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Abstract: Detection forest fire smoke during the initial stage is 

vital for preventing forest for events. Recent studies have been 

shown that exploring fire can be detected by using the video based 

real capturing and monitoring real time using the camera (K210) 

image processing and predicting the fire based on the trained 

network (CNNs) by the temperature sensor if the temperature falls 

high than usual then it is analyzed that there is a chance of fire so 

the alert message or the notification is sent to the forest 

department. 

 

Keywords: Fire detection, Notification, Temperature 

measuring. 

1. Introduction 

Smoke detection is done with the real time video based 

camera which will divide the video into frames and those 

frames are processed as image and compared with the database 

which is trained with certain images are differentiated with fire 

and non-fire in forest and trees and it will be. This paper is will 

detect the fire and will send the notification to the forest 

department. This can also predict the temperature using the 

sensor if the temperature goes higher than the certain rate 

according to the history of forest fire records it will intimate that 

there is a chance for fire. So this paper gives accurately 90% of 

exact result. In this we used a recent technology to use both 

Artificial Intelligence and image processing. 

Deep learning is also known as deep structured learning. It is 

a subset of machine learning where artificial neural network 

algorithms inspired by the human brain. It is similar to how we 

learn from experience. Learning can be supervised, 

unsupervised and semi supervised. Deep learning architectures 

such as deep neural network, deep belief network, recurrent 

neural networks and convolutional neural network have been 

applied to the fields including computer vision, speech 

recognition, social network filtering and so on. 

A. MNIST datasets 

The MNIST Datasets consists of handwritten digit image and 

it is divided in 60,000 examples for the training sets 10,000 

examples for testing. In many papers as well as in this tutorial, 

the official training set of 60,000 is divided into an actual 

training set of 50,000 examples and 10,000 validation examples 

(for selecting hyper-parameters like learning rate and size of the  

 

model). All digit images have been size- normalized and 

centered in a fixed size image of 28 x 28 pixels. In the original 

dataset each pixel of the image is represented by a value 

between 0 and 255, where 0 is black, 255 is white and anything 

in between is a different shade of grey. 

B. Notation 

Dataset notation We label data sets as D. When the 

distinction is important, we indicate train, validation, and test 

sets as: Dtrain, Dvalid and Dtest. The validation set is used to 

perform model selection and hyper-parameter selection, 

whereas the test set is used to evaluate the final generalization 

error and compare different algorithms in an unbiased way. 

Embedded system is a special purpose computer controlled 

electro-mechanical system in which the computer is completely 

encapsulated by the device it controls. An embedded system has 

specific requirements and performs pre- defined tasks, unlike a 

general-purpose personal computer. An embedded system is a 

computer- controlled system. 

The core of any embedded system is a microprocessor, 

programmed to perform a few tasks (often just one task). This 

is to be compared to other computer systems with general 

purpose hardware and externally loaded software loaded 

software. Embedded systems are often designed for mass 

production. 

C. Characteristics 

Embedded systems are computer systems in the widest sense. 

They include all computers. Most commercial embedded 

systems are designed to do some task at a low cost. Most, but 

not all have real- time system constraints that must be met. They 

may need to be very fast for some functions, but most other 

functions will probably not need speed. These systems meet 

their real- time constraints with a combination of special 

purpose hardware and software tailored to the system 

requirements. It is difficult to characterize embedded systems 

by speed or cost, but for high volume systems, cost usually 

dominates the system design. Often many parts of an embedded 

system need low performance compared to the primary mission 

of the system. This allows an embedded system to be 

intentionally simplified to lower costs compared to a general- 
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purpose computer accomplishing the same task, by using a CPU 

that is just “good enough” for these secondary functions. 

Embedded systems reside in machines that are expected to run 

continuously for years without errors. Therefore, the software 

is usually developed and tested more carefully than software for 

personal computers. Many embedded systems avoid 

mechanical moving parts such as disk drives, switches or 

buttons because these are unreliable compared to solid- state 

parts such as Flash memory. 

 

 
Fig. 1.  Image with fire and non-fire in camera 

 

In addition, the embedded systems may be outside the reach 

of humans, so the embedded system must be able to restart itself 

even if catastrophic data corruption has taken place. This is 

usually accomplished with a standard electronic part called a 

watchdog timer that resets the computer unless the software 

periodically resets the timer. 

D. Tensor flow 

Tensor flow is a free and open-source software library for 

dataflow and differentiable programming across a range of 

tasks. It is a symbolic math library and is also used for machine 

learning applications such as neural networks. It is used for both 

research and production at google. The tensor flow was written 

in python, c++. It works on the platform like linux, macos, 

windows, android. 

Tensor Data Structure Tensors are used as the basic data 

structures in Tensor Flow language. Tensors represent the 

connecting edges in any flow diagram called the Data Flow 

Graph. Tensors are defined as multidimensional array or list. 

E. Embedded System 

1) Autonomous 

Autonomous Systems function in standalone mode. Many 

embedded systems used for process control in manufacturing 

units and automobiles fall under this category. In process 

control systems the inputs originated from transducers that 

convert a physical quantity, such as temperature into an 

electrical signal. The system’s output controls the device. In 

standalone systems, the deadlines or response times are not 

critical. An air-conditioner can be set to turn on when the 

temperature reaches a certain level, measuring instruments and 

CD players are examples of Autonomous Systems. 

2) Real-Time 

Real-Time embedded systems are required to carry out 

specific tasks in a specified amount of time. These systems are 

extensively used to carry out time-critical task in process- 

control. For instance, a boiler plant must open the valves if the 

pressure exceeds a particular threshold. If the job is not carried 

out in the stipulated time, a catastrophe may result. 

3) Networked 

Networked embedded systems monitors plant parameters, 

such as temperature, pressure and humidity will send the data 

over the network to a centralized system for online monitoring. 

A networked-enabled web camera monitoring the plant floor 

transmits its video output to a remote controlling organization. 

4) Mobile 

Mobile gadgets need to store databases locally in their 

memory. These gadgets have powerful computing and 

communication capabilities to perform Real-Time as well as 

non-real-time tasks and handle multimedia applications. The 

gadgets embedded powerful processor and OS, and a lot of 

memory with minimal power consumption. 

 

 
Fig. 2.  Core of kendryte 

F. Deep Learning 

1) Classifying MNIST digits using logistic regression 

Logistic regression is a probabilistic, linear classifier. It is 

parametrized by a weight matrix W and a bias vector b. 

classification is done by projecting an input vector onto a set of 

hyperplanes each of which corresponds to a word. The distance 

from the input to a hyper plane reflects the probability that the 

input is a member of the corresponding class. 

Mathematically, the probability that an input vector is a 

member of a class,a value of a stochastic variable Y,can be 

written as: 

P(Y = i|x,W,b) = softmaxi(Wx + b)= eWix+bi Pj eWjx+bj 

Defining a loss function. 

Learning optimal model parameters involves minimizing a 

loss function. In the case of multi-class logistic regression, it is 

very common to use the negative log-likelihood as the loss. This 

is equivalent to maximizing the likelihood of the data set D 

under the model parameterized by θ.  

2) Multilayer perceptron 

The next architecture we are going to present using Theano 
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is the single-hidden-layer Multi-Layer Perceptron (MLP). An 

MLP can be viewed as a logistic regression classifier where the 

input is first transformed using a learnt non-linear 

transformation Φ. 

This transformation projects the input data into a space where 

it becomes linearly separable. This intermediate layer is 

referred to as a hidden layer. A single hidden layer is sufficient 

to make MLPas universal approximator. However, we will see 

later on that there are substantial benefits to using many such 

hidden layers, i.e. the very premise of deep learning. 

The model: 

An MLP (or Artificial Neural Network - ANN) with a single 

hidden layer can be represented. 

Formally, a one-hidden-layer MLP is a function f: RD → RL, 

where D is the size of input vector x and L 35 

Deep Learning Tutorial, Release 0.1 is the size of the output 

vector f(x), such that, in matrix notation: 

f(x) = G(b(2) + W(2)(s(b(1) + W(1)x))),with bias vectors 

b(1), b(2); weight matrices W(1), W(2) and activation functions 

G and s. The vector h(x) = Φ(x) = s(b(1) + W(1)x) constitutes 

the hidden layer. 

3) Convolutional neural networks (LENET) 

 
Fig. 3.  Grey scale image in deep learning 

 

Convolutional Neural Networks (CNN) are biologically- 

inspired variants of MLPs. we know the visual cortex contains 

a complex arrangement of cells. These cells are sensitive to 

small sub-regions of the visual field, called a receptive field. 

The sub-regions are tiled to cover the entire visual field. These 

cells act as local filters over the input space and are well-suited 

to exploit the strong spatially local correlation present in natural 

images. Additionally, two basic cell types have been identified: 

Simple cells respond maximally to specific edge-like patterns 

within their receptive field. Complex cells have larger receptive 

fields and are locally invariant to the exact position of the 

pattern. 

4) Sparse connectivity 

CNNs exploit spatially-local correlation by enforcing a local 

connectivity pattern between neurons of adjacent layers. In 

other words, the inputs of hidden units in layer m are from a 

subset of units in layer m-1, units that have spatially contiguous 

receptive fields. We can illustrate this graphically as follows: 

Imagine that layer m-1is the input retina. Units in layer m 

have receptive fields of width 3 in the input retina and are thus 

only connected to 3 adjacent neurons in the retina layer. Units 

in layer m+1 have a similar connectivity with the layer below. 

We say that their receptive field with respect to the layer below 

is also 3, but their receptive field with respect to the input is 

larger. 

Each unit is unresponsive to variations outside of its 

receptive field with respect to the retina. The architecture thus 

ensures that the learnt “filters” produce the strongest response 

to a spatially local input pattern. 

5) Max pooling 

Another important concept of CNNs is max-pooling, which 

is a form of non-linear down-sampling. Max- pooling partitions 

the input image into a set of non- overlapping rectangles and, 

for each such sub-region, outputs the maximum value. Max-

pooling is useful in vision for two reasons: 

1. By eliminating non-maximal values, it reduces 

computation for upper layers. 

2. It provides a form of translation invariance. Imagine 

cascading a max-pooling layer with a convolutional 

layer. 

There are 8 directions in which one can translate the input 

image by a single pixel. If max-pooling is done over a 2x2 

region, 3 out of these 8 possible configurations will produce 

exactly the same output at the convolutional layer. 

The Full Model: LeNet 

Sparse, convolutional layers and max-pooling are at the heart 

of the LeNet family of models. While the exact details of the 

model will vary greatly, the figure below shows a graphical 

depiction of a LeNet model. 

The lower-layers are composed to alternating convolution 

and max-pooling layers. The upper-layers however are fully-

connected and correspond to a traditional MLP (hidden layer + 

logistic regression). The input to the first fully-connected layer 

is the set of all features maps at the layer below. From an 

implementation point of view, this means lower-layers operate 

on 4D tensors. These are then flattened to a 2Dmatrix of 

rasterized feature maps, to be compatible with our previous 

MLP implementation. 

6) Denoising Autoencoders (DA) 

An autoencoder takes an input x ∈ [0,1]d and first maps it 

(with an encoder) to a hidden representation y ∈ [0,1]d0 through 

a deterministic mapping, e.g.: 

y = s(Wx+b) 

Where s is a non-linearity such as the sigmoid. The latent 

representation y, or code is then mapped back (with a decoder) 

into a reconstruction z of the same shape as x. The mapping 

happens through a similar transformation, e.g.: 

z = s(W0y+b0) Denoising Autoencoders 

The idea behind denoising auto encoders is simple. In order 

to force the hidden layer to discover more robust features and 

prevent it from simply learning the identity, we train the auto 

encoder to reconstruct the input from a corrupted version of it. 

The denoising auto-encoder is as to chastic version of the auto-

encoder. Intuitively, a denoising auto-encoder does two things: 

try to encode the input (preserve the information about the 

input), and try to bound other effect of a corruption process 
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stochastically applied to the input of the auto-encoder. The 

latter can only be done by capturing the statistical dependencies 

between the inputs. The denoising auto-encoder can be 

understood from different perspectives (the manifold learning 

perspective, stochastic operator perspective, bottom- up – 

information theoretic perspective, top-down – generative model 

perspective), all of which are explained for an overview of auto-

encoders. The stochastic corruption process randomly sets 

some of the inputs (as many as half of them) to zero. Hence the 

denoising auto-encoder is trying to predict the corrupted (i.e. 

missing) values from the uncorrupted (i.e., non- missing) 

values, for randomly selected subsets of missing patterns. Note 

how being able to predict any subset of variables from the rest 

is a sufficient condition for completely capturing the joint 

distribution between a set of variables (this is how Gibbs 

sampling works). To convert the auto encoder class into a 

denoising auto encoder class, all we need to do is to add a 

stochastic corruption step operating on the input. The input can 

be corrupted in many ways, but in this tutorial we will stick to 

the original corruption mechanism of randomly masking entries 

of the input by making them zero. 

 

 
Fig. 4.  Linear matric of grey scale images 

G. Stacked Denoising Encoders (SDA) 

1) Stacked Auto encoders 

Denoising auto encoders can be stacked to form a deep 

network by feeding the latent representation (output code) of 

the denoising auto encoder found on the layer below as input to 

the current layer. The unsupervised pre-training of such an 

architecture is done one layer at a time. Each layer is trained as 

a denoising auto encoder by minimizing the error in 

reconstructing its input (which is the output code of the 

previous layer). Once the first k layers are trained, we can train 

the k +1-the layer because we can now compute the code or 

latent representation from the layer below. Once all layers are 

pre-trained, the network goes through a second stage of training 

called fine-tuning. Here we consider supervised fine- tuning 

where we want to minimize prediction error on a supervised 

task. For this, we first add a logistic regression layer on top of 

the network (more precisely on the output code of the output 

layer). We then train the entire network as we would train a 

multilayer perceptron. At this point, we only consider the 

encoding parts of each auto-encoder. This stage is supervised, 

since now we use the target class during training. This can be 

easily implemented in Theano, using the class defined 

previously for a denoising auto encoder. We can see the stacked 

denoising auto encoder as having two facades: a list of 

autoencoders, and an MLP. During pre-training we use the first 

facade, i.e., we treat our model as a list of auto encoders, and 

train each auto encoder seperately. In the second stage of 

training, we use the second facade. These two facades are linked 

because: 

 The auto encoders and the sigmoid layers of the MLP 

share parameters, and 

 The latent representations computed by intermediate 

layers of the MLP are fed as input to the auto encoders. 

2) Restricted Bolzmann Machine (RBM) 

1. Energy-Based Models (EBM) 

Energy-based models associate a scalar energy to each 

configuration of the variables of interest. Learning corresponds 

to modifying that energy function so that its shape has desirable 

properties. For example, we would like plausible or desirable 

configurations to have low energy. Energy-based probabilistic 

models define a probability distribution through an energy 

function, as follows: p(x) = e−E(x) Z. 

The normalizing factor Z is called the partition function by 

analogy with physical systems. 

Restricted Boltzmann Machines (RBM) 

Boltzmann Machines (BMs) are a particular form of log- 

linear Markov Random Field (MRF), i.e., for which the energy 

function is linear in its free parameters. To make them powerful 

enough to represent complicated distributions (i.e., go from the 

limited parametric setting to a non-parametric one), we consider 

that some of the variables are never observed (they are called 

hidden). By having more hidden variables (also called hidden 

units), we can increase the modeling capacity of the Boltzmann 

Machine (BM). Restricted Boltzmann Machines further restrict 

BMs to those without visible-visible and hidden-hidden 

connections. A graphical depiction of an RBM is shown below. 

The energy function E(v,h) of an RBM is defined as: E(v,h) 

=−b0v−c0h−h0Wv where W represents the weights connecting 

hidden and visible units and b, c are the offsets of the visible 

and hidden layers respectively. 

RBMs with binary units In the commonly studied case of 

using binary units (where vj and hi ∈ {0,1}) 

Sampling in an RBM 

Samples of p(x) can be obtained by running a Markov chain 

to convergence, using Gibbs sampling as the transition 

operator. Gibbs sampling of the joint of N random variables S 

= (S1,...,SN) is done through a sequence of N sampling sub-

steps of the form Si ∼ p(Si|S−i) where S−i contains the N −1 

other random variables in S excluding Si. For RBMs, S consists 

of the set of visible and hidden units. However, since they are 

conditionally independent, one can perform block Gibbs 

sampling. In this setting, visible units are sampled 

simultaneously given fixed values of the hidden units. 

Similarly, hidden units are sampled simultaneously given the 

visible. 



International Journal of Research in Engineering, Science and Management  

Volume-3, Issue-3, March-2020 

www.ijresm.com | ISSN (Online): 2581-5792     

 

169 

3) Deep belief networks 

RBM scan be stacked and trained in a greedy manner to form 

so called Deep Belief Networks (DBN). DBNs are graphical 

models which learn to extract a deep hierarchical representation 

of the training data. They model the joint distribution between 

observed vector x and the hidden layers hk as follows: P(x, 

h1,...,h`) = `−2 Y k=0 P(hk|hk+1)!P(h`−1,h`) 

The principle of greedy layer-wise unsupervised training can 

be applied to DBNs with RBMs as, 

The building blocks for each layer The process is as follows: 

1. Train the first layer as an RBM that models the raw input x = 

h(0) as its visible layer. 2. Use that first layer to obtain a 

representation of the input that will be used as data for these 

condlayer. Two common solutions exist. This representation 

can be chosen as being the mean activations p(h(1) = 1|h(0)) or 

samples of p(h(1)|h(0)). 3. Train the second layer as an RBM, 

taking the transformed data (samples or mean activations) as 

training examples (for the visible layer of that RBM). 4. Iterate 

(2 and 3) for the desired number of layers, each time 

propagating upward either samples or mean values. 

 

 
Fig. 5.  Deep belief networks 

 

4) Hybrid monte-carlo sampling 

In HMC, model samples are obtained by simulating a 

physical system, where particles move about a high- 

dimensional landscape, subject to potential and kinetic 

energies. Adapting the notation from [Neal 93], particles are 

characterized by a position vector or state s ∈RD and velocity 

vector φ ∈RD. The combined state of a particle is denoted as χ 

= (s,φ). The Hamiltonian is then defined as the sum of potential 

energy E(s) (same energy function defined by energy- based 

models) and kinetic energy K(φ), as follows: H(s,φ) = E(s)+ 

K(φ) = E(s)+ 1 2X iφ2i 

HMC Algorithm in this tutorial, we obtain a new HMC 

sample as follows: 

1. Sample a new velocity from a univariate Gaussian 

distribution. 

2. Perform n leapfrog steps to obtain the new state χ0 

3. Perform accept/reject move of χ0 

HMC_sampler We finally tie everything together using the 

HMC_Sampler class. Its main elements are: 

new_from_shared_positions: a constructor method which 

allocates various shared variables and strings together the calls 

to hmc_move and hmc_updates. It also builds the theano 

function simulate, whose sole purpose is to execute the updates 

generated by hmc_updates. 

draw: a convenience method which calls the Theano function 

simulate and returns a copy of the contents of the shared 

variable self-positions. 

5) Recurrent neural network model 

Raw input encoding: 

A token corresponds to a word. Each token in the ATIS 

vocabulary is associated to an index. Each sentence is a array 

of indexes (int32). 

Then, each set (train, valid, test) is a list of arrays of indexes. 

A python dictionary is defined for mapping the space of indexes 

to the space of words. 

Context window 

Given a sentence i.e. an array of indexes, and a window size 

i.e. 1,3,5,..., we need to convert each word in the sentence to a 

context window surrounding this particular word. In details, we 

have: 

 Word embeddings: 

Once we have the sentence converted to context windows 

i.e. a matrix of indexes, we have to associate these indexes to 

the embeddings (real-valued vector associated to each word). 

Elman recurrent neural network: 

The following (Elman) recurrent neural network (E-RNN) 

takes as input the current input (time t) and the previous hidden 

t state (time t-1). Then it iterates. In the previous section, we 

processed the input to fit this sequential/temporal structure. It 

consists in a matrix where the row 0 corresponds to the time 

step t=0, the row 1 corresponds to the time step t=1, etc. The 

parameters of the E-RNN to be learned are: 

 the word embeddings (real-valued matrix) 

 the initial hidden state (real-value vector) 

 two matrices for the linear projection of the input t 

and the previous hidden layer state t-1 (optional) 

bias. Recommendation: don’t use it. 

 softmax classification layer on top The hyper 

parameters define the whole architecture: 

o dimension of the word embedding 

 size of the vocabulary 

o number of hidden units 

o number of classes 

 random seed + way to initialize the model 

H. Tensor flow 

1) Tensor flow-line regression 

Linear regression implementation using tensor flow.   

Logistic regression or linear regression is a supervised machine 

learning approach for the classification of order discrete 

categories. Our goal in this chapter is to build a model by which 

a user can predict the relationship between predictor variables 

and one or more independent variables. 

The relationship between these two variables is considered 
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linear. If y is the dependent variable and x is considered as the 

independent variable, then the linear regression relationship of 

two variables will look like the following equation: 

Y= Ax+b 

We will design an algorithm for linear regression. This will 

allow us to understand the following two important concepts: 

 Cost function 

 Gradient descent algorithms 

I. Tensorflow object detection 

TensorFlow includes a special feature of object detection and 

these objects or images are stored in a specific folder. With 

relatively same object, it will be easy to implement this logic 

for security purposes. 

The folder structure of object detection code implementation 

is as shown below: 

The dataset_object includes the related images, which need 

to be loaded. We will focus on object detection with our logo 

defined in it. The objects are loaded with “load_data.py” script, 

which helps in keeping a note on various object detection 

modules within them. 

2. Conclusion 

This paper presented an overview on forest fire smoke 

recognition and temperature prediction using data science. 
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