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Abstract: Simulation of fluids is quite a challenging task because 

unlike solid objects liquid shows a drastic amount of change per 

frame hence rendering liquids becomes quite a computationally 

expensive task. Over the years many new and improved fluid 

simulation algorithms have been introduced but most of them are 

fairly complex and put a heavy computational load on the CPU 

and GPU. In this paper we are going to examine the two most 

popular fluid simulation algorithms, the lagragian based particle 

approach and the euler based grid approach. These algorithms are 

particularly popular because of their simplicity and low 

computational loads; we will be testing these algorithms by 

providing real-time interactive workloads to compare their 

performance. 
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1. Introduction 

Animated fluids are used for a variety of applications which 

include games, machine modeling and fluid mechanics. Fluids 

are one of the highly disoriented states of matter because their 

particles move about in a haphazard motion and colliding with 

everything around them whether it be a liquid or gas. Animation 

of such fluids are very difficult because of the nature of these 

states of matter, it is also very difficult to animate their 

interactions with solid objects like walls, boundaries etc 

because one must accurately depict how the liquid will behave 

under such conditions. Although the liquid surface seems like a 

continuous film but instead the liquid consists of several small 

particles moving about in motion, the entire behavior of the 

liquid is determined by the motion and interaction of these 

small particles.  

Fluid simulation use actual hydrodynamics equations to 

animate the movement of fluid particles, since they are many 

ways to model fluid particles there are many algorithms to 

simulate fluids but in our study we are focusing on grid based 

euler approach where the fluid particles were monitored and 

updated as they passed through certain grid cells and the particle 

based lagragian approach where discrete blobs of fluids 

particles are used for simulation and tracking. Over the years 

there have many new developments in these algorithms. Chen  

 

[1] proposed an improved SPH solver that included vorticity 

confinement to capture the small scale details. 

The motion of the fluid which is usually not captured by the 

standard SPH algorithms. Shao [2] suggested a smoothing 

constant to be added to the SPH vorticity equation that help 

reduce the unstable boundary problems. Li [3] suggested some  

kernel functions and field quantity equations that could help 

with surface rendering. Chen [4] proposed a nearest neighbor 

octree searching method that reduces the time required by the 

algorithm to find and compute pressure forces from close 

particles. Mould [5] suggested to use a regular grid on top of 

tall cells that would help render the volume below the liquid 

surface without using extra compute power. Chentanez [6] 

suggested to use a grid simulation technique where the grid 

cells would be deformed to help in the boundary transitions of 

the fluid. Kipfer [7] suggested a technique to remove unused 

cells from a grid to help lower the computations performed per 

second. We will be incorporating all these works into our 

algorithm so that we can compare the most updated techniques 

and find out areas of improvement and possible areas of 

application for both the techniques. 

A. Governing Equations 

The base governing equations for both the algorithms is the 

Navier stokes equation normally used in fluid particle 

hydrodynamics. In this study however we are neglecting some 

of the highly complex features like turbulence, surface tension 

etc. Also since we are simulating a single fluid ie water we are 

considering the fluid to be incompressible which helps save a 

lot of compute power and has a little effect on the visual 

appearance of the fluid. 

The grid based and particle -based approaches are based on 

the Navier stokes fluid mechanics equations, but since we are 

dealing with animated fluids therefore we can remove some 

aspects like slightly compressible and treat them like 

incompressible and also viscosity is removed from the Navier 

stokes equations because of the single fluid nature of the test 

set. The resulting Navier stokes equations are- 
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These equations denote the conservation of momentum and 

mass, where F represents the external forces like gravity, 𝜌 is 

the density and �⃗�  is fluid velocity while p being the pressure 

inside the fluid. These reduced equations are used in this 

algorithm to predict the movement of fluid particles. As far as 

the notations are concerned we will be using standard physics 

notations to represent the equations and all symbols are 

properly defined after an equation is introduced. 

2. Fluid Simulation Algorithms  

In this section we will discuss in detail the steps involved in 

both the algorithms and also indicate the modifications done by 

including relevant algorithms from previous papers. 

In abstract terms, we can define the grid based and particle 

based algorithms with an example- suppose if we want to 

capture the movement of a bird in a park, we could use two 

approaches to do that firstly we can set up a camera at a specific 

point in a park and capture the birds movement but we will be 

unable to track it once it moves outside the camera view. This 

is the grid approach we define certain grid cells where the 

moving particles are monitored and then updated in terms of 

their properties. Secondly we could follow the bird around this 

forms the particle basis of particle based approach, we are 

looking at the simulation from a particle in a fluid flow point of 

view. This method is simpler and faster because no extra 

computations need to be performed to account for loss of 

information. 

A. Grid-based Algorithms 

The grid based algorithms sample the scalar and vector fields 

at various fixed points in space and interpolates the values in 

between these points. Now we will discuss the implementation 

details of these algorithms. 

1) Data Structures 

The grid based approach stores the data of different particles 

namely velocity, pressure, direction etc for this they use an 

approach called the staggered MAC grid which is suggested by 

Mould[5], this grid is quite different from a single grid as such 

that the pressure is stored the very centre of the grid cells but 

the velocity of the fluid particles is stored on the sides, these 

velocities are the normal component of the particle velocity 

passing through the cell. They use this data structure because 

since the grids monitor the particles at specific positions if they 

want to find velocity at point i between two points in the grids 

then we can calculate the derivative in such cases by using the 

two grid point values but the actual value at I is ignored but with 

the staggered grid we can find the derivative without loss of 

information. 
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Where w is a any fluid property sampled at different 

locations in the simulations space w0…..wn, i denotes the point 

where we need the central difference. We use central 

differences because to find the gradient we must find the change 

in property and the two sides of the MAC cell stores these 

values. As we can see the formulae uses half indices but in a 

practical sense these indices will not work they only exist in a 

theoretical sense therefore, equations must be defined to map 

these to real values. 
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Where u represents the velocity of the fluid particle and i, j, 

k are the components in three dimensions. These equations help 

us map half indices to actual values in the staggered grids. 

2) Time-step 

Now we will try and explain the steps involved in the 

algorithm, first an accurate timestep must be chosen the 

timestep tells that at what intervals must the particle properties 

be recalculated and updated, this must be chosen as such so that 

the particle is updated when it reaches the next grid point 

without skipping any cells in between. 

 

∆𝑡 =
∆ℎ
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                                             (6) 

 

∆𝑡 =  𝑘𝐶 𝐹 𝐿
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�⃗⃗� 𝑚𝑎𝑥
                                        (7) 

 

𝑓(𝑣, 𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑖𝑛) = 𝜅𝑚𝑖𝑛(𝑣 − 𝑣𝑚𝑖𝑛)
𝜅𝑚𝑎𝑥 − 𝜅𝑚𝑖𝑛

𝑣𝑚𝑎𝑥− 𝑣𝑚𝑖𝑛
          (8) 

 

�⃗� 𝑚𝑎𝑥 = max(|�⃗� |) +  √Δℎ|𝐹|⃗⃗⃗⃗                              (9) 

 

Where ∆t is the time step, ∆h the distance moved by the 

particle during the time step. The  𝑘𝐶 𝐹 𝐿 is the factor that helps 

satisfy eqn(6) while choosing a time step of your choice. 

Equations (8) and (9) help us calculate the velocity max and the 

time step factor by plugging in the respective values. 

3) Advection 

Next up is the process of advection, this is the process of 

determining the value of nay quantity let it be pressure, velocity 

at a later time. Let Q be any measurable quantity of a fluid then 

to predict it at later time ∆t, we use backwards trace method but 

it requires an extra copy of the properties be stored in each cell. 

The following equations are used to predict the quantity Q at 

any later time where Qn and Qn+1 is the quantity after time step 

∆𝑡.So an overall fluid flowing through the pipe etc will be 

rendered using the advection rules given below and for the 

boundary conditions we simply clamp the grid coordinates 

hence the algorithm does not perform well with boundaries 

present. 
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𝑄𝑛+1 =  𝑎𝑑𝑣𝑒𝑐𝑡 (𝑄𝑛 , Δ𝑡,
𝜕𝑄𝑛

𝜕𝑡
)                             (10) 

 

The new value is simply computed by finding the gradient of 

the previous values and using the timestep in all the three 

dimensions and then simply update the particle properties as 

such. 

4) Calculating Pressure 

Now that we defined a way to predict the properties of the 

particles at different times, now we must take care of the 

pressure and incompressibility conditions. The particles 

moving around in the grid space must not cause the overall 

volume to increase because as indicated earlier we have 

considered the fluid to be incompressible. Therefore, in the next 

step we try to maintain the constant volume by defining the 

pressure relations among the different particles moving around 

the grid points. As per physics the incompressibility relations 

are- 

 

∇ (�⃗� )𝑛+1 = 0   𝑎𝑛𝑑  (�⃗� )𝑛+1. �̂� = 𝑢𝑠𝑜𝑙𝑖𝑑⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ . �̂�                (11) 

 

These two equations define the boundary conditions as well, 

now as per our advection equation we must update the velocity 

of the fluid particles at after time ∆𝑡, here we see that we have 

no information about any cell that does not any fluid therefore 

we must assume that the pressure in those cells is zero, now 

using this information we can compute an equation to update 

the pressure in very grid cell. The following equations for 2D 

grid can be defined by using the incompressibility condition. 
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And for 3D the equations can be defined as – 
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Where the p indicates the pressure at a certain point in the 

grid and the rest of the symbols indicate the usual meanings 

with u, v, w be the three components of velocity in three 

dimensions. 

At the same time we also must take care of the boundary 

conditions and realize what should happen if the particle ever 

hits the boundary, for this process we will Dirichlet’s condition 

and Neumann conditions to realize inter particle collision and 

collision with a solid wall. 

Here also we use the compressibility equation to bound the 

particles within the grid and by making sure that the spatial 

derivatives are zero, we can approximate the divergences of the 

updated properties to satisfy the condition, hence we can use 

the difference equation eqn (2) and update it to come up with a 

approximation formulae.  
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Now we have all the values required to update the properties 

of our fluid particles and handle the boundary transitions that 

might occur. But we must also come up with an equation that 

combines the formulas listed and come up with a unified 

equation to calculate the pressure in each cell by keeping in 

mind the boundary condition as well. 

We use a linear equation for the new pressure in each grid 

cell and then combine all the individual grid equations to come 

up with a system of simultaneous linear equations that we can 

solve for the entire grid. 
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      (18) 

 

Where Di is the divergence through cell I and Ω𝑖 is the no of 

surrounding particles around the point considered in the grid 

cell. 𝛽ij is 1 if i and j are adjacent and 0 otherwise. Now we can 

update the particle properties of all our cells without any 

difficulties but we must also find a way to track the liquid 

surface so that the flow can be modeled. 

5) Surface Tracking  

Finally we must decide how to track the surface of the liquid, 

this is done via marker particles now suppose we have a grid 

containing fluid particles each of the grid cells which contains 

fluid particles is marked as fluid and it’s properties are updated 

as such and the rest are solid and boundary and as the liquid 

flows we change the marker status of the cells based on the flow 

direction. 

Next to plot the surface of the liquid ,we must find all the grid 

cells in the 3D space which contain the fluid this is achieved by 

defining  a new distance metric, i,j,k which is stored at the 

centre of each cell to compute it we use the position vector 𝑋  

and the minimum distance from the set of all points in the grid 

set., to check whether a point is inside the fluid or not we simply 

check the value of distance metric , if it less than 0 then inside 

liquid if greater than zero then outside liquid. Also we 

continuously advect these values along with other properties 

like velocity etc and model the flow using the same. 
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𝐷𝑆(𝑋 ) =  𝑚𝑖𝑛𝑝 𝜖𝑆‖𝑋 − 𝑝 ‖                               (19) 

 

The formula above can used for computing signed distance, 

this also tells us whether a grid cell is inside a fluid or not .The 

signed distance can used for computing the metric , we have 

based the signed distance calculation based on Howes [8] 

algorithm that can track the fluid area very efficiently. Also 

after tracking the liquid surface we can remove grid cells [7] 

that do not contain the fluid particles or in other words do not 

compute pressure of cells where there is no liquid, a simple 

approach that saves a ton of compute power. 

B.  Particle-based Algorithms 

Now we will discuss the implementation details of the 

particle based approach. First we decide what all properties 

must be stored along with each of the particle, since we have to 

make sure that all the details which are required by the Navier 

stokes equation must be stored along with particles therefore we 

stored the position 𝑋 , velocity �⃗� , Mass M, density d, pressure p 

and force 𝐹  , now we must decide on the data structure to be 

used since new particles will have to be added very now and 

then therefore to store the particles properties a linked list has 

been used. Now that we have decided on the properties we now 

define the equations the particles must follow throughout the 

simulation, for all particles Pi – 

 
𝜕�⃗⃗� 

𝜕𝑡
= 𝐴 𝑖

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
+ 𝐴 𝑖

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦
+ 𝐴 𝑖

𝑔𝑟𝑎𝑣𝑖𝑡𝑦
+ 𝐴 𝑖

𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  (20) 

 

The above equation is simply an extension of the Navier 

stokes equation and it defines the acceleration on the particle 

due to any of the forces like pressure etc will result in change 

of the velocity, as mentioned in Navier stokes second equation 

and Newton’s second law. 

1) Calculating Pressure 

Now we must find out how to calculate the particle properties 

like pressure after a certain time, properties like mass are not 

expected to change but pressure must be calculated after every 

timestep. 

As we have a lot of particles in the simulation therefore to 

calculate the pressure at a certain point we must use discrete 

summation which is done via the following equation- 

 

∑ 𝑀𝑗 𝑊𝑅𝑖𝑗

𝑛
𝑗≠𝑖                                           (21) 

 

Here Rij is the Euclidean distance between the particle i and 

j, the function W(d) is known as the kernel function as discussed 

earlier. This function takes in a scalar parameter which in this 

case is the Euclidean distance between the particles and then 

returns another scalar which is between 0 and 1. Now this kernel 

function maps particles which are further away from the point 

of consideration to values closer to zero which signifies that 

particles which are far way from the point of consideration do 

not have any effect on the pressure at that point. Deciding on 

which kernel function is better is a topic of research but in our 

project we have used the Gaussian kernel function which takes 

in a smoothing width h as suggested by Li [3], so particles 

further than 2h are ignored during the pressure calculation. 

 

𝑊(𝑑) =  
1

𝜋
3
2ℎ3

exp (
𝑟2

ℎ2)                                (22) 

 

Where W(d) denotes the kernel function, r is the effective 

distance of the blob and h is the smoothing width.  

Therefore, for each of the particles we must get list of 

neighbors, calculate the density for that particle while 

considering the neighbors and do the same for pressure. Then 

we calculate the acceleration for that particle using density and 

pressure and actually move the particle in the simulation as per 

the calculated acceleration per timestep. The process is repeated 

until the simulation ends. 

2) Acceleration Structures 

As we saw that we must find all the neighbors for each of the 

particles every time we update the particle properties, hence we 

must add spatial data structures that can help reduce our time 

complexity because as per the process described above 

calculation interaction forces between every particle will take 

O(n2) time which is not viable since we are trying to reduce the 

overall computational expenses as compared to the grid based 

algorithm. 

Now we will see how these spatial data structures work, in 

addition to storing our particle properties in a linked list we also 

store them in a spatial grid structure or a an octree[4], now this 

is not like the grid based algorithm we are only storing the 

particle properties in a spatial grid to facilitate access and 

reduce I/O overhead. The grid cells form a network over the 

simulation and each of them extend by a distance of R in all 

dimensions. This in turn helps us to examine only grid cells for 

2D representations and 27 grid cells in case of 3D 

representations in order to calculate the forces on any particle.. 

The rest of the grid cells which are farther away are totally 

ignored because of their less influence on the current particle. 

Since the particles are in constant motion therefore we must 

continuously add and remove them to grid cells as they move 

in or out of them. With this we can now construct a 2D 

implementation our SPH particle based algorithm with discrete 

blobs, now since the computations done while finding the 

forces on a particle due to other particles are independent of one 

another, ie. we can compute the forces between particle A & B 

and we can compute the forces between A and C separately on 

different CPU/GPU cores since they do not exchange 

information therefore this algorithm is better suited for modern 

day machines which exploit the parallelism of programs to 

speed up the execution process. 

3) Surface Tracking 

Up until now we have provided a way to render discrete blobs 

of particles and defined how they will interact with one another 

but when we talk about fluid simulation we do not expect to see 
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water blobs moving around in a glass but instead we hope to see 

a smooth fluid surface, though we were able to reproduce the 

atomic interactions in a fluid but now we must render them from 

a human’s perspective.  

Since we have already have a grid structure that contains the 

properties of particles at different points, we can simply feed 

these grids to an iso surface volume rendering application and 

we can get a 3D ray traced output, now in this project we have 

used direct 3D rendering done via volume raycasting since it is 

faster but there are other methods that are more accurate. The 

algorithm can be understood as Suppose we have a volume of 

any shape with density D(x,y,z) which is penetrated by a single 

ray R from a distant light source. At each point along the ray 

entering the volume we have an illumination I(x,y,z) reaching 

the point (x,y,z) from the light source. The intensity scattered 

along the ray to the eye is dependent on the illumination along 

the ray and the local density. The dependence on the density 

tells us that if different regions have different densities then the 

particles will be scattered differently. We determine the 

illumination by using an integral and we get the intensity of the 

light arriving at the eye after passing through the volume. It is 

implemented via voxels, it projects these voxels along a certain 

viewing direction and the intensities of voxels along the 

viewing rays are projected to provide intensity on the viewing 

plane. 

3. Flow Diagrams 

In this section we provide a basic flow chart that represents 

the steps involved in the algorithms. 

 
Fig. 1.  Flow diagram of the particle based algorithm including the steps 

involved 

4. Evaluation Methods 

The main focus of this paper is to compare the two fluid 

simulations algorithms that we have defined above therefore it 

is very important that we make sure the evaluation procedures 

are correct. The procedure should be able to capture the 

important parameters that can define the performance of the 

algorithms. Also we mentioned that we would be using a 

complex workload so that the algorithms are tested thoroughly, 

in this study we used the dam break problem to be our 

workload. This is a standard problem in fluid simulation and 

have been defined time to time by many papers [8]-[10]. The 

problem includes simulating the flow of water as a huge 

tsunami wave which is then obstructed a dam wall or a solid 

cuboid, the resulting splashing and transfer of wave momentum 

is truly a challenging task and any artifacts that can occur will 

be visible clearly. 

Now we will talk about comparison parameters, since 

computer graphics algorithms require a lot of components to 

work including the CPU, GPU and the memory buffer therefore 

analyzing these algorithms solely based on their time 

complexity is not suitable [9]. Therefore, we have used frames 

per second to measure the computational load of the algorithm. 

This is a suitable measure because the while displaying a frame 

onto the screen all the components of the computer are at play 

and if we use the same machine to run both the algorithms we 

can accurately measure their computational load in terms of the 

frames rendered by the system per second of the simulation. 

For this study we will be using a Dell Vostro 3558 enterprise 

edition laptop with Intel core-i35005u 2 core @2.6 GHz 

processor and 8 gigabytes of RAM, along with an Intel HD 

graphics 5200 GPU with 256 MB of dedicated graphics 

memory buffer. The screen has a refresh rate of 60Hz and can 

frame rates upto 60fps, the screen resolution is 1366x768 and 

supports Vsync. To test the algorithm under extreme condition 

we will be only be using two cores to execute them so that we 

can test their parallelism and their utilization of multiple threads 

to finish the task quickly. 

To test the numerical accuracy of the frames rendered we 

used the graphical depth test which discards out of depth 

samples and by looking at the results we can find whether the 

algorithm’s numerical accuracy was satisfactory or not. The 

algorithms were implemented on the python and C++ 

programming language with use of some additional visual 

libraries like pygame, glu etc, the operating system they were 

run on was Ubuntu 18.04 LTS.As far as the 3D rendering is 

concerned we are using an open source software named 

OpenFOAM. It was created specifically for fluid dynamics 

simulation and has a lot of customization options, it is capable 

of taking in 2D grids and output a fully-fledged 3D simulation, 

also it provides the option to modify the transport equation and 

boundary conditions as required by the algorithm. OpenFOAM 

also provides a lot of customization options for the fluid 

properties like surface tension, density and turbulence. Now 

that we have defined the test environment we will now examine 

the test results. 

5. Results and Discussion 

We first simulated the two algorithms in a 2D environment, 

to generate the grids necessary for 3D simulation, we also 

measured the framerate and performed depth test on the 

rendered simulations. 
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Fig. 2.  Grid based 2D simulation of filling water in a glass 

 

The grid based algorithms performs better in terms of visual 

aesthetics, the fluid movement is smooth and uniform but we 

can observe the lower framerate during the simulation. This 2D 

simulation is without any surface tracking the liquid particles 

give a fluid view by interpolating the spaces between the grid 

cells. 

 

 
Fig. 3.  Particle based 2D simulation of a standing wave 

 

The particle based approach uses discrete blobs and we can 

see that we need a surface tracking algorithm to render the fluid 

surface because the splashing effect seems to emit small 

particles instead of a fluid. This the exact reason for the 

numerical inaccuracy of most particle based algorithms [10] but 

the framerate is much higher than the grid based approach. 

Now that we performed the 2D simulation we will use the 

same for input to the OpenFOAM to render a 3D model, since 

we already described that we modeling the dam break problem, 

hence we used a cuboid as the dam wall. We monitored the 

framerate and used the depth test while the simulation was 

running to test the performance of both the algorithms. 

 

 
Fig. 4.  OpenFOAM simulation of grid based fluid wave 

With the 3D rendered model we can see that the grid based 

visual aesthetics are still pretty good. The grid based fluid 

moves more smoothly with numerical accuracy and just like the 

2D simulation is flow accurate. The grid based took a heavy 

tool on the compute resources utilizing only about half of the 

CPU but rendering at a low framerate. 

 The particle based wave lacks just not only in numerical 

accuracy but also at wave motion, splashing effect is unpleasing 

with too much fluid scatter that looks unaesthetic, mostly due 

to the fact that too many particle interacting with one another 

will cause something known as overfitting where an algorithm 

computes the final result with unnecessary steps that cause the 

final data to look distorted but yet the framerate was very 

impressive for this algorithm. The algorithm exhibits excellent 

parallelism and was able to use 100% of both the CPU cores 

along with 90% GPU while rendering with 8000 particles. 

 

 
Fig. 5.  OpenFOAM simulation of 3D particle based wave 

 

Now we compare the overall results and discuss the findings. 

From the table give below we can see that the particle-based 

algorithm performed significantly better than the grid based no 

matter the number of particles but at lower number of particles 

we saw that nearly equal performance by grid and particle based 

approaches. the possible explanation is the use of multiple 

threads, when the number of particles is less then the utilization 

of the second core is nearly zero therefore the less parallel 

algorithm grid base could catch up to particle based approach 

but as the number of particles increase the utilization of the 

second core becomes an edge for particle based approaches 

hence they produce nearly 20% more frames than the grid based 

approaches. 
Table 1 

Framerates with respect to number of particles 

No of particles Framerate(Grid fluid) Framerate(Particle fluid) 

1000 45-50 fps 50-55 fps 

4000 20-25 fps 30-40 fps 

8000 5-8 fps 10-15 fps 

 

From the result data we can see that both the algorithm 

performs exceptionally good when it comes to fluid simulation 

but the particle based approach lacks accuracy and visual 

aesthetics but consumes less compute power. The grid based 

approach is great in terms of visual aesthetics but has very less 

parallelism construct therefore even with a high end machine 

one cannot render super smooth animations while using grid 



International Journal of Research in Engineering, Science and Management  

Volume-3, Issue-6, June-2020 

www.ijresm.com | ISSN (Online): 2581-5792     

 

483 

based approaches. 

6. Conclusion 

This study compared the performance of particle-based and 

grid-based fluid simulation under complex workloads. This 

investigation used the breaking dam problem to test the 

performance and graphical accuracy of the two algorithms and 

measured the framerate along with the particle count to realize 

the performance status. Based on the results obtained we saw 

that the grid-based algorithm was computationally expensive 

and consumed nearly 40% more resources than the particle-

based algorithm. As far as the graphical accuracy was 

concerned the depth test revealed that the particle-based 

approach was unable to provide graphical depth to the 

simulation and the splashing effect was unclear with irregularly 

shaped waves, also the pixel overlap was high which depicted 

lack of numerical accuracy but the multiple core utilization was 

good which means it exhibits good level of parallelism. 

 The grid based algorithm performed well on the depth test 

but on the price of more computational resources, also this 

approach was unable to utilize the multiple cores efficiently 

although with a fewer number of particles the performance of 

particle-based and grid-based approach were nearly same. 

Hence we get to the conclusion that the grid-based approach is 

more capable of simulating the behavior of a fluid with 

numerical accuracy and great detail but at a high computational 

cost and is suitable for application like games where hardware 

can be upgraded as required. The particle based approach is 

great for small scale applications where great detail is not 

required like websites where hardware is limited and difficult 

to upgrade.   

References 

[1] Z. Chen, J. Qin, W. Si, T. Wong and P. Heng, "Particle-based fluid 

simulation with small scale details," 2014 4th IEEE International 

Conference on Information Science and Technology, Shenzhen, 2014, pp. 

561-564. 

[2] X. Shao, E. Liao and F. Zhang, "Improving SPH Fluid Simulation Using 

Position Based Dynamics," in IEEE Access, vol. 5, pp. 13901-13908, 

March. 2017. 

[3] S. Li and W. Wang, "Water pouring effect simulation based on SPH," 

2016 5th International Conference on Computer Science and Network 

Technology (ICCSNT), Changchun, 2016, pp. 94-97. 

[4] Jun Chen, Kejian Yang and Yuan Yuan, "SPH-based visual simulation of 

fluid," 2009 4th International Conference on Computer Science & 

Education, Nanning, 2009, pp. 690-693. 

[5] D. Mould and Y. Yang, “Modeling water for computer graphics,” 

Computers & Graphics, vol. 21, no. 6, pp. 801–814, April. 1997. 

[6] N. Chentanez and M. M¨uller, “Real-time eulerian water simulation using 

a restricted tall cell grid,” ACM Transactions on Graphics, vol. 30, no. 4, 

pp. 82:1–82:10, September. 2011. 

[7] P. Kipfer and R. Westermann, “Realistic and interactive simulation of 

rivers,” Proceedings of Graphics Interface 2006, pp. 41–48. 

[8] A. T. Howes and A. R. Forrest, “Visual simulation of waterfalls and other 

water phenomena,” Proceedings of the ACM SIGGRAPH 97 Visual 

Proceedings: The art and interdisciplinary programs of SIGGRAPH ’97, 

p. 146, 1997. 

[9] M. B. Nielsen and O. Østerby, “A two-continua approach to eulerian 

simulation of water spray,” ACM Transactions on Graphics, vol. 32, no. 

4, pp. 67:1–67:10, December. 2013. 

[10] J. Stam, “Stable fluids,” Proceedings of the ACM SIGGRAPH 99, pp. 

121–128, March. 1999.

 

 

 


