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Abstract: Software architecture has evolved from monoliths to 

microservices; Serverless computing, specifically Functions as a 

Service (FaaS), brings in a completely new approach in terms of 

granularity of functional modules and their execution pattern. 

Tough serverless computing is understood as an event-driven 

model, it has a lot to offer than just deploying event-driven 

systems. For any application, data is an integral part that shapes 

the design and execution pattern. Serverless Architecture confines 

the size and methods in which data can be shared between 

individual functions. Current FaaS platforms like AWS Lambda, 

Azure Functions, Apache OpenWhisk; provide a limited scope in 

which data can be shared between individual functions; which is 

often addressed interchangeably as Execution Context or Shared 

Context. The nature of the execution context is ephemeral, which 

introduces additional latency to cold starts. The restricted and 

finite amount of space made available for execution context also 

confine application design, limiting the types of applications that 

could benefit from serverless computing. This paper addresses 

such issues by introducing a methodology to define tenant aware, 

function-specific shared data plane. This shared data plane is 

transparent to function code and provides localized data 

referencing. This paper describes the architecture of Shared Data 

Plane together with optimizations to Apache OpenWhisk 

exemplified on an inference use-case requiring a large size pre-

trained model. This approach of shared data plane shows 

improvements to the architectural design of serverless 

applications with increased performance and throughput of highly 

parallel stateless function invocations. 

 
Keywords: Serverless Computing, Functions as a Service (FaaS), 

Apache OpenWhisk, Ceph. 

1. Introduction 

Cloud Computing has evolved into a superset of technologies 

and methodologies to run applications in this internet connected 

world. Cloud Service Providers have largely shaped the 

ecosystem by constantly updating landscape of service 

offerings and technology to run applications, essentially 

reducing the application development and maintenance 

overheads. Infrastructure as a service model is the starting point 

where applications were run on shared infrastructure or cluster 

of virtual machines as single tier or multi-tier applications. With 

the introduction of managed services, all essential support 

functions other than business logic like, API management, Load 

Balancing, Database management etc. were provided as 

services giving rise to PaaS and SaaS offerings. Technological 

advancements and new software design patterns led new  

 

software architecture notably micro services and cloud-native 

applications. A generic trend that is evident here with respect to 

cloud-native application is isolation of concern and granularity 

of individual functional components. Rise in the number and 

variety of managed services is also responsible for loosely 

coupled application architecture. As cloud offerings mature 

new technologies and managed services are offered under the 

jargon of anything as a service. Under such circumstances, the 

idea of serverless computing emerged. Serverless referred to as 

Cloud Events [1], in many ways is the next reductive step in 

IaaS abstraction; replacing coder’s concerns about hardware 

and software dependencies with conceptually simpler function 

calls to act upon various other cloud services or cloud resident 

data sets. In broader terms, Serverless computing refers to the 

concept of building and running applications that do not require 

server management [2]. Serverless computing is majorly 

categorized as Backend as a Service and Functions as a Service, 

while the latter is usually referred to when discussed about 

serverless. Functions as a service is described as a fine-grained 

model, where application consists of one or more functions, 

which are deployed on a platform that are executed and scaled 

on demand. In FaaS at the atomic level, each application 

requirement is realized as an individual functions, which 

collectively perform as a single application as a whole. 

2. Related work 

Amazon Web Services, were the pioneers in providing 

Functions as a Service back in late 2014. AWS Lambda is an 

event-driven serverless computing platform that allows to run 

code in response to an event. AWS Lambda starts a Lambda 

instance supporting programming languages like Python, 

Node.js and Java [3] etc. AWS Lambda provides Lambda 

Context object that essentially allows a function to store 

function metadata which is limited to function properties and 

execution environment. Another shared object provided by 

AWS Lambda is Execution Context [4], which is a temporary 

execution environment that initializes any dependencies the 

function code requires. Additionally, a 512MB disk space in 

/tmp directory is provided to the function that can persist if this 

execution context is frozen. This directory can act as a cache to 

share data between multiple function invocations if configured.  

Microsoft Azure Functions, is a similar event-driven 

serverless computing platform provided by Microsoft Azure. 
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Azure Functions [5] provide language dependent Execution 

context which needs to be defined within the function for the 

functions to be aware about it. For sharing large files Azure 

provides execution_context_functiondirectory (as addressed in 

case of python function) which cloud be shared between 

multiple function invocations.  

Google Cloud Platform provides two services under the 

umbrella of serverless computing, Cloud Functions and Cloud 

Run. Google Cloud Functions [6] store function code and 

required dependencies in a read-only directory and provide a 

/tmp directory via tmpfs to read-write data. This /tmp directory 

is ephemeral and available only for individual function 

invocation. Google Cloud Run [7] allows subsequent use of 

variables by the use of global variables which are defined as 

part of function code. Cloud Run reuses container instances in 

which function is executed, but does not encourage the use of 

global variables as a mechanism to share data between multiple 

function invocations. 

Other than CSPs providing serverless computing platforms 

under Functions as a Service model, there are opensource 

projects that implement serverless computing. Among these 

OpenFaaS, Apache OpenWhisk, Knative, Kubeless are a few. 

OpenFaaS implements serverless computing using kubernetes 

native objects, essentially starting a container environment to 

execute function code. Even so OpenFaaS do not provide 

volume mounting capabilities to implement data sharing and 

localized referencing for function code. 

Apache OpenWhisk, is another opensource serverless 

computing platform which allows execution of functions – 

referred to as actions, in response to trigger or HTTP(s) API 

calls. OpenWhisk reuses container environment in which action 

is executed, thus global variables defined in the action code can 

share context information across frequent subsequent action 

invocations. This does not guarantee reliable context sharing 

and is limited only to data with small size. This approach is also 

not appropriate in terms of parallel execution of functions 

where sharing context through global variables will impact 

business logic. 

3. Apache OpenWhisk architecture 

Apache OpenWhisk is an open source, distributed Serverless 

platform that executes functions in response to events at any 

scale [8]. OpenWhisk manages the infrastructure, servers and 

scaling using Docker containers. OpenWhisk platform supports 

a programming model in which developers write functional 

logic (called Actions), in any supported programming language, 

that can be dynamically scheduled and run in response to 

associated events (via Triggers) from external sources (Feeds) 

or from HTTP requests. Apache OpenWhisk provides a 

platform neutral implementation of serverless computing, 

which can be deployed using Kubernetes, Docker Engine or as 

a cluster of Virtual Machine. Apache OpenWhisk, supports 

wide variety of programming languages, where actions are 

executed in a containerized environment.  

 
Fig. 1.  Architecture of Apache OpenWhisk 

 

Apache OpenWhisk has following key components [9],  

 Nginx: A high-performance web server and reverse 

proxy. 

 Controller: This is the main component that manages 

entities, handles trigger fires, route action invocation. 

 CouchDB: A scalable, document-oriented NoSQL 

database. 

 Kafka: A distributed, high-performing publish 

/subscribe messaging system. 

 Invoker: Launching the containers to execute the 

actions. 

 Action Containers: Actual execution of action, which 

is a self-contained docker container. 

Apache OpenWhisk stores action properties and context 

information as Action Metadata. Action Metadata is transparent 

to action code, but not implemented with the purpose to share 

across function executions.  

4. Shared data plane framework 

A. Shared Context 

In OpenWhisk, Shared context is a piece of information that 

is shared between function invocations. This information is 

independent of input parameters, thus being transparent to 

multiple function calls along the call tree. This context is made 

available to function code allowing inter-function 

communication and localized referencing. Shared context can 

be explicitly added to a function allowing sharing of 

information to functions that previously did not have. 

 

 
Fig. 2.  Conceptual data flow of shared context 

B. Dynamic Volume Provisioning 

Kubernetes orchestrates pods, which are collection of one or 

more containers. These pods can be stateless or stateful. 

Stateless pods, as the name suggests are not persistent and data 

generated by these pods lives as long as the pod exists. Stateful 

pods on the other hand store data permanently onto disk, by 

using a method known as “volume mount”. In case of docker, 
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volume mounting is a method to attach a mount point of host 

machine into a destination path inside the container, allowing 

the processes running inside this container environment to 

locally access this directory in the container environment, while 

read-writes to files are made to host machine mount-point that 

is persistent to host machine disk. Kubernetes generalized this 

concept of volume mount as persistent volumes. A 

PersistentVolume (PV) is a piece of storage in the cluster that 

has been provisioned by an administrator or dynamically 

provisioned using Storage Classes [10]. These volumes have a 

lifecycle independent of the pod, essentially allowing data 

persistence across pod restarts. These volumes can be manually 

created or dynamically created by a storage class through a 

persistent volume claim (PVC). Persistent volume claim 

defines the requirement of a persistent volume which are 

provisioned by kubernetes via Container storage interface. 

Container storage interface is an abstraction provided by 

kubernetes to implement volume management and integration 

of different storage technologies like NFS, iSCSI, Ceph etc. in 

kubernetes. These technologies (say Ceph) is then responsible 

for providing objects to store data files which can be separately 

managed from kubernetes.  

Kubernetes CSI also allow to implement storage operators 

that enable dynamic volume provisioning and software defined 

storage capabilities for provisioning persistent volumes. Rook 

is one example of storage operators that orchestrates Ceph 

abstracting the complexity of deploying ceph cluster and 

integrating with kubernetes CSI. 

 
Fig. 3.  Dynamic volume provisioning in kubernetes with rook 

 

 
Fig. 4.  Architectural approach to implement Shared Data Plane in Apache 

OpenWhisk 

C. Proposed changes to implement Shared Data Plane  

1. OpenWhisk Controller – Extending the invocation 

API (REST) to include a context field. Creation of 

context when an invocation request is received. 

Embedding the context in the activation record. 

2. OpenWhisk Invoker - Adding the context to the 

environment variables of the container. Defining 

configuration to volume mount-points for Action 

Containers. 

3. OpenWhisk Client Libraries - Extend library API with 

optional context parameter. Transparent copying of 

the client’s context (environment variable) into the 

context field of invocation requests. 

5. Experimental setup 

Shared Data platform for serverless computing focuses on 

data objects that are shared and accessed by functions in 

runtime. To test the system as proposed in this paper, the major 

objective was to dynamically provide mount points for function 

containers to access data objects from those mount points. 

These mount points are block or filesystem volumes that store 

data as files in them. These volumes are mounted to function 

containers with read-only or read-write permissions depending 

upon the use-case. In this experimental setup, read-only 

filesystem volumes are considered for an inference use case 

implemented using machine learning. A major challenge that 

needs to be addressed is making a volume available to a 

function container running in a distributed environment. 

Apache OpenWhisk is a collection of opensource 

technologies functioning as a single system in co-ordination 

with Controller and Invoker. Apache OpenWhisk can be 

deployed as a cluster of virtual machines where individual 

services like Kafka, CouchDB and Nginx can be configured in 

a highly-available cluster. Apache OpenWhisk deployment 

using docker containers deployed by Docker Compose, allows 

to setup a development environment with default settings. 

Another deployment method is using a Container Orchestration 

Platform like Kubernetes [11], which allows greater 

configuration options and allows deployment of production 

ready environment. 

To perform tests as proposed in this paper, Apache 

OpenWhisk was deployed using kubernetes and helm charts 

[12] on a cluster of four bare-metal nodes. Updates enabling 

shared data object management capabilities were pushed to 

controller and invoker modules as custom docker containers. 

For dynamic volume provisioning a storage-class was 

implemented that abstracts volume provisioning as a set of APIs 

Table 1 

Cluster configuration of Experimental Setup 

Hostname K8s 
version 

OS Image Kernel 
Version 

Docker 
version 

Ceph 
version 

bm-k8s-master v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 

bm-k8s-slave-1 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 

bm-k8s-slave-2 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 

bm-k8s-slave-3 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3 
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interacting with Ceph – distributed storage platform. 

Hostname K8s version OS Image Kernel Version Docker 

version Ceph version 

In this experimental setup, Apache OpenWhisk version 

8eb922f and Rook v1.2 was used. 

The user while creating a function also need to create a 

shared data object. This shared data object is created using 

modified ‘wsk’ cli, which is also used to create a function. The 

controller creates a function and creates associated shared data 

object. Metadata of this shared data object is stored as part of 

function annotation in CouchDB. The controller is responsible 

to create a volume on the distributed storage platform and 

initialize it with the provided data files. The appropriate mount 

points are updated in function metadata after successful 

provisioning of this volume in CouchDB. 

The function can be invoked using wsk cli or by making a 

HTTP request using function’s API. This function API can be 

defined using the same wsk cli. Regardless of the method used 

to invoke the function, the controller instructs invoker instance 

to execute the request. The controller is also responsible to 

instruct the container orchestration platform to mount the 

shared volume when invoker instance is started. Depending 

upon the programming language the invoker instance is chosen 

to execute the function request. The invoker decodes function 

metadata provided by Controller and extracts information like 

default parameters, function resource limits, execution timeout 

and shared data object mount point. As the shared data object 

volume is locally mounted inside invoker’s container 

environment, the function makes local references to those files. 

For the inference use case discussed above, a function is 

implemented in python which detects objects in an image. This 

function is written in python, which uses tensorflow r2.0, 

numpy, matplotlib and pillow python libraries. The function 

accepts an image as input and output a json object that contains 

percent probability of objects that are present in the input 

image. This function is created as a docker action on the 

serverless platform discussed above. The function requires a 

large 1.5GB ‘model.h5’ file, which contains weights required 

for object detection task. A shared data object is created which 

is initialized by this model.h5 file. A POST API is created for 

the inference function which is used to invoke it via API call. 

The size of docker action which included function code and 

required libraries was around 1.3GB. 

Multiple function invocation were called to test cold-start 

performance of the function. These function calls were made 

using curl and bash script. In the interval of 15 minutes, 5 

consecutive function API calls were made, capturing the 

request duration – start and end time of the HTTP request. The 

request duration included the time required for the function to 

process the image and output the results. 

To generate baseline results, another test was performed on a 

standard Apache OpenWhisk platform, which did not support 

shared data objects. Due the same reason the docker action 

created for the inference function, had a size of 2.8GB where 

1.5GB is the size of the model.h5 weights used by the function 

and remaining 1.3GB was the size of tensorflow and other 

libraries included as code in docker action. On similar grounds, 

multiple function invocation were called to test the cold-start 

performance of this standard docker action. The same curl and 

bash script was executed in intervals of 15 minutes to make 5 

consecutive function API calls. 

6. Results and discussion 

Apache OpenWhisk allows to create functions that require 

external libraries that are not available as standard libraries for 

any specific programming language. In the case of inference 

function discussed in experimental setup, these libraries 

included tensorflow, numpy etc. To deploy such function 

OpenWhisk allows two options, deploying function code and 

required libraries as a zip package or deploying the function as 

a docker container image, the later is suitable in case of much 

more complex function implementations as in the case 

discusses here. To deploy a function as docker container, called 

as docker action, the container needs to be built using a 

Dockerfile, which essentially packages all files as per the 

instructions defined in that Dockerfile and generates a docker 

image. For the inference function, tensorflow and other libraries 

were installed while building the docker action container image. 

The size of these file in itself is around 1.3GB. Additionally, the 

inference function required weights file (model.h5) which 

generated by training the machine learning model. Thus for the 

function to execute this weights file need to be packaged inside 

the docker action container, increasing the image size of the 

action container to a total of 2.8GB. This increase in size of 

docker action container image becomes a major issue 

considering the fact that every time the inference function is 

executed this docker image needs to be pulled from a remote 

docker container repository leading to unnecessary network 

utilization. 

 

 
Fig. 5.  Graph showing function request time for 5 consecutive API calls 

made in the interval of 15 minutes 

 

Thus the shared data object allowed the function to be 

deployed as two separate entities of code and data, where this 

data is essentially only required to initialize the function 

variables. Due to which the size of function’s docker action 

container was reduced by almost 46% reducing the data 
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footprint of the function created in serverless platform. This is 

also ideal for frequent updating of function code, where 

changes are only made to the code and the data stays the same. 

 

 
Fig. 6.  Graph showing comparison between cold-start latency 

 

In serverless computing, cold-start is referred to as the time 

required to initialize the function environment where that 

function will be executed. In the experimental setup discussed 

above, network bandwidth was of 1GBps, which is a very ideal 

case from the point of view of infrastructure. In other cases, 

where network bandwidth is less than this would hamper the 

cold-start latency while executing a function.  

The table above show results from experiment conducted in 

two different environments. First tests was conducted on 

serverless platform with shared data plane framework and the 

second test was conducted on standard Apache OpenWhisk 

serverless platform. 

Due to reduced data footprint, this cold-start latency is 

significantly decreased. From the experimental results, for a 

function created with a shared object, this cold-start latency is 

decreased to by 67% as compared with the latency observed 

when the same function created as a single docker action on 

standard Apache OpenWhisk environment. 

Table 2 Experimental results showing HTTP request 

duration, actual function execution time and cold-start latency 

This capability to separate code from shareable objects in 

serverless computing creates an opportunity for application to 

run on this new programming model which previously was not 

possible. As demonstrated here, serverless computing allows to 

implement a highly scalable object detection function capable 

of handling parallel requests. Data isolation implemented at the 

level of Apache OpenWhisk, Ceph and Kubernetes reduces the 

security risks associated in any computing platform. 

The results discussed here are showcasing the benefits of 

shared data plan in serverless platform from only one single 

use-case of a machine learning workload. Where as in other 

cases this could lead to highly granular implementation of 

application which could benefit from separating code and data 

objects. Nonetheless this requires adoption of new serverless 

programming model which has a learning curve associated with 

it. This makes it difficult for developers to adopt serverless 

computing as a mainstream application development strategy 

even after experiencing its benefits. Serverless computing also 

does not fit in right for every application because of latency 

Table 2 
Experimental results showing HTTP request duration, actual function execution time and cold-start latency 

Environment API Call Request Duration Fn execution time cold-start latency 

Serverless Platform with Shared Data Plane Framework 1 11.4 9.9 1.5 

2 9.3 9.1 0.2 

3 8.9 8.7 0.2 

4 9.2 9 0.2 

5 9.1 8.9 0.2 

6 12.1 10 2.1 

7 9.1 9 0.1 

8 8.8 8.7 0.1 

9 9.2 9 0.2 

10 8.9 8.7 0.2 

11 11.2 9.9 1.3 

12 8.9 8.7 0.2 

13 9.2 9.1 0.1 

14 8.9 8.7 0.2 

15 9.3 9.1 0.2 

Standard Serverless Platform 1 15.9 9.8 6.1 

2 10.2 9.9 0.3 

3 9.9 9.7 0.2 

4 8.9 8.7 0.2 

5 9.2 9 0.2 

6 16.1 9.9 6.2 

7 9.5 9.3 0.2 

8 9.1 8.9 0.2 

9 8.9 8.6 0.3 

10 9 8.8 0.2 

11 16.2 9.6 6.6 

12 9.2 8.9 0.3 

13 9.1 8.8 0.3 

14 8.9 8.7 0.2 

15 9.2 9 0.2 
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associated with executing a function. On the brighter side 

serverless computing provides zero server maintenance, out of 

the box scalability and cost savings. 

7. Conclusion and future work 

This paper introduced the concept of Shared Data Plane, a 

framework allowing to create shared objects that enable 

separation of code and data objects required by a function 

defined in serverless platform. The work described in this paper 

also addressed the problem of cold-start associated with 

serverless platform, and demonstrated improvements in 

performance of serverless platform to server functions in 

response to API calls. Due to separation of code and data, the 

data footprint of functions deployed on Apache OpenWhisk 

was reduced improving developer experience and management 

of functions. Serverless Computing is a new programming 

model which is largely considered to be event-driven restricting 

the types of applications that can be developed using serverless 

architecture. The concept of Shared Data Plane brings in 

opportunities with respect to the type of applications that can be 

deployed using serverless technology. As exemplified in this 

paper, a machine learning use-case can be implemented on 

serverless platform, which previously was hindered due to 

constraints with function deployment methods and function 

execution efficiency bottlenecks affecting the end user 

experience.  

The experiment described in this paper, shows reduction in 

docker action image size, leading to reduced cold-start latency. 

But evidently in this case, the data footprint of inference 

function which is around 1.3GB, is still considerably large 

because of the fact that required libraries take that much space. 

With the goal of reducing this data footprint, shared data plane 

could also provide sharing these libraries across multiple 

function execution environments further reducing the 

deployable function size. To achieve this serverless platform 

can utilize Docker’s capability to mount multiple volumes to 

the same container. But these libraries need to be available to 

the function with minimum nanosecond latency as possible, as 

the function logic could require access these libraries 

frequently, and any latency introduced in this would lead to 

decrease in function execution efficiency. 
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