
International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

165

Abstract: Detection forest fire smoke during the initial stage is

vital for preventing forest for events. Recent studies have been

shown that exploring fire can be detected by using the video based

real capturing and monitoring real time using the camera (K210)

image processing and predicting the fire based on the trained

network (CNNs) by the temperature sensor if the temperature falls

high than usual then it is analyzed that there is a chance of fire so

the alert message or the notification is sent to the forest

department.

Keywords: Fire detection, Notification, Temperature

measuring.

1. Introduction

Smoke detection is done with the real time video based

camera which will divide the video into frames and those

frames are processed as image and compared with the database

which is trained with certain images are differentiated with fire

and non-fire in forest and trees and it will be. This paper is will

detect the fire and will send the notification to the forest

department. This can also predict the temperature using the

sensor if the temperature goes higher than the certain rate

according to the history of forest fire records it will intimate that

there is a chance for fire. So this paper gives accurately 90% of

exact result. In this we used a recent technology to use both

Artificial Intelligence and image processing.

Deep learning is also known as deep structured learning. It is

a subset of machine learning where artificial neural network

algorithms inspired by the human brain. It is similar to how we

learn from experience. Learning can be supervised,

unsupervised and semi supervised. Deep learning architectures

such as deep neural network, deep belief network, recurrent

neural networks and convolutional neural network have been

applied to the fields including computer vision, speech

recognition, social network filtering and so on.

A. MNIST datasets

The MNIST Datasets consists of handwritten digit image and

it is divided in 60,000 examples for the training sets 10,000

examples for testing. In many papers as well as in this tutorial,

the official training set of 60,000 is divided into an actual

training set of 50,000 examples and 10,000 validation examples

(for selecting hyper-parameters like learning rate and size of the

model). All digit images have been size- normalized and

centered in a fixed size image of 28 x 28 pixels. In the original

dataset each pixel of the image is represented by a value

between 0 and 255, where 0 is black, 255 is white and anything

in between is a different shade of grey.

B. Notation

Dataset notation We label data sets as D. When the

distinction is important, we indicate train, validation, and test

sets as: Dtrain, Dvalid and Dtest. The validation set is used to

perform model selection and hyper-parameter selection,

whereas the test set is used to evaluate the final generalization

error and compare different algorithms in an unbiased way.

Embedded system is a special purpose computer controlled

electro-mechanical system in which the computer is completely

encapsulated by the device it controls. An embedded system has

specific requirements and performs pre- defined tasks, unlike a

general-purpose personal computer. An embedded system is a

computer- controlled system.

The core of any embedded system is a microprocessor,

programmed to perform a few tasks (often just one task). This

is to be compared to other computer systems with general

purpose hardware and externally loaded software loaded

software. Embedded systems are often designed for mass

production.

C. Characteristics

Embedded systems are computer systems in the widest sense.

They include all computers. Most commercial embedded

systems are designed to do some task at a low cost. Most, but

not all have real- time system constraints that must be met. They

may need to be very fast for some functions, but most other

functions will probably not need speed. These systems meet

their real- time constraints with a combination of special

purpose hardware and software tailored to the system

requirements. It is difficult to characterize embedded systems

by speed or cost, but for high volume systems, cost usually

dominates the system design. Often many parts of an embedded

system need low performance compared to the primary mission

of the system. This allows an embedded system to be

intentionally simplified to lower costs compared to a general-

Forest Fire Smoke Recognition and Temperature

Prediction using Data Science

J. P. Deepa Lakshmi1, A. Shivani2, R. Swetha3, V. Anitha Moses4

1,2,3Student, Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, India
4Assistant Professor, Department of Computer Science and Engineering, Panimalar Engineering College,

Chennai, India

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

166

purpose computer accomplishing the same task, by using a CPU

that is just “good enough” for these secondary functions.

Embedded systems reside in machines that are expected to run

continuously for years without errors. Therefore, the software

is usually developed and tested more carefully than software for

personal computers. Many embedded systems avoid

mechanical moving parts such as disk drives, switches or

buttons because these are unreliable compared to solid- state

parts such as Flash memory.

Fig. 1. Image with fire and non-fire in camera

In addition, the embedded systems may be outside the reach

of humans, so the embedded system must be able to restart itself

even if catastrophic data corruption has taken place. This is

usually accomplished with a standard electronic part called a

watchdog timer that resets the computer unless the software

periodically resets the timer.

D. Tensor flow

Tensor flow is a free and open-source software library for

dataflow and differentiable programming across a range of

tasks. It is a symbolic math library and is also used for machine

learning applications such as neural networks. It is used for both

research and production at google. The tensor flow was written

in python, c++. It works on the platform like linux, macos,

windows, android.

Tensor Data Structure Tensors are used as the basic data

structures in Tensor Flow language. Tensors represent the

connecting edges in any flow diagram called the Data Flow

Graph. Tensors are defined as multidimensional array or list.

E. Embedded System

1) Autonomous

Autonomous Systems function in standalone mode. Many

embedded systems used for process control in manufacturing

units and automobiles fall under this category. In process

control systems the inputs originated from transducers that

convert a physical quantity, such as temperature into an

electrical signal. The system’s output controls the device. In

standalone systems, the deadlines or response times are not

critical. An air-conditioner can be set to turn on when the

temperature reaches a certain level, measuring instruments and

CD players are examples of Autonomous Systems.

2) Real-Time

Real-Time embedded systems are required to carry out

specific tasks in a specified amount of time. These systems are

extensively used to carry out time-critical task in process-

control. For instance, a boiler plant must open the valves if the

pressure exceeds a particular threshold. If the job is not carried

out in the stipulated time, a catastrophe may result.

3) Networked

Networked embedded systems monitors plant parameters,

such as temperature, pressure and humidity will send the data

over the network to a centralized system for online monitoring.

A networked-enabled web camera monitoring the plant floor

transmits its video output to a remote controlling organization.

4) Mobile

Mobile gadgets need to store databases locally in their

memory. These gadgets have powerful computing and

communication capabilities to perform Real-Time as well as

non-real-time tasks and handle multimedia applications. The

gadgets embedded powerful processor and OS, and a lot of

memory with minimal power consumption.

Fig. 2. Core of kendryte

F. Deep Learning

1) Classifying MNIST digits using logistic regression

Logistic regression is a probabilistic, linear classifier. It is

parametrized by a weight matrix W and a bias vector b.

classification is done by projecting an input vector onto a set of

hyperplanes each of which corresponds to a word. The distance

from the input to a hyper plane reflects the probability that the

input is a member of the corresponding class.

Mathematically, the probability that an input vector is a

member of a class,a value of a stochastic variable Y,can be

written as:

P(Y = i|x,W,b) = softmaxi(Wx + b)= eWix+bi Pj eWjx+bj

Defining a loss function.

Learning optimal model parameters involves minimizing a

loss function. In the case of multi-class logistic regression, it is

very common to use the negative log-likelihood as the loss. This

is equivalent to maximizing the likelihood of the data set D

under the model parameterized by θ.

2) Multilayer perceptron

The next architecture we are going to present using Theano

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

167

is the single-hidden-layer Multi-Layer Perceptron (MLP). An

MLP can be viewed as a logistic regression classifier where the

input is first transformed using a learnt non-linear

transformation Φ.

This transformation projects the input data into a space where

it becomes linearly separable. This intermediate layer is

referred to as a hidden layer. A single hidden layer is sufficient

to make MLPas universal approximator. However, we will see

later on that there are substantial benefits to using many such

hidden layers, i.e. the very premise of deep learning.

The model:

An MLP (or Artificial Neural Network - ANN) with a single

hidden layer can be represented.

Formally, a one-hidden-layer MLP is a function f: RD → RL,

where D is the size of input vector x and L 35

Deep Learning Tutorial, Release 0.1 is the size of the output

vector f(x), such that, in matrix notation:

f(x) = G(b(2) + W(2)(s(b(1) + W(1)x))),with bias vectors

b(1), b(2); weight matrices W(1), W(2) and activation functions

G and s. The vector h(x) = Φ(x) = s(b(1) + W(1)x) constitutes

the hidden layer.

3) Convolutional neural networks (LENET)

Fig. 3. Grey scale image in deep learning

Convolutional Neural Networks (CNN) are biologically-

inspired variants of MLPs. we know the visual cortex contains

a complex arrangement of cells. These cells are sensitive to

small sub-regions of the visual field, called a receptive field.

The sub-regions are tiled to cover the entire visual field. These

cells act as local filters over the input space and are well-suited

to exploit the strong spatially local correlation present in natural

images. Additionally, two basic cell types have been identified:

Simple cells respond maximally to specific edge-like patterns

within their receptive field. Complex cells have larger receptive

fields and are locally invariant to the exact position of the

pattern.

4) Sparse connectivity

CNNs exploit spatially-local correlation by enforcing a local

connectivity pattern between neurons of adjacent layers. In

other words, the inputs of hidden units in layer m are from a

subset of units in layer m-1, units that have spatially contiguous

receptive fields. We can illustrate this graphically as follows:

Imagine that layer m-1is the input retina. Units in layer m

have receptive fields of width 3 in the input retina and are thus

only connected to 3 adjacent neurons in the retina layer. Units

in layer m+1 have a similar connectivity with the layer below.

We say that their receptive field with respect to the layer below

is also 3, but their receptive field with respect to the input is

larger.

Each unit is unresponsive to variations outside of its

receptive field with respect to the retina. The architecture thus

ensures that the learnt “filters” produce the strongest response

to a spatially local input pattern.

5) Max pooling

Another important concept of CNNs is max-pooling, which

is a form of non-linear down-sampling. Max- pooling partitions

the input image into a set of non- overlapping rectangles and,

for each such sub-region, outputs the maximum value. Max-

pooling is useful in vision for two reasons:

1. By eliminating non-maximal values, it reduces

computation for upper layers.

2. It provides a form of translation invariance. Imagine

cascading a max-pooling layer with a convolutional

layer.

There are 8 directions in which one can translate the input

image by a single pixel. If max-pooling is done over a 2x2

region, 3 out of these 8 possible configurations will produce

exactly the same output at the convolutional layer.

The Full Model: LeNet

Sparse, convolutional layers and max-pooling are at the heart

of the LeNet family of models. While the exact details of the

model will vary greatly, the figure below shows a graphical

depiction of a LeNet model.

The lower-layers are composed to alternating convolution

and max-pooling layers. The upper-layers however are fully-

connected and correspond to a traditional MLP (hidden layer +

logistic regression). The input to the first fully-connected layer

is the set of all features maps at the layer below. From an

implementation point of view, this means lower-layers operate

on 4D tensors. These are then flattened to a 2Dmatrix of

rasterized feature maps, to be compatible with our previous

MLP implementation.

6) Denoising Autoencoders (DA)

An autoencoder takes an input x ∈ [0,1]d and first maps it

(with an encoder) to a hidden representation y ∈ [0,1]d0 through

a deterministic mapping, e.g.:

y = s(Wx+b)

Where s is a non-linearity such as the sigmoid. The latent

representation y, or code is then mapped back (with a decoder)

into a reconstruction z of the same shape as x. The mapping

happens through a similar transformation, e.g.:

z = s(W0y+b0) Denoising Autoencoders

The idea behind denoising auto encoders is simple. In order

to force the hidden layer to discover more robust features and

prevent it from simply learning the identity, we train the auto

encoder to reconstruct the input from a corrupted version of it.

The denoising auto-encoder is as to chastic version of the auto-

encoder. Intuitively, a denoising auto-encoder does two things:

try to encode the input (preserve the information about the

input), and try to bound other effect of a corruption process

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

168

stochastically applied to the input of the auto-encoder. The

latter can only be done by capturing the statistical dependencies

between the inputs. The denoising auto-encoder can be

understood from different perspectives (the manifold learning

perspective, stochastic operator perspective, bottom- up –

information theoretic perspective, top-down – generative model

perspective), all of which are explained for an overview of auto-

encoders. The stochastic corruption process randomly sets

some of the inputs (as many as half of them) to zero. Hence the

denoising auto-encoder is trying to predict the corrupted (i.e.

missing) values from the uncorrupted (i.e., non- missing)

values, for randomly selected subsets of missing patterns. Note

how being able to predict any subset of variables from the rest

is a sufficient condition for completely capturing the joint

distribution between a set of variables (this is how Gibbs

sampling works). To convert the auto encoder class into a

denoising auto encoder class, all we need to do is to add a

stochastic corruption step operating on the input. The input can

be corrupted in many ways, but in this tutorial we will stick to

the original corruption mechanism of randomly masking entries

of the input by making them zero.

Fig. 4. Linear matric of grey scale images

G. Stacked Denoising Encoders (SDA)

1) Stacked Auto encoders

Denoising auto encoders can be stacked to form a deep

network by feeding the latent representation (output code) of

the denoising auto encoder found on the layer below as input to

the current layer. The unsupervised pre-training of such an

architecture is done one layer at a time. Each layer is trained as

a denoising auto encoder by minimizing the error in

reconstructing its input (which is the output code of the

previous layer). Once the first k layers are trained, we can train

the k +1-the layer because we can now compute the code or

latent representation from the layer below. Once all layers are

pre-trained, the network goes through a second stage of training

called fine-tuning. Here we consider supervised fine- tuning

where we want to minimize prediction error on a supervised

task. For this, we first add a logistic regression layer on top of

the network (more precisely on the output code of the output

layer). We then train the entire network as we would train a

multilayer perceptron. At this point, we only consider the

encoding parts of each auto-encoder. This stage is supervised,

since now we use the target class during training. This can be

easily implemented in Theano, using the class defined

previously for a denoising auto encoder. We can see the stacked

denoising auto encoder as having two facades: a list of

autoencoders, and an MLP. During pre-training we use the first

facade, i.e., we treat our model as a list of auto encoders, and

train each auto encoder seperately. In the second stage of

training, we use the second facade. These two facades are linked

because:

 The auto encoders and the sigmoid layers of the MLP

share parameters, and

 The latent representations computed by intermediate

layers of the MLP are fed as input to the auto encoders.

2) Restricted Bolzmann Machine (RBM)

1. Energy-Based Models (EBM)

Energy-based models associate a scalar energy to each

configuration of the variables of interest. Learning corresponds

to modifying that energy function so that its shape has desirable

properties. For example, we would like plausible or desirable

configurations to have low energy. Energy-based probabilistic

models define a probability distribution through an energy

function, as follows: p(x) = e−E(x) Z.

The normalizing factor Z is called the partition function by

analogy with physical systems.

Restricted Boltzmann Machines (RBM)

Boltzmann Machines (BMs) are a particular form of log-

linear Markov Random Field (MRF), i.e., for which the energy

function is linear in its free parameters. To make them powerful

enough to represent complicated distributions (i.e., go from the

limited parametric setting to a non-parametric one), we consider

that some of the variables are never observed (they are called

hidden). By having more hidden variables (also called hidden

units), we can increase the modeling capacity of the Boltzmann

Machine (BM). Restricted Boltzmann Machines further restrict

BMs to those without visible-visible and hidden-hidden

connections. A graphical depiction of an RBM is shown below.

The energy function E(v,h) of an RBM is defined as: E(v,h)

=−b0v−c0h−h0Wv where W represents the weights connecting

hidden and visible units and b, c are the offsets of the visible

and hidden layers respectively.

RBMs with binary units In the commonly studied case of

using binary units (where vj and hi ∈ {0,1})

Sampling in an RBM

Samples of p(x) can be obtained by running a Markov chain

to convergence, using Gibbs sampling as the transition

operator. Gibbs sampling of the joint of N random variables S

= (S1,...,SN) is done through a sequence of N sampling sub-

steps of the form Si ∼ p(Si|S−i) where S−i contains the N −1

other random variables in S excluding Si. For RBMs, S consists

of the set of visible and hidden units. However, since they are

conditionally independent, one can perform block Gibbs

sampling. In this setting, visible units are sampled

simultaneously given fixed values of the hidden units.

Similarly, hidden units are sampled simultaneously given the

visible.

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

169

3) Deep belief networks

RBM scan be stacked and trained in a greedy manner to form

so called Deep Belief Networks (DBN). DBNs are graphical

models which learn to extract a deep hierarchical representation

of the training data. They model the joint distribution between

observed vector x and the hidden layers hk as follows: P(x,

h1,...,h`) = `−2 Y k=0 P(hk|hk+1)!P(h`−1,h`)

The principle of greedy layer-wise unsupervised training can

be applied to DBNs with RBMs as,

The building blocks for each layer The process is as follows:

1. Train the first layer as an RBM that models the raw input x =

h(0) as its visible layer. 2. Use that first layer to obtain a

representation of the input that will be used as data for these

condlayer. Two common solutions exist. This representation

can be chosen as being the mean activations p(h(1) = 1|h(0)) or

samples of p(h(1)|h(0)). 3. Train the second layer as an RBM,

taking the transformed data (samples or mean activations) as

training examples (for the visible layer of that RBM). 4. Iterate

(2 and 3) for the desired number of layers, each time

propagating upward either samples or mean values.

Fig. 5. Deep belief networks

4) Hybrid monte-carlo sampling

In HMC, model samples are obtained by simulating a

physical system, where particles move about a high-

dimensional landscape, subject to potential and kinetic

energies. Adapting the notation from [Neal 93], particles are

characterized by a position vector or state s ∈RD and velocity

vector φ ∈RD. The combined state of a particle is denoted as χ

= (s,φ). The Hamiltonian is then defined as the sum of potential

energy E(s) (same energy function defined by energy- based

models) and kinetic energy K(φ), as follows: H(s,φ) = E(s)+

K(φ) = E(s)+ 1 2X iφ2i

HMC Algorithm in this tutorial, we obtain a new HMC

sample as follows:

1. Sample a new velocity from a univariate Gaussian

distribution.

2. Perform n leapfrog steps to obtain the new state χ0

3. Perform accept/reject move of χ0

HMC_sampler We finally tie everything together using the

HMC_Sampler class. Its main elements are:

new_from_shared_positions: a constructor method which

allocates various shared variables and strings together the calls

to hmc_move and hmc_updates. It also builds the theano

function simulate, whose sole purpose is to execute the updates

generated by hmc_updates.

draw: a convenience method which calls the Theano function

simulate and returns a copy of the contents of the shared

variable self-positions.

5) Recurrent neural network model

Raw input encoding:

A token corresponds to a word. Each token in the ATIS

vocabulary is associated to an index. Each sentence is a array

of indexes (int32).

Then, each set (train, valid, test) is a list of arrays of indexes.

A python dictionary is defined for mapping the space of indexes

to the space of words.

Context window

Given a sentence i.e. an array of indexes, and a window size

i.e. 1,3,5,..., we need to convert each word in the sentence to a

context window surrounding this particular word. In details, we

have:

 Word embeddings:

Once we have the sentence converted to context windows

i.e. a matrix of indexes, we have to associate these indexes to

the embeddings (real-valued vector associated to each word).

Elman recurrent neural network:

The following (Elman) recurrent neural network (E-RNN)

takes as input the current input (time t) and the previous hidden

t state (time t-1). Then it iterates. In the previous section, we

processed the input to fit this sequential/temporal structure. It

consists in a matrix where the row 0 corresponds to the time

step t=0, the row 1 corresponds to the time step t=1, etc. The

parameters of the E-RNN to be learned are:

 the word embeddings (real-valued matrix)

 the initial hidden state (real-value vector)

 two matrices for the linear projection of the input t

and the previous hidden layer state t-1 (optional)

bias. Recommendation: don’t use it.

 softmax classification layer on top The hyper

parameters define the whole architecture:

o dimension of the word embedding

 size of the vocabulary

o number of hidden units

o number of classes

 random seed + way to initialize the model

H. Tensor flow

1) Tensor flow-line regression

Linear regression implementation using tensor flow.

Logistic regression or linear regression is a supervised machine

learning approach for the classification of order discrete

categories. Our goal in this chapter is to build a model by which

a user can predict the relationship between predictor variables

and one or more independent variables.

The relationship between these two variables is considered

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-3, March-2020

www.ijresm.com | ISSN (Online): 2581-5792

170

linear. If y is the dependent variable and x is considered as the

independent variable, then the linear regression relationship of

two variables will look like the following equation:

Y= Ax+b

We will design an algorithm for linear regression. This will

allow us to understand the following two important concepts:

 Cost function

 Gradient descent algorithms

I. Tensorflow object detection

TensorFlow includes a special feature of object detection and

these objects or images are stored in a specific folder. With

relatively same object, it will be easy to implement this logic

for security purposes.

The folder structure of object detection code implementation

is as shown below:

The dataset_object includes the related images, which need

to be loaded. We will focus on object detection with our logo

defined in it. The objects are loaded with “load_data.py” script,

which helps in keeping a note on various object detection

modules within them.

2. Conclusion

This paper presented an overview on forest fire smoke

recognition and temperature prediction using data science.

References

[1] H. Tian, W. Li, P. O. Ogunbona, and L. Wang, “Detection and Separation
of Smoke from Single Image Frames,” IEEE Transactions on Image

Processing, vol. PP, no. 99, pp. 1–1, 2018.

[2] Z. Yin, B. Wan, F. Yuan, X. Xia, and J. Shi, “A Deep Normalization and
Convolutional Neural Network for Image Smoke Detection,” IEEE

Access, vol. 5, pp. 18429–18438, 2017.

[3] F. Yuan, X. Xia, J. Shi, H. Li, and G. Li, “Non-Linear Dimensionality
Reduction and Gaussian Process Based Classification Method for Smoke

Detection,” IEEE Access, vol. 5, no. 99, pp. 6833–6841,2017.

[4] K. Dimitropoulos, P. Barmpoutis, and N. Grammalidis, “Higher Order
Linear Dynamical Systems for Smoke Detection in Video Surveillance

Applications,” IEEE Transactions on Circuits & Systems for Video

Technology, vol. PP, no. 99, pp. 1–1, 2017.
[5] G. Lin, Y. Zhang, G. Xu, and Q. Zhang, “Smoke Detection on Video

Sequences Using 3D Convolutional Neural Networks,” Fire Technol,

Feb. 2019.

[6] A. E. Çetin et al., “Video fire detection – Review,” Digital Signal

Processing, vol. 23, no. 6, pp. 1827–1843, 2013.

[7] J. A. Ojo and J. A. Oladosu, “Video-based Smoke Detection Algorithms:
A Chronological Survey,” Computer Engineering and Intelligent

Systems, vol. 5, no. 7, pp. 38–50, 2014.

[8] C. Long et al., “Transmission: A New Feature for Computer Vision Based
Smoke Detection,” in Artificial Intelligence and Computational

Intelligence, vol. 6319.

[9] F. L. Wang, H. Deng, Y. Gao, and J. Lei, F. N. Yuan, “A double mapping
framework for extraction of shape- invariant features based on multi-scale

partitions with AdaBoost for video smoke detection,” Pattern

Recognition, vol. 45, no. 12, pp. 4326– 4336, Dec. 2012.
[10] H. Tian, W. Li, L. Wang, and P. Ogunbona, “Smoke Detection in Video:

An Image Separation Approach,” International Journal of Computer

Vision, vol. 106, no. 2, pp. 192–209, Jan. 2014.

