
International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

832

Abstract: Bigdata is the large amount of data just beyond

technology’s capability to store, manage and process efficiently.

MapReduce is a framework for processing and managing large

scale data sets in a distributed cluster, which has been used for

applications such as generating search indexes, document

clustering, access log analysis, and various other forms of data

analytics. In existing system, a hash function is used to partition

intermediate data among reduce tasks. In this project the system

proposed a decomposition-based distributed algorithm to deal

with the large-scale optimization problem for big data application

and an online algorithm is also designed to adjust data partition

and aggregation in a dynamic manner.

Keywords: Yarn, Scheduling algorithms, Data processing, Map

Reduce.

1. Domain Introduction

Big data can be structured, unstructured or semi-structured,

resulting in incapability of conventional data management

methods. Data is generated from various different sources and

can arrive in the system at various rates. In order to process

these large amounts of data in an inexpensive and efficient way,

parallelism is used. Big Data is a data whose scale, diversity,

and complexity require new architecture, techniques,

algorithms, and analytics to manage it and extract value and

hidden knowledge from it. Hadoop is the core platform for

structuring Big Data, and solves the problem of making it useful

for analytics purposes. Hadoop is an open source software

project that enables the distributed processing of large data sets

across clusters of commodity servers. It is designed to scale up

from a single server to thousands of machines, with a very high

degree of fault tolerance.

Big data is a term that refers to data sets or combinations of

data sets whose size (volume), complexity (variability), and rate

of growth (velocity) make them difficult to be captured,

managed, processed or analyzed by conventional technologies

and tools, such as relational databases and desktop statistics or

visualization packages, within the time necessary to make them

useful. While the size used to determine whether a particular

data set is considered big data is not firmly defined and

continues to change over time, most analysts and practitioners

currently refer to data sets from 30-50 terabytes (1012 or 1000

gigabytes per terabyte) to multiple petabytes (1015 or 1000

terabytes per petabyte) as big data.

2. Hadoop yarn cluster

Fig. 1. Hadoop 2.0 Architecture

In Hadoop YARN stands for “Yet Another Resource

Negotiator”. It was introduced in Hadoop 2.0 to remove the

bottleneck on Job Tracker which was present in Hadoop 1.0.

The Scheduler in Resource manager of YARN architecture

allows Hadoop to extend and manage thousands of nodes and

clusters. Apache Hadoop YARN sits between HDFS and the

processing engines being used to run applications. It combines

a central resource manager with containers, application

coordinators and node-level agents that monitor processing

operations in individual cluster nodes. YARN offers clear

advantages in scalability, efficiency and flexibility compared to

the classical MapReduce engine in the first version of Hadoop.

3. Introduction

In this project, I proposed a distributed algorithm for big data

applications by decomposing the original large-scale problem

into several sub problems that can be solved in parallel. The

system designs an online algorithm whose basic idea is to

postpone the migration operation until the cumulative traffic

cost exceeds a threshold. The network topology is based on

three-tier architectures: an access tier, an aggregation tier and a

core tier. The system investigates network traffic reduction

New Scheduling Algorithms for Improving

Performance and Resource Utilization in

Hadoop YARN Clusters

P. Priyadharshika1, S. Sajithabanu2, N. Balasubramanian3

1Student, Department of MCA, Mohamed Sathak Engineering College, Ramanathapuram, India
2,3Assistant Professor, Department of MCA, Mohamed Sathak Engineering College, Ramanathapuram, India

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

833

within MapReduce jobs by jointly exploiting traffic-aware

intermediate data partition and data aggregation among

multiple map tasks.

MapReduce and MapReduce-like models are widely used to

process “Big Data”. This paper targets at provisioning a virtual

cluster according to the position relationship between VMs so

as to decrease the network traffic and improve the performance

of MapReduce and MapReduce-like applications rather than

modifying the job scheduling strategies or VM configurations.

4. Scheduling algorithms

 There are many types of process scheduling algorithms.

we see some of them as below:

A. First Come First Serve (FCFS)

The process which enters the queue first is executed first. It

is non-preemptive. It is a troublesome algorithm for time

sharing systems. Performance is highly dependent on the order

in which jobs arrive.

B. Shortest-Job-First (SJF)

Associates to each job/process a unit of time to complete

(completion time). Implemented with non-preemptive policy.

Useful for batch-type processing where waiting for jobs to

complete is not critical. This can potentially improve job

throughput by ensuring shorter jobs are executed first and thus

potentially save shorter turnaround time.

C. Priority Scheduling

Priority scheduling is a method of scheduling processes

based on priority. Priority scheduling involves priority

assignment to every process, and processes with higher

priorities are carried out first, whereas tasks with equal

priorities are carried out on a first-come-first-served or round

robin basis.

5. Online algorithm

 An online algorithm is one that can process its input piece-

by-piece in a serial fashion, i.e., in the order that the input is fed

to the algorithm, without having the entire input available from

the beginning. Eg: Insertion sort. Insertion sort is an online

algorithm. It produces the optimum result, i.e., a correctly

sorted list.

6. Relevant works to the scheduling

This section presents the relevant works related to using large

data sets in our system for implementing new scheduling

algorithm. This new scheduling algorithm finds weight, arrival

rate, execution time, performance for our datasets.

7. System architecture

In this system, I Increase the amount of data and the

availability of high performance. Database systems have been

extended and parallelized to run on multiple hardware

platforms to manage scalability. simplify the parallel

processing using a distributed computing platform that offers

only two interfaces. Reduce network traffic within a

MapReduce job, we consider to aggregate data with the same

keys before sending them to remote reduce tasks.

Fig. 2. Flowchart

A. Data uploading

The master schedules map tasks in the workers by taking into

account of data locality. The output of the map tasks is divided

into as many partitions as the number of reducers for the job.

Entries with the same intermediate key should be assigned to

the same partition to guarantee the correctness of the execution.

All the intermediate key/value pairs of a given partition are

sorted and sent to the worker with the corresponding reduce

task to be executed.

B. Segmentation

The system considers a typical MapReduce job on a large

cluster consisting of a set N of machines. We let xy denote the

distance between two machines x and y, which represents the

cost of delivering a unit data. When the job is executed, two

types of tasks, i.e., map and reduce, are created. The sets of map

and reduce tasks are denoted by M and R, respectively, which

are already placed on machines.

C. Task assignment

The access tier is made up of cost-effective Ethernet switches

connecting rack VMs. The access switches are connected via

Ethernet to a set of aggregation switches which in turn are

connected to a layer of core switches. An inter-rack link is the

most contentious resource as all the VMs hosted on a rack

transfer data across the link to the VMs on other racks. Our

VMs are distributed in three different racks, and the map-reduce

tasks are scheduled.

D. Processing of task

The system divides the execution of a MapReduce job into

several time slots with a length of several minutes or an hour.

We let mp
j(t)and α (t) denote the parameters collected at time

slot t with no assumption about their distributions. As the job is

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

834

running, an existing data partition and aggregation scheme may

not be optimal anymore under current.

mp
j (t)and α (t)

8. Evaluation process

The system evaluates the performance of proposed algorithm

under online cases by comparing it with other two schemes:

OHRA and OHNA, which are online extension of HRA and

HNA, respectively. The default number of mappers is 20 and

the number of reducers is 5. The maximum number of

aggregators is set to 4 and we also vary it to examine its impact.

The key/value pairs with random data size within [1-100] are

generated randomly in different slots. The total number of

physical machines is set to 10 and the distance between any two

machines is randomly choose within

9. Conclusion

In this project, we upload our large data set into a system that

segments our data into a multiple job. Our job results are store

in a separate data centre. This helps us to analyze and our data

easily and also we find weight, arrival rate, performance and

execution time to our data.

References

[1] M. Yazdani, M. Amiri, and M. Zandieh, “Flexible job-shop scheduling

with parallel variable neighborhood search algorithm,” Expert Systems
with Applications, vol. 37, no. 1, pp. 678–687, 2010.

[2] A. Verma, Ludmila Cherkasova, and R. H. Campbell, “Aria: Automatic

resource inference and allocation for mapreduce environments,” in
ICAC’11, 2011, pp. 235–244.

[3] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguad´e, M. Steinder, and

I. Whalley, “Performance-driven task co-scheduling for mapreduce
environments,” in Network Operations and Management Symposium

(NOMS), IEEE, 2010, pp. 373–380.

[4] V. V. Vazirani, “Approximation algorithms.” springer, 2001.
[5] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,

“Multi-resource packing for cluster schedulers,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 4, pp. 455–466, 2015.
[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,

2008.

