

Physico-Chemical Analysis of Well Water and Sea Water in Ramanathapuram Selected Rural Area

T. Gowsulya Rita¹, J. Stanley Stella², M. Srimathi³

^{1,2}Student, Department of Chemistry, Thassim Beevi Abdul Kader College for Women, Ramnad, India ³Professor & HoD, Department of Chemistry, Thassim Beevi Abdul Kader College for Women, Ramnad, India

Abstract: Water is the most precious natural resource after air. Though the surface of the earth is mostly consists of water, only a small part of it is usable, which makes this resource limited. This precious and limited resource, therefore, must be used with care. As water is required for different purposes, the suitability of it must be checked before use. The present study is focused on the determination of physic-chemical parameters, such as pH, dissolved oxygen, chlorides, alkalinity, hardness, MLSS, TDS, of water samples from different sampling points. That is used to analyzing the water quality.

Keywords: Physic-chemical analysis, pH, Quality analysis, Water sample.

1. Introduction

Water is nature's most wonderful, abundant and useful compound. It is important to all living organism, most ecological systems, human health, food production and economic development. The safety of drinking water is affected by various contaminants which includes chemical and microbiological. Such contaminants cause serious health problems.

Due to these contaminants quality of the drinking water becomes poor. Sometimes such poor quality water cause many disease in the humans, so that quality of water must be tested for both the chemical as well as for the microbial contaminant's. The 5 major application of water are hydropower, Domestic uses, irrigation, Industrial uses, and Commercial uses. The major water quality parameter considers for the examination in this study are pH, TDS, MLSS, Hardness, Dissolved oxygen, Alkalinity.

2. Sample collection

Water sample was collected from 10 different Ramanathapuram rural area well water and 5 sea water.

3. Materials and methods

A. Dissolved oxygen

This method is used to determination of strength of dissolved oxygen present in the water sample.

No	ITEM	TITRATION
1	Burette solution	Sodium thiosulphate
2	Pipette solution	20ml water sample
3	Reagents to be added	2 ml MnS O_4 + 2ml alkali iodide+ 2ml
		$con.cH_2SO_4$
4	Indicator	Starch
5	End point	Blue to colorless
6	Formula	Amount of DO=8*Ng/l

B. Chlorides

This method is used to determination of strength of chlorides present in the water sample.

No	ITEM	TITRATION
1	Burette solution	AgNO ₃
2	Pipette solution	20ml of water sample
3	Reagents to be added	-
4	Indicator	$k_2 cro_4$
5	End point	Yellow to reddish brown
6	Formula	Amount of chloride=35.46*n g/l

C. pH

Confirm the pH meter in the measurement mode. Thoroughly rinse the pH electrode between measurements with distilled water to prevent carryover contamination of the tested water

Table 1								
S.No.	Water quality test	Instrument/method	Name of the method					
1.	Dissolved oxygen	The amount of oxygen available in the water	Titrimetric method	Winkler's Method				
2.	Chloride	Measurement of chloride amount in water	Titrimetric method	Mohr's method				
3.	pH	The major of acidity in the water.	pH meter	Electrometric				
				method				
4.	Alkalinity	Alkalinity of water is its quantitative capacity to with a strong acid to a	Titrimetric method					
		designated pH						
5.	Hardness	Measurement of and magnesium and calcium in the water.	Titrimetric method	EDTA method				
6.	TDS	The measurement of the amount of particulate solids in the water.	Boiling method	-				

International Journal of Research in Engineering, Science and Management Volume-3, Issue-2, February-2020 www.ijresm.com | ISSN (Online): 2581-5792

sample solution. Dip the pH electrode into a testing water sample the pH is completed when the pH reading is stable.

D. Alkalinity

No	ITEM	TITRATION
1	Burette solution	Hcl
2	Pipette solution	20ml water sample
3	Reagents to be added	-
4	Indicator	a). Phenolphthalein and
		b).methyl orange
5	End point	a) Pink to colorless and b) yellow to red
		orange
6	Formula	Amount of OH^- , CO_3^{2-} , $HCO_3^- = 50 \text{*Ng/l}$

E. TDS

First took a 250 beaker. Record the weight of empty beaker (w1) after 100ml sample water taken a 250 beaker evaporates the water using the hot plate. Cool the beaker to room temperature and weight (w2)

Formula of TDS: TDS=w2-w1/100*10⁶ ppm

F. Hardness

No	ITEM	TITRATION				
		Total hardness	Permanent hardness			
1	Burette solution	EDTA	EDTA			
2	Pipette solution	20ml of water 20ml of boiled				
		sample	water sample			
3	Reagents to be	5ml ammonia	5ml ammonia			
	added	buffer	buffer			
4	Indicator	EBT	EBT			
5	End point	Wine red to steel	Wine red to steel			
		blue	blue			
6	Formula	$1000v_2/v_{1mg/l}$	$1000v_3/v_{1mg/l}$			

4. Well water and sea water analysis result

S.NO OF AREA	NAME OF THE AREA
1.	Kilakarai (Bharathi nagar)
2.	Ramnad (collectorate)
3.	Ramnad (Gandhi nagar)
4.	Bogalur
5.	Erwadi
6.	Mayakulam
7.	Uttarakosamangai
8.	Devipattinum
9.	Paramakudi
10.	Rameshwaram
11.	Mayakulam Sea
12.	Devipattinum Sea
13.	Valinokkam Sea
14.	Rameshwaram Sea
15.	Kilakarai Sea

5. Conclusion

Water is most important in our world. So we must maintain the water quality.in the present study is focus the analysis value of water quality parameter such as pH, alkalinity, hardness, dissolved oxygen, chloride, and DTS, from all well and sea water sample collected from ramanathapuram rural area. Well water and sea water contain pH range 7.5-8.5. Well water contains medium level of chloride and the sea water contains high level of chloride. Well and sea water contain hydroxide, carbonate, and bi carbonate alkalinity most of the sea water contain hydroxide alkalinity.

	S.No	Hardness		Chloride TDS		pН	Alkalinity(ppm)		Disso		
	of			(ppm)	(ppm)				lved		
	area										Oxyg
											en
T '	1	Permane nt	Total	Temporary				0H ⁻	CO3 ²⁻	HC0 ₃ ⁻	
	2	783	1003	220	465.7	3858	7.72	170	961.9	-	
	3	395	447	52	255.02	699	7.43	-	441	762	24.32
	4	421	567	146	96.73	3158	7.84	-	546	196	35.2
	5	229	391	162	215.45	3319	7.72	-	621.4	561.8	28.8
6	147	449	382	397.93	812	8.1	-	592.4	563.7	46.08	
7	765	867	102	766.184	1778	8.16	536.1	731.5	-	30.4	
8	324	657	333		4543	7.56	186.3	729.6	-	39.36	
	385	577	192	245.134	689	7.92	-	998.5	278.1	41.6	
9	521	647	126	749.695	2110	7.43	-	982.5	804.1	23.04	
10	761	912	151	864.96	361	7.60	254.6	8459	-	26.88	
11	780	1156	376	-	23055	7.83	341.4	362.1	-	32.8	
12	874	1024	150	-	24774	7.74	421.1	-	-	23.36	
13	871	964	93	-	21355	7.86	275.2	-	-	22.08	
14	810	1104	294	-	25678	7.74	2125	985	-	20.48	
15	324	527	203	-	23647	7.95	2976	743	-		
		1								25.65	

References

- [1] www.who.int/water_sanitation_health/dwq/2edvol3d.pdf
- [2] Shukla, Devangee & Bhadresha, Kinjal & Jain, Nayan & Modi, H. (2013), "Physicochemical Analysis of Water from Various Sources and Their Comparative Studies," IOSR Journal of Environmental Science, Toxicology and Food Technology. 5. 2319-2402.
- [3] Qureshimatva UM, Maurya RR, Gamit SB, Patel RD, Solanki HA (2015) Determination of Physico-Chemical Parameters and Water Quality Index

(Wqi) of Chandlodia Lake, Ahmedabad, Gujarat, India. J Environ Anal Toxicol 5: 288.

- [4] www.mdpi.com/2071-1050/10/4/936/pdf
- [5] www-clips.imag.fr/geta/User/christian.boitet/iMAGs-tests/EOLSS/E2-13-01-06-TXT.aspx.html
- [6] www.mpcb.gov.in/sites/default/files/water-quality/reports/LSD-NEERI-%20Water%20Quality%20Analysis.pdf
- [7] www.fondriest.com/environmental-measurements/parameters/waterquality/ubs.usgs.gov/wri/wri974269/pdf/WRIR-97-4269_A.pdf