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Abstract: This paper explores the intuition, reliability and 

relevance of the cost function while developing machine learning 

models and how to utilise this function with the gradient descent 

algorithm. The Cost Function is a method through which I assess 

the reliability of a machine learning model. In this paper I will 

discuss the meaning and logic behind the cost function and hence 

illustrate the intuitions and derivations behind the cost functions 

fitting various machine learning models. The usage of the cost 

function is central in deriving a proper and reliable model hence 

this paper verifies the prominence and approach to various models 

fitting various situations. 

 
Keywords: Cost Function, Optimization, Machine learning 

models. 

1. Introduction 

The following paper will discuss the methodology and 

derivation of the cost function through the graphical and 

mathematical approaches. I will take this further by combining 

these cost function approaches to the gradient descent algorithm 

to finally get the best possible machine learning model. When 

discussing regression models and their cost functions I will also 

be looking to define our equation using the Bias-Variance 

Tradeoff. 

A. Define the Cost Function 

The cost function is a mathematical model that minimizes the 

difference between the predicted and real values. However, the 

word "minimization" here refers to bringing our error rate as 

close as possible to 0, a negative cost function value is in fact 

equally harmful as a high positive one. 

B. Define the Loss Function 

The Loss function is in fact similar to the cost function. 

However, it is calculated specifically for each example set. So 

for a dataset the loss function calculates the possible error for 

the Ith example not all n examples in a dataset. 

C. Define Expectation 

 Mathematical Expectation is the summation of all products 

of the probability of a certain value occurring and the actual 

occurred value in real-time collection. 

 

𝐸(𝑥) = [𝑥1𝑝1 + 𝑥2𝑝2 + 𝑥3𝑝3. . . +𝑥𝑛𝑝𝑛]                            (1) 

 

  

The expectation function will be a key link in this paper 

hence, I will take an example to explain it. Suppose I have the 

following data set:  

 

𝑋 = [3,4,5,2,1,8,6]                                                            (2) 

 

Here the value of any particular number occurring when picking 

a number is 1/7. Hence expectation becomes:  

 

𝐸(𝑥) = 3 ∗ 1/7 + 4 ∗ 1/7. . . +6/7                                (3) 

 

 
Suppose I am predicting house prices. While using linear 

regression my output comes as shown above. This is a classic 

example where the cost function plays a highly important role. 

Majority of the data points are way off than what they are 

supposed to be and hence I need to first calculate the very 

aggregate deviation of all the points or in mathematical terms 

the cost function. Now let’s get started by deriving a function 

through which you can best visualize the penalty this model 

should get for being off at the perfect combination. 

This is a simple linear regression equation: 

 

 𝑌 = 𝑚 + 𝑛𝑥                                                                (4) 

 

For any regression function, or any machine learning model 

the very purpose is to achieve accuracy and supply a reliable 

mode. On parallel lines, I want the values of M and N to be the 

best fit to this particular model and dataset. When creating a 

model using a training set of say n examples I for sure know for 

n examples of X the exact value of Y. Hence what I am 

essentially doing is minimizing over M and N, or minimizing 

the discrepancy between the model and the actual values. For 

simplicity I can assume that m = 0. The above assumption leads 
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us to this equation, 

 

 𝐽 = 𝑌(𝑝𝑟𝑒𝑑) − 𝑌                                                        (5) 

 

As desired by us the above function should be as close to 0 

as possible. As mentioned above, this value can be both 

negative and positive so as to remove sign discrepancies and the 

value differences I take a squared function resulting in this:  

 

 (𝑌(𝑝𝑟𝑒𝑑) − 𝑦)2                                                            (6) 

 

 Now these values are specific to some training example in 

our dataset hence I have finally arrived at our ’Loss Function’, 

a calculation of the error rate for a specific data example. 

Now one value is not a good estimator for the error scope in 

our entire function hence the most logical way to find the ’error 

rate’ is by finding an average. This logic results in our the 

following equation:  

 
1

𝑛
∑𝑛

𝑖=1 (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦)2                                                       (7) 

 

 If I repeat the process again and again I get a graph like this, 

which is plotted as the Cost versus the n variable (remember I 

kept m = 0):  

 
So I now end up with a cumulative average error rate of our 

function and I finally have our cost function. 

2. Introducing the Gradient Descent Algorithm 

Since I have finally defined our cost function, now one very 

crucial question arises: How do I use our cost function to 

minimize the error. The above graph shows how there can be 

infinite values of m and n for the linear regression but only one 

minima. To compute and find this minima the gradient descent 

algorithm is used. An important thing to note is, unlike the cost 

function, the gradient descent is a more generalized algorithm 

which can be utilized to find the minimum of several possible 

cost functions. In essence gradient descent, as the name 

suggests, finds the point where the gradient is minimum. The 

above graph is a parabola and its minimum its derivative is 0, 

meaning gradient is minimum. Gradient descent can be 

visualized as well. Consider yourself on a rocky mountainous 

terrain wherein you must take a step by step route to the valley. 

This is the essence of the gradient descent algorithm and it is 

defined as follows: 

𝜃𝑗 ≔ 𝜃𝑗 + 𝑎
𝜕

𝜕𝜃𝑗
𝐽(𝜃, 𝜃1)                                                       (8) 

The first thing to notice is that I don’t have an equals to 

function but an assignment operator present in our equation. 

The operator indicates that the 𝜃 on the left will be assigned the 

value computed on the right. The assisgnment operator itself 

hints at the fact that value will be repeatedly change. So 

whenever the gradient descent algorithm is implemented it is 

calculated until convergence of the J(𝜃, 𝜃1) function, meaning 

the cost function. As explained above, I want to reach the 

minima of the cost and hence the gradient descent algorithm 

plays a central role in doing so. Now, the a is also defined as the 

learning rate. So in the above graphs I can see that I need to take 

a step by step approach to reach the minima of a convex graph. 

The learning rate is essentially the ’step size’, or how much 

further the algorithm goes before defining the value again. An 

important thing to note is the fact that I can define the learning 

rate ourselves, so I can decide the step size our algorithm will 

take. Now, the function also includes the first derivative and the 

obvious reason is that this part defined the slope of the graph. 

Further, the first derivative also lets us know the direction of the 

function, whether it has a positive or a negative slope. 

Now let’s discuss the implementation of this algorithm. So 

since I have a recursive function I can start from any value 

knowing that I will eventually land at the minima. Hence I 

initialize m and n in the linear regression function to 0 or very 

close to 0. The values are then plugged in to the algorithm to 

find new values of m and n. 

I start by plugging in our cost function  

 

𝜃𝑗: = 𝜃𝑗 + 𝑎
𝜕

𝜕𝜃𝑗
𝐽(𝜃, 𝜃1)                                                    (9) 

  
𝜕

𝜕𝜃𝑗
𝐽(𝜃, 𝜃1) =

𝜕

𝜕𝜃𝑗

1

𝑛
∑𝑛

𝑖=1 (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦)2                      (10) 

 

 First I find the partial derivative with respect to one variable 

i.e. m  

 

=
1

𝑚
∑𝑚

𝑖=1 2(𝑦𝑝𝑟𝑒𝑑 − (𝑚𝑥𝑖 + 𝑐))(−𝑥𝑖)                          (11) 

 

=
−2

𝑚
∑𝑚

𝑖=1 (𝑌𝑝𝑟𝑒𝑑 − 𝑦)(−𝑥𝑖)                                          (12) 

 

 Now I repeat the process with the other variable: 

 

=
−2

𝑛
∑𝑚

𝑖=1 (𝑦𝑝𝑟𝑒𝑑 − 𝑦)                                                  (13) 

 

Now since I have converging function for both variables I 

just need to recursively update the variable values till the Loss 

function is either 0 or minimal. 

 

 𝑚 = 𝑚 − 𝑎 ∗ 𝐷𝑚                                                          (14) 

 

  𝑛 = 𝑛 − 𝑎 ∗ 𝐷𝑛                                                          (15) 
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Here D is the derivative of the function and a is the learning 

rate of the function. Hence I finally have a summarized way of 

how to implement the cost function to find the optimal pair of 

the regression. The cost function implemented with the gradient 

descent algorithm gives us our best fit model. 

3. Cost Function with Logistic Regression 

Logistic Regression is a classification algorithm meaning the 

output will be a set labelled value. The intuition behind 

classification is the prediction of the possibility of the function 

giving a particular output. The following is a basic linear 

function: 

 

𝑦 = 𝑤 + 𝑛𝑥                                                                      (16) 

 

In logistic regression, I define a particular sigmoid function 

that analyzes the value of Y corresponding to X and labels it in 

this case as 0 or 1. The sigmoid function converts a model to 

classify values as High or Low which in this case corresponds 

to 0 or 1. The sigmoid function mathematically is defined like 

this: 

 

𝑆𝑖𝑔 =
1

1+𝑒−𝑦                                                                      (17) 

A. Deriving the formula for logistic regression 

 Before starting I lets get a background on logistic regression 

and how I can use the sigmoid function for our linear regression 

equation to get  

 

𝑆𝑖𝑔 =
1

1+𝑒−𝑦                                                                      (18) 

 

 Sigmoid will now be represented by p  

 

𝑝 =
1

1+𝑒−𝑚−𝑛𝑥                                                                  (19) 

 

 I now want a value for m+nx  

 
1

𝑝
− 1 = 𝑒−𝑚−𝑛𝑥                                                              (20) 

 

 The inverse of e, natural logs are introduced  

 

𝑙𝑛(
1−𝑝

𝑝
) = −𝑚 − 𝑛𝑥                                                      (21) 

 

 Basic Log properties result in this equation 

 

𝑙𝑛(
𝑝

1−𝑝
)−1 = 𝑚 + 𝑛𝑥                                                      (22) 

  

𝑙𝑛(
𝑝

1−𝑝
) = 𝑚 + 𝑛𝑥                                                          (23) 

 

 The natural logarithm acts as the bridge between the real 

value and the probability in logistic regression. So by now you 

should have a brief idea about how logistic regression works 

and how it is derived. 

B. Cost Function with Logistic regression 

 Coming back to the cost function with logistic regression. 

The following is the cost function for logistic regression. Now, 

why do I not use the same cost function which I derived for the 

regression model to help optimize our function in this case. 

Although it is very much possible, the problems arise when I 

combine the cost function with the gradient descent algorithm. 

You might remember that our gradient descent algorithm 

mapped out a perfectly convex function that further allowed us 

to find the near perfect parameters to our function. The convex 

function charted one minima that gave an ideal answer and 

combination to our cost function. However, when I try to plugin 

the gradient descent algorithm the output comes as the 

following: 

 
 

As clearly seen, the function is subject to multiple local 

minima’s and if our algorithm might end up at a different 

minima if the function doesn’t end up being neat convex. 

Hence, I can conclude that there is need for a cost function that 

outputs a perfect neat convex. 

 

−𝑦𝑙𝑛(ℎ𝜃(𝑥)) − (1 − 𝑦)𝑙𝑛(ℎ𝜃(𝑥))                                  (24) 

 

First of all h 𝜃(x) equals g(m + nx) where g is the sigmoid 

function. So I will begin by giving a brief background and 

derivation of these formulas. As I can see above the two 

possible output for our algorithm is 0 and 1. Hence, I define the 

cost function individually first for these outputs, note the 

following equations: 

 

 for y = 1  

  

−𝑙𝑛(ℎ𝜃(𝑥))                                                                      (25) 

  

 for y = 0  

  

−𝑙𝑛(1 − ℎ𝜃(𝑥))                                                              (26) 

 

Since I found a minimizing function for linear regression, I 

also decided to develop a minimization function for logistic 

regression and this also indicated by the negative sign in the 

logarithms. The logarithms are used as they are monotone 

increasing functions, what this means is that they have an 
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increasing value of y for all real and increasing values of x. 

Another interesting property about this function is that it is a 

one-to-one function, meaning for the same x interval the value 

of y will never occur again. Lastly, I also use logarithms 

because instead of finding large value products logarithms find 

sums of the same. Without the logarithms I would have a 

product form of this function, hence the logarithms calculate the 

minimum of the function using the logarithmic sum property. 

C. Testing our Equation 

 Consider the following dataset:   

 
Y_actual  Y_pred 

1 0.9 

1 0.2 

 

The MSE for both these values is 0.01 and 0.64 respectively. 

Remember, I initially took a squared function to penalize large 

value deviations. So for large off classifications I plan to do the 

same. The Log Loss for both these functions is 0.1504 and 1.61 

respectively. Clearly the log loss functions calls for between 

optimization by designing larger penalizations. Hence, I can 

finally confirms that the cross entropy/log loss function is the 

best fit for classification problems. 

4. Decomposition of the error function with bias and 

variance 

 Finally, I have an in-depth understanding of the cost models 

in both regression and classification models. Now, I will get 

into defining our cost function with another method: the bias-

variance tradeoff. 

A. Define Bias 

 Bias is the difference between the predicted value of the 

model and the correct value which I are trying to predict. The 

bias variance tradeoff measures the ‘flexibility’ of our function, 

in other words how will our function perform when subject to a 

general approach It is defined with the Expectation function as 

follows:  

 

𝐸(𝑥) − 𝑥 = 𝐵𝑖𝑎𝑠                                                          (27) 

B.  Define Variance 

 Variance is the spread of our data over a given data point. 

Variance is defined as the spread of our function over its 

average value. It is mathematically defined as the average 

squared differences from the mean. Now having defined Bias 

and Variance, where is the tradeoff? High bias means that are 

model is off from the expected function hence is not able to fit 

the general trend of our model 

C. Bias-Variance Tradeoff 

I will be discussing this model in terms MSE with linear 

regression. I defined MSE as the average deviation over a range 

of values, however I knot that what remains most important is 

the value of MSE over our test set or when it needs to predict 

values over an unknown dataset. This ’Test MSE’ is defined as:  

 

𝑇𝑒𝑠𝑡 𝑀𝑆𝐸 = 𝐸[(𝑦𝑖 − 𝑓(𝑥𝑖))2]                                      (28) 

 

 Here I take the values across all new/test pairs in the dataset. 

The sum function is itself integrate in our expectation hence this 

becomes our test MSE. While making some models, I came 

across a strange yet common observation. The MSE over my 

training set was over 10 points lesser than that of test MSE. 

When I used a model with high bias, I found out that the I had 

an ’over fitted’ model. A model whose training MSE lay around 

3-4 points but increased by a multiple of over 3.5x for similar 

calculations in the test set. Similarly, for a model with high 

variance, the model was under fitted and was not able to identify 

the pattern in my regression. For an optimal model, I knew that 

a function with the least test MSE having a balance between its 

bias and variance. I defined the equation as follows 

 

𝐵𝑖𝑎𝑠 = 𝐸(𝑥) − 𝑥                                                          (29) 

  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐸[(𝐸(𝑥) − 𝑥)2]                                          (30) 

 

Now lets start dissecting the formula. The cost is:  

 

𝑆 = (𝑦𝑝𝑟𝑒𝑑 − 𝑦)2                                                          (31) 

 

It can also be written like this:  

 

𝑆 = (𝑦𝑝𝑟𝑒𝑑 − 𝐸(𝑥) + 𝐸(𝑋) − 𝑦)2                                  (32) 

  

= (𝑦 − 𝐸(𝑦𝑖))2 + (𝐸(𝑦𝑖) − 𝑦)2 + 2(𝑦 − 𝐸(𝑦𝑖))(𝐸(𝑦𝑖) − 𝑦)
                                                                                           (33) 

  

Now plugging the expectation function to both sides:  

 

= 𝐸([𝑦𝑖 − 𝑦]2) = (𝑦 − 𝐸(𝑦𝑖))2 + 𝐸[(𝐸(𝑦𝑖) − 𝑦)2]      (34) 

  

Now carefully notice this is in fact:  

 

= 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒                                                      (35) 

 

 However, I missed out on the 2ab term in this perfect square. 

Below is the computation behind that term, 

  

= 2𝐸((𝑦 − 𝐸(𝑦𝑖))(𝐸(𝑦𝑖) − 𝑦𝑖))                                  (36) 

  

= 2((𝑦 − 𝐸(𝑦𝑖))𝐸[𝐸(𝑦𝑖) − 𝑦𝑖])                                      (37) 

  

= 2((𝑦 − 𝐸(𝑦𝑖))𝐸(𝐸(𝑦𝑖)) − 𝐸(𝑦𝑖)])                              (38) 

  

As per the properties of Expectation E(E(x)) = E(x)  

 

2((𝑦 − 𝐸(𝑦𝑖))[𝐸(𝑦𝑖)) − 𝐸(𝑦𝑖)]) = 0                              (39) 
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So now I can clearly see that the MSE can be decomposed 

into the variance and bias of that particular function. As clearly 

seen, Bias and Variance are inversely related hence I need to 

find the ideal values which minimized both these values. 

Although there won’t be an ideal ’0’ value because in real test 

cases the ’Irreducible Error’ will always be present but this 

gives a brief intro into how Bias-Variance tradeoff works with 

the Mean Squared Error of a function  

5. Conclusion 

 With that I have an in-depth explanation of the cost function 

for linear regression, logistic regression as Ill as the gradient 

descent algorithm. Further, by now you should be accustomed 

with the working of the bias-variance tradeoff. The overall 

objective of the paper was to give a brief analysis into the 

working, intuition and derivation behind the cost function. Now 

I can use these functions to build optimal models for our 

machine learning problems.  
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