�)𝑖,𝑗,𝑘 ≈
�⃗⃗�

𝑖+
1
2
,𝑗,𝑘

− �⃗⃗�
𝑖−

1
2
,𝑗,𝑘

∆ℎ
+

�⃗�
𝑖,𝑗+

1
2
,𝑘

− �⃗�
𝑖,𝑗−

1
2
,𝑘

∆ℎ
+

�⃗⃗�

𝑖,𝑗,𝑘+
1
2
,
− �⃗⃗�

𝑖,𝑗,𝑘−
1
2

∆ℎ
 (17)

Now we have all the values required to update the properties

of our fluid particles and handle the boundary transitions that

might occur. But we must also come up with an equation that

combines the formulas listed and come up with a unified

equation to calculate the pressure in each cell by keeping in

mind the boundary condition as well.

We use a linear equation for the new pressure in each grid

cell and then combine all the individual grid equations to come

up with a system of simultaneous linear equations that we can

solve for the entire grid.

[

−Ω1 𝛽1,2 ⋯ 𝛽1,𝑛

𝛽2,1 −Ω2 ⋮

⋮ −⋱ 𝛽𝑛−1,𝑛

𝛽𝑛,1 ⋯ 𝛽𝑛,𝑛−1 −Ω𝑛]

[

𝑝1

𝑝2

⋮
𝑝𝑛−1

𝑝𝑛]

=

[

−𝐷1

−𝐷2

⋮
−𝐷𝑛−1

−𝐷𝑛]

 (18)

Where Di is the divergence through cell I and Ω𝑖 is the no of

surrounding particles around the point considered in the grid

cell. 𝛽ij is 1 if i and j are adjacent and 0 otherwise. Now we can

update the particle properties of all our cells without any

difficulties but we must also find a way to track the liquid

surface so that the flow can be modeled.

5) Surface Tracking

Finally we must decide how to track the surface of the liquid,

this is done via marker particles now suppose we have a grid

containing fluid particles each of the grid cells which contains

fluid particles is marked as fluid and it’s properties are updated

as such and the rest are solid and boundary and as the liquid

flows we change the marker status of the cells based on the flow

direction.

Next to plot the surface of the liquid ,we must find all the grid

cells in the 3D space which contain the fluid this is achieved by

defining a new distance metric, i,j,k which is stored at the

centre of each cell to compute it we use the position vector 𝑋

and the minimum distance from the set of all points in the grid

set., to check whether a point is inside the fluid or not we simply

check the value of distance metric , if it less than 0 then inside

liquid if greater than zero then outside liquid. Also we

continuously advect these values along with other properties

like velocity etc and model the flow using the same.

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

480

𝐷𝑆(𝑋) = 𝑚𝑖𝑛𝑝 𝜖𝑆‖𝑋 − 𝑝 ‖ (19)

The formula above can used for computing signed distance,

this also tells us whether a grid cell is inside a fluid or not .The

signed distance can used for computing the metric , we have

based the signed distance calculation based on Howes [8]

algorithm that can track the fluid area very efficiently. Also

after tracking the liquid surface we can remove grid cells [7]

that do not contain the fluid particles or in other words do not

compute pressure of cells where there is no liquid, a simple

approach that saves a ton of compute power.

B. Particle-based Algorithms

Now we will discuss the implementation details of the

particle based approach. First we decide what all properties

must be stored along with each of the particle, since we have to

make sure that all the details which are required by the Navier

stokes equation must be stored along with particles therefore we

stored the position 𝑋 , velocity �⃗� , Mass M, density d, pressure p

and force 𝐹 , now we must decide on the data structure to be

used since new particles will have to be added very now and

then therefore to store the particles properties a linked list has

been used. Now that we have decided on the properties we now

define the equations the particles must follow throughout the

simulation, for all particles Pi –

𝜕�⃗⃗�

𝜕𝑡
= 𝐴 𝑖

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
+ 𝐴 𝑖

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦
+ 𝐴 𝑖

𝑔𝑟𝑎𝑣𝑖𝑡𝑦
+ 𝐴 𝑖

𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (20)

The above equation is simply an extension of the Navier

stokes equation and it defines the acceleration on the particle

due to any of the forces like pressure etc will result in change

of the velocity, as mentioned in Navier stokes second equation

and Newton’s second law.

1) Calculating Pressure

Now we must find out how to calculate the particle properties

like pressure after a certain time, properties like mass are not

expected to change but pressure must be calculated after every

timestep.

As we have a lot of particles in the simulation therefore to

calculate the pressure at a certain point we must use discrete

summation which is done via the following equation-

∑ 𝑀𝑗 𝑊𝑅𝑖𝑗

𝑛
𝑗≠𝑖 (21)

Here Rij is the Euclidean distance between the particle i and

j, the function W(d) is known as the kernel function as discussed

earlier. This function takes in a scalar parameter which in this

case is the Euclidean distance between the particles and then

returns another scalar which is between 0 and 1. Now this kernel

function maps particles which are further away from the point

of consideration to values closer to zero which signifies that

particles which are far way from the point of consideration do

not have any effect on the pressure at that point. Deciding on

which kernel function is better is a topic of research but in our

project we have used the Gaussian kernel function which takes

in a smoothing width h as suggested by Li [3], so particles

further than 2h are ignored during the pressure calculation.

𝑊(𝑑) =
1

𝜋
3
2ℎ3

exp (
𝑟2

ℎ2) (22)

Where W(d) denotes the kernel function, r is the effective

distance of the blob and h is the smoothing width.

Therefore, for each of the particles we must get list of

neighbors, calculate the density for that particle while

considering the neighbors and do the same for pressure. Then

we calculate the acceleration for that particle using density and

pressure and actually move the particle in the simulation as per

the calculated acceleration per timestep. The process is repeated

until the simulation ends.

2) Acceleration Structures

As we saw that we must find all the neighbors for each of the

particles every time we update the particle properties, hence we

must add spatial data structures that can help reduce our time

complexity because as per the process described above

calculation interaction forces between every particle will take

O(n2) time which is not viable since we are trying to reduce the

overall computational expenses as compared to the grid based

algorithm.

Now we will see how these spatial data structures work, in

addition to storing our particle properties in a linked list we also

store them in a spatial grid structure or a an octree[4], now this

is not like the grid based algorithm we are only storing the

particle properties in a spatial grid to facilitate access and

reduce I/O overhead. The grid cells form a network over the

simulation and each of them extend by a distance of R in all

dimensions. This in turn helps us to examine only grid cells for

2D representations and 27 grid cells in case of 3D

representations in order to calculate the forces on any particle..

The rest of the grid cells which are farther away are totally

ignored because of their less influence on the current particle.

Since the particles are in constant motion therefore we must

continuously add and remove them to grid cells as they move

in or out of them. With this we can now construct a 2D

implementation our SPH particle based algorithm with discrete

blobs, now since the computations done while finding the

forces on a particle due to other particles are independent of one

another, ie. we can compute the forces between particle A & B

and we can compute the forces between A and C separately on

different CPU/GPU cores since they do not exchange

information therefore this algorithm is better suited for modern

day machines which exploit the parallelism of programs to

speed up the execution process.

3) Surface Tracking

Up until now we have provided a way to render discrete blobs

of particles and defined how they will interact with one another

but when we talk about fluid simulation we do not expect to see

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

481

water blobs moving around in a glass but instead we hope to see

a smooth fluid surface, though we were able to reproduce the

atomic interactions in a fluid but now we must render them from

a human’s perspective.

Since we have already have a grid structure that contains the

properties of particles at different points, we can simply feed

these grids to an iso surface volume rendering application and

we can get a 3D ray traced output, now in this project we have

used direct 3D rendering done via volume raycasting since it is

faster but there are other methods that are more accurate. The

algorithm can be understood as Suppose we have a volume of

any shape with density D(x,y,z) which is penetrated by a single

ray R from a distant light source. At each point along the ray

entering the volume we have an illumination I(x,y,z) reaching

the point (x,y,z) from the light source. The intensity scattered

along the ray to the eye is dependent on the illumination along

the ray and the local density. The dependence on the density

tells us that if different regions have different densities then the

particles will be scattered differently. We determine the

illumination by using an integral and we get the intensity of the

light arriving at the eye after passing through the volume. It is

implemented via voxels, it projects these voxels along a certain

viewing direction and the intensities of voxels along the

viewing rays are projected to provide intensity on the viewing

plane.

3. Flow Diagrams

In this section we provide a basic flow chart that represents

the steps involved in the algorithms.

Fig. 1. Flow diagram of the particle based algorithm including the steps

involved

4. Evaluation Methods

The main focus of this paper is to compare the two fluid

simulations algorithms that we have defined above therefore it

is very important that we make sure the evaluation procedures

are correct. The procedure should be able to capture the

important parameters that can define the performance of the

algorithms. Also we mentioned that we would be using a

complex workload so that the algorithms are tested thoroughly,

in this study we used the dam break problem to be our

workload. This is a standard problem in fluid simulation and

have been defined time to time by many papers [8]-[10]. The

problem includes simulating the flow of water as a huge

tsunami wave which is then obstructed a dam wall or a solid

cuboid, the resulting splashing and transfer of wave momentum

is truly a challenging task and any artifacts that can occur will

be visible clearly.

Now we will talk about comparison parameters, since

computer graphics algorithms require a lot of components to

work including the CPU, GPU and the memory buffer therefore

analyzing these algorithms solely based on their time

complexity is not suitable [9]. Therefore, we have used frames

per second to measure the computational load of the algorithm.

This is a suitable measure because the while displaying a frame

onto the screen all the components of the computer are at play

and if we use the same machine to run both the algorithms we

can accurately measure their computational load in terms of the

frames rendered by the system per second of the simulation.

For this study we will be using a Dell Vostro 3558 enterprise

edition laptop with Intel core-i35005u 2 core @2.6 GHz

processor and 8 gigabytes of RAM, along with an Intel HD

graphics 5200 GPU with 256 MB of dedicated graphics

memory buffer. The screen has a refresh rate of 60Hz and can

frame rates upto 60fps, the screen resolution is 1366x768 and

supports Vsync. To test the algorithm under extreme condition

we will be only be using two cores to execute them so that we

can test their parallelism and their utilization of multiple threads

to finish the task quickly.

To test the numerical accuracy of the frames rendered we

used the graphical depth test which discards out of depth

samples and by looking at the results we can find whether the

algorithm’s numerical accuracy was satisfactory or not. The

algorithms were implemented on the python and C++

programming language with use of some additional visual

libraries like pygame, glu etc, the operating system they were

run on was Ubuntu 18.04 LTS.As far as the 3D rendering is

concerned we are using an open source software named

OpenFOAM. It was created specifically for fluid dynamics

simulation and has a lot of customization options, it is capable

of taking in 2D grids and output a fully-fledged 3D simulation,

also it provides the option to modify the transport equation and

boundary conditions as required by the algorithm. OpenFOAM

also provides a lot of customization options for the fluid

properties like surface tension, density and turbulence. Now

that we have defined the test environment we will now examine

the test results.

5. Results and Discussion

We first simulated the two algorithms in a 2D environment,

to generate the grids necessary for 3D simulation, we also

measured the framerate and performed depth test on the

rendered simulations.

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

482

Fig. 2. Grid based 2D simulation of filling water in a glass

The grid based algorithms performs better in terms of visual

aesthetics, the fluid movement is smooth and uniform but we

can observe the lower framerate during the simulation. This 2D

simulation is without any surface tracking the liquid particles

give a fluid view by interpolating the spaces between the grid

cells.

Fig. 3. Particle based 2D simulation of a standing wave

The particle based approach uses discrete blobs and we can

see that we need a surface tracking algorithm to render the fluid

surface because the splashing effect seems to emit small

particles instead of a fluid. This the exact reason for the

numerical inaccuracy of most particle based algorithms [10] but

the framerate is much higher than the grid based approach.

Now that we performed the 2D simulation we will use the

same for input to the OpenFOAM to render a 3D model, since

we already described that we modeling the dam break problem,

hence we used a cuboid as the dam wall. We monitored the

framerate and used the depth test while the simulation was

running to test the performance of both the algorithms.

Fig. 4. OpenFOAM simulation of grid based fluid wave

With the 3D rendered model we can see that the grid based

visual aesthetics are still pretty good. The grid based fluid

moves more smoothly with numerical accuracy and just like the

2D simulation is flow accurate. The grid based took a heavy

tool on the compute resources utilizing only about half of the

CPU but rendering at a low framerate.

 The particle based wave lacks just not only in numerical

accuracy but also at wave motion, splashing effect is unpleasing

with too much fluid scatter that looks unaesthetic, mostly due

to the fact that too many particle interacting with one another

will cause something known as overfitting where an algorithm

computes the final result with unnecessary steps that cause the

final data to look distorted but yet the framerate was very

impressive for this algorithm. The algorithm exhibits excellent

parallelism and was able to use 100% of both the CPU cores

along with 90% GPU while rendering with 8000 particles.

Fig. 5. OpenFOAM simulation of 3D particle based wave

Now we compare the overall results and discuss the findings.

From the table give below we can see that the particle-based

algorithm performed significantly better than the grid based no

matter the number of particles but at lower number of particles

we saw that nearly equal performance by grid and particle based

approaches. the possible explanation is the use of multiple

threads, when the number of particles is less then the utilization

of the second core is nearly zero therefore the less parallel

algorithm grid base could catch up to particle based approach

but as the number of particles increase the utilization of the

second core becomes an edge for particle based approaches

hence they produce nearly 20% more frames than the grid based

approaches.
Table 1

Framerates with respect to number of particles

No of particles Framerate(Grid fluid) Framerate(Particle fluid)

1000 45-50 fps 50-55 fps

4000 20-25 fps 30-40 fps

8000 5-8 fps 10-15 fps

From the result data we can see that both the algorithm

performs exceptionally good when it comes to fluid simulation

but the particle based approach lacks accuracy and visual

aesthetics but consumes less compute power. The grid based

approach is great in terms of visual aesthetics but has very less

parallelism construct therefore even with a high end machine

one cannot render super smooth animations while using grid

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-6, June-2020

www.ijresm.com | ISSN (Online): 2581-5792

483

based approaches.

6. Conclusion

This study compared the performance of particle-based and

grid-based fluid simulation under complex workloads. This

investigation used the breaking dam problem to test the

performance and graphical accuracy of the two algorithms and

measured the framerate along with the particle count to realize

the performance status. Based on the results obtained we saw

that the grid-based algorithm was computationally expensive

and consumed nearly 40% more resources than the particle-

based algorithm. As far as the graphical accuracy was

concerned the depth test revealed that the particle-based

approach was unable to provide graphical depth to the

simulation and the splashing effect was unclear with irregularly

shaped waves, also the pixel overlap was high which depicted

lack of numerical accuracy but the multiple core utilization was

good which means it exhibits good level of parallelism.

 The grid based algorithm performed well on the depth test

but on the price of more computational resources, also this

approach was unable to utilize the multiple cores efficiently

although with a fewer number of particles the performance of

particle-based and grid-based approach were nearly same.

Hence we get to the conclusion that the grid-based approach is

more capable of simulating the behavior of a fluid with

numerical accuracy and great detail but at a high computational

cost and is suitable for application like games where hardware

can be upgraded as required. The particle based approach is

great for small scale applications where great detail is not

required like websites where hardware is limited and difficult

to upgrade.

References

[1] Z. Chen, J. Qin, W. Si, T. Wong and P. Heng, "Particle-based fluid

simulation with small scale details," 2014 4th IEEE International

Conference on Information Science and Technology, Shenzhen, 2014, pp.

561-564.

[2] X. Shao, E. Liao and F. Zhang, "Improving SPH Fluid Simulation Using

Position Based Dynamics," in IEEE Access, vol. 5, pp. 13901-13908,

March. 2017.

[3] S. Li and W. Wang, "Water pouring effect simulation based on SPH,"

2016 5th International Conference on Computer Science and Network

Technology (ICCSNT), Changchun, 2016, pp. 94-97.

[4] Jun Chen, Kejian Yang and Yuan Yuan, "SPH-based visual simulation of

fluid," 2009 4th International Conference on Computer Science &

Education, Nanning, 2009, pp. 690-693.

[5] D. Mould and Y. Yang, “Modeling water for computer graphics,”

Computers & Graphics, vol. 21, no. 6, pp. 801–814, April. 1997.

[6] N. Chentanez and M. M¨uller, “Real-time eulerian water simulation using

a restricted tall cell grid,” ACM Transactions on Graphics, vol. 30, no. 4,

pp. 82:1–82:10, September. 2011.

[7] P. Kipfer and R. Westermann, “Realistic and interactive simulation of

rivers,” Proceedings of Graphics Interface 2006, pp. 41–48.

[8] A. T. Howes and A. R. Forrest, “Visual simulation of waterfalls and other

water phenomena,” Proceedings of the ACM SIGGRAPH 97 Visual

Proceedings: The art and interdisciplinary programs of SIGGRAPH ’97,

p. 146, 1997.

[9] M. B. Nielsen and O. Østerby, “A two-continua approach to eulerian

simulation of water spray,” ACM Transactions on Graphics, vol. 32, no.

4, pp. 67:1–67:10, December. 2013.

[10] J. Stam, “Stable fluids,” Proceedings of the ACM SIGGRAPH 99, pp.

121–128, March. 1999.

