
International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

232

Abstract: As humans, we are generally being excellent at finding

the difference during a picture. However, for computers, this is

often not such a simple task. Computers can only learn from what

we train their models on. Some great models will classify batch

images rather well, like Google's TensorFlow and Keras.

Thanks to image classifier libraries. Now we will create

complicated models. However, this project is to make a picture

classifier that will tell how similar two images are. For that, there's

no need for any complicated libraries like TensorFlow or image

classification models. There are two ways to seek out if a picture is

analogous to a different image. We are printing the values of

SSIM, MSE and we are comparing both.

Keywords: Image difference, OpenCV, SSIM, Python.

1. Introduction

There are many metrics out there for evaluating whether two

images look like or how much they appear. Generally, the

question is said to human's perception of images, so each

algorithm has its support on human sensory system traits.

Among them, SSIM is the easiest method to calculate and its

overhead is additionally small.

The (structural similarity index metric) SSIM is an algorithm

which we will be used for predicting the difference between two

images. SSIM is mainly used for measuring the similarity

between two images. The SSIM index is a full reference metric.

i.e., the measurement or prediction of image quality is

predicated on an initial uncompressed or distortion-free image

as a reference. SSIM is used to enhance traditional methods of

mean squared error (MSE) and peak signal to noise (PSNR).

Let's define what is calculating. MSE will calculate the mean

square error between each pixel for the 2 images we are

comparing. Whereas SSIM will do the other and appearance for

similarities within pixels; i.e. if the pixels within the two images

line up and or have similar pixel density values. the sole issues

are that MSE tends to possess arbitrarily high numbers so it's

harder to standardize it. The more the MSE value the images

differ from each other, if the MSE value between images differs

appears randomly, it'll be difficult for us to inform anything.

SSIM on the opposite hand puts everything on a scale of -1 to

1. A score of 1 meant they're very similar and a score of -1

meant they're very different. In my opinion, this is often a far

better metric of measurement. We are using CV2 (part of

OpenCV) to read and edit images. we will also use matplot lib's

imread instead.

First, we load the pictures that are saved in our directory.

Second, we've to form sure they're all an equivalent size as

otherwise, we'll get a dimension error. The difficulty with this

is often this will distort image so fiddle till you discover the

right numbers. Next, we do another function so we will see what

our pictures appear as if.

Now to check and see if our MSE and SSIM are functioning

by comparing one image to itself. If it works, then we should

always get MSE of 0 and SSIM of 1.

2. Existing system

In the existing system, we will take the original image and

fake image (modified image). We will pass both images as

parameters to the program that will give the SSIM and MES

values. SSIM value will be in the range of -1 to 1. This system

will give numeric which will tell us the difference between the

two images and its similarity.

3. Proposed system

1. Import the specified packages.

2. Read in our two images.

3. Convert the pictures to grayscale.

4. Consistent with SSIM, how similar are the pictures.

5. Threshold the diff image, and find contours which can

showcase the regions within the images that are different

6. Loop through the contours and make bounding boxes on our

two images.

7. Print our images by highlighting the difference in it.

The process is often broadly classified into following steps,

Fig. 1. Flowchart

Image processing using OpenCV and Python

R. Jayashree1, D. G. Savitha2, D. Sharanya3

1,2,3UG Student, Department of Computer Science and Engineering, GITAM University, Dodballapura, India

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

233

1) Import the specified packages

Use the function cv2.imread() to read the image. The image

should be within the working directory or a full path of image

should be given.

img=cv2.imread('path/image_name')img=cv2.imread('path/i

mage_name')

2) Read in our two images

If images are of equivalent shape and dimension, we can load

the pictures or If not, we got to resize or crop them. PIL library

will help to try it in Python. If they are taken with an equivalent

setting and the same device, they are probably similar. Resizing

the pictures check out zero patting

img1= cv2.resize(img_1, (10000, 10000))

3) Converting to grayscale

Grayscaling is the process of converting a picture from other

color spaces e.g. RGB, CMYK, HSV, etc. to shades of gray. It

varies between complete black and complete white.

cv2.cvtColor(original,cv2.COLOR_BGR2GRAY)

We have 150 color-space conversion methods in OpenCV.

But we only need two which are used most generally, BGR ↔

Gray and BGR ↔ HSV.

We use the function cv2.cvtColor(input_original_image,

flags) for colour conversion where flags determines the sort of

conversion. For BGR → Gray conversion we use the flags

cv2.COLOR_BGR2GRAY.

Importance of grayscaling

 Dimension reduction: e.g. There are three colors in

RGB channels and has three dimensions and grayscaled

images are a single dimension which will be in black

and white format.

 In training neural article on RGB images of 10x10x3

pixel. 300 input nodes will have the input. On the other

hand, but grayscaled images need only 100 input nodes

in an equivalent neural network

 For other algorithms to figure: Many algorithms are

customized to work only on grayscaled images e.g.

Canny Edge Detection is a function that is pre-

implemented works on Grayscaled images in OpenCV

library.

This score would suggest that the 2 pictures are extremely

similar.

4) Consistent with SSIM, how similar are the pictures (1 being

identical, -1 is completely different)

(score, diff) = compare_ssim(grayA, grayB, full=True)

diff = (diff * 255).astype("uint8")

print("SSIM: {}".format(score))

>> 0.997413297969084

We have used the compare_ssim function to get a score, but

also an object called diff. This diff object represents the

particular differences within the image. to hold on processing

this object using OpenCV we multiply the values by 255 and

alter it to uint8 format

The score represents the structural similarity index between

the 2 input images. This value can fall into the range [-1, 1] with

a worth of 1 being a “perfect match”.

The diff image contains the particular image differences

between the 2 input images that we want to see. The difference

image will be represented currently as a floating-point data type

within the range [0, 1] so we first convert the array to 8-bit

unsigned integers within the range [0, 255] before we will

further process it

5) Threshold the diff image, and find contours showing the

regions in the different images

If the pixel value is higher than the threshold value, some

value is assigned (say white), otherwise, another value is

assigned (say black).

cv2.threshold is the function used in the program. Grayscale

image of the original image, threshold value, maximum Val if

the pixel value is greater than the threshold value, then it

represents the value are the arguments respectively. OpenCV

includes different thresholding types and the fourth parameter

of the method decides on this. Different types of thresholding

are:

cv2.THRESH_BINARY

cv2.THRESH_BINARY_INV

cv2.THRESH_TRUNC

cv2.THRESH_TOZERO

cv2.THRESH_TOZERO_INV

Fig. 2. Different types of thresholding

6) Loop through the contours and create bounding boxes on

our two images

To detect contours in a picture, we’ll need to use the cv2.find

Contours function.

A curve that connects all the continuous points, along with

the boundary, having the same strength and color is called

counters. Shape analysis, recognition of objects and object

detection for all these contours are a useful tool.

We need to use binary images for better accuracy. So, we will

apply threshold or canny edge detection before finding

contours.

In OpenCV, finding contours is same as finding white object

from black background. So, consider an object to be found

should be white and background should be black.

cnts = cv2.findContours(thresh.copy(),

cv2.RETR_EXTERNAL,

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

234

cv2.CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

The first one is the source image, second is contour retrieval

mode, third is contour approximation method and it generates

the image, contours, and hierarchy. ‘Contours’ is a Python

collection of all image contours. Numpy array of (a, b)

coordinates of boundary points of the object is called individual

counter.

The contours are the boundaries of a shape with the same

intensity. They store the (a, b) coordinates of the boundary of a

shape. But is it holding all the coordinates? This method of

approximation to the contour specifies that.

Fig. 3. Contours in OpenCV

Upon passing the third argument,

 cv2.CHAIN_APPROX_NONE, all the boundary points are

stored. And the need for points here is, for eg., if we have to

find the contour of a straight line. There is a need for just two

endpoints for that line. cv2.CHAIN_APPROX_SIMPLE in

OpenCV will save memory and which compresses the contour

and eliminates all redundant points.

for c in cnts:

(a, b, e, d) = cv2.boundingRect(c)

cv2.rectangle(imageA, (a, b), (a + e, b + d), (0, 0, 255), 2)

cv2.rectangle(imageB, (a, b), (a + e, b + d), (0, 0, 255), 2)

we loop over the contours, cnts. First, we will compute the

bounding box around the contour by using the

cv2.boundingRect function later we store the width/height of

the rectangle as e and d as well as specific (a, b)-coordinates as

a and b.

Then we use the values to draw a red rectangle with

cv2.rectangle on each image.

At last, we will display the original images by showing the

difference in it, and we will display the thresholded image and

the difference image by showing the difference in it.

We make a call to cv2.waitKey function which makes the

program wait until a key is pressed.

7) Show our images - and uncover the differences

we can quickly and easily highlight differences between two

images using this script,

cv2.imshow("Original", imageA)

4. Conclusion

In this paper, we have discussed how to compute image

differences using OpenCV, Python, and scikit-image’s

Structural Similarity Index (SSIM). Based on the image

difference how to represent the different regions in two images.

We addressed in detail about thresholding and contours. We

have summarized how we can use digital image processing

using OpenCV.

References

[1] https://www.pyimagesearch.com/2017/06/19/image-difference-with-

opencv-and-python/

[2] https://stackabuse.com/introduction-to-image-processing-in-python-

with-opencv/

[3] https://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_c

ontents_imgproc/py_table_of_contents_imgproc.html

[4] https://medium.com/datadriveninvestor/image-processing-using-python-

open-cv-part-1-b5e83b5c2398

[5] Mahamkali Naveenkumar and Vadivel A. (2015). OpenCV for Computer

Vision Applications.

[6] https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html

[7] https://www.youtube.com/watch?v=LNzC4NYYWdg

[8] https://www.youtube.com/watch?v=WOH7hDXrfwc

[9] https://www.youtube.com/watch?v=fUfvBnREBFc

[10] https://www.youtube.com/watch?v=9mQznoHk4mU

