
International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

572

Abstract: Software architecture has evolved from monoliths to

microservices; Serverless computing, specifically Functions as a

Service (FaaS), brings in a completely new approach in terms of

granularity of functional modules and their execution pattern.

Tough serverless computing is understood as an event-driven

model, it has a lot to offer than just deploying event-driven

systems. For any application, data is an integral part that shapes

the design and execution pattern. Serverless Architecture confines

the size and methods in which data can be shared between

individual functions. Current FaaS platforms like AWS Lambda,

Azure Functions, Apache OpenWhisk; provide a limited scope in

which data can be shared between individual functions; which is

often addressed interchangeably as Execution Context or Shared

Context. The nature of the execution context is ephemeral, which

introduces additional latency to cold starts. The restricted and

finite amount of space made available for execution context also

confine application design, limiting the types of applications that

could benefit from serverless computing. This paper addresses

such issues by introducing a methodology to define tenant aware,

function-specific shared data plane. This shared data plane is

transparent to function code and provides localized data

referencing. This paper describes the architecture of Shared Data

Plane together with optimizations to Apache OpenWhisk

exemplified on an inference use-case requiring a large size pre-

trained model. This approach of shared data plane shows

improvements to the architectural design of serverless

applications with increased performance and throughput of highly

parallel stateless function invocations.

Keywords: Serverless Computing, Functions as a Service (FaaS),

Apache OpenWhisk, Ceph.

1. Introduction

Cloud Computing has evolved into a superset of technologies

and methodologies to run applications in this internet connected

world. Cloud Service Providers have largely shaped the

ecosystem by constantly updating landscape of service

offerings and technology to run applications, essentially

reducing the application development and maintenance

overheads. Infrastructure as a service model is the starting point

where applications were run on shared infrastructure or cluster

of virtual machines as single tier or multi-tier applications. With

the introduction of managed services, all essential support

functions other than business logic like, API management, Load

Balancing, Database management etc. were provided as

services giving rise to PaaS and SaaS offerings. Technological

advancements and new software design patterns led new

software architecture notably micro services and cloud-native

applications. A generic trend that is evident here with respect to

cloud-native application is isolation of concern and granularity

of individual functional components. Rise in the number and

variety of managed services is also responsible for loosely

coupled application architecture. As cloud offerings mature

new technologies and managed services are offered under the

jargon of anything as a service. Under such circumstances, the

idea of serverless computing emerged. Serverless referred to as

Cloud Events [1], in many ways is the next reductive step in

IaaS abstraction; replacing coder’s concerns about hardware

and software dependencies with conceptually simpler function

calls to act upon various other cloud services or cloud resident

data sets. In broader terms, Serverless computing refers to the

concept of building and running applications that do not require

server management [2]. Serverless computing is majorly

categorized as Backend as a Service and Functions as a Service,

while the latter is usually referred to when discussed about

serverless. Functions as a service is described as a fine-grained

model, where application consists of one or more functions,

which are deployed on a platform that are executed and scaled

on demand. In FaaS at the atomic level, each application

requirement is realized as an individual functions, which

collectively perform as a single application as a whole.

2. Related work

Amazon Web Services, were the pioneers in providing

Functions as a Service back in late 2014. AWS Lambda is an

event-driven serverless computing platform that allows to run

code in response to an event. AWS Lambda starts a Lambda

instance supporting programming languages like Python,

Node.js and Java [3] etc. AWS Lambda provides Lambda

Context object that essentially allows a function to store

function metadata which is limited to function properties and

execution environment. Another shared object provided by

AWS Lambda is Execution Context [4], which is a temporary

execution environment that initializes any dependencies the

function code requires. Additionally, a 512MB disk space in

/tmp directory is provided to the function that can persist if this

execution context is frozen. This directory can act as a cache to

share data between multiple function invocations if configured.

Microsoft Azure Functions, is a similar event-driven

serverless computing platform provided by Microsoft Azure.

Shared Data Plane: Tenant-Aware, Shared

Context for Functions in Serverless Computing

Satwik Kolhe1, Snehal Kamalapur2

1,2Dept. of Computer Engineering, K. K. Wagh Institute of Engineering Education and Research, Nashik, India

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

573

Azure Functions [5] provide language dependent Execution

context which needs to be defined within the function for the

functions to be aware about it. For sharing large files Azure

provides execution_context_functiondirectory (as addressed in

case of python function) which cloud be shared between

multiple function invocations.

Google Cloud Platform provides two services under the

umbrella of serverless computing, Cloud Functions and Cloud

Run. Google Cloud Functions [6] store function code and

required dependencies in a read-only directory and provide a

/tmp directory via tmpfs to read-write data. This /tmp directory

is ephemeral and available only for individual function

invocation. Google Cloud Run [7] allows subsequent use of

variables by the use of global variables which are defined as

part of function code. Cloud Run reuses container instances in

which function is executed, but does not encourage the use of

global variables as a mechanism to share data between multiple

function invocations.

Other than CSPs providing serverless computing platforms

under Functions as a Service model, there are opensource

projects that implement serverless computing. Among these

OpenFaaS, Apache OpenWhisk, Knative, Kubeless are a few.

OpenFaaS implements serverless computing using kubernetes

native objects, essentially starting a container environment to

execute function code. Even so OpenFaaS do not provide

volume mounting capabilities to implement data sharing and

localized referencing for function code.

Apache OpenWhisk, is another opensource serverless

computing platform which allows execution of functions –

referred to as actions, in response to trigger or HTTP(s) API

calls. OpenWhisk reuses container environment in which action

is executed, thus global variables defined in the action code can

share context information across frequent subsequent action

invocations. This does not guarantee reliable context sharing

and is limited only to data with small size. This approach is also

not appropriate in terms of parallel execution of functions

where sharing context through global variables will impact

business logic.

3. Apache OpenWhisk architecture

Apache OpenWhisk is an open source, distributed Serverless

platform that executes functions in response to events at any

scale [8]. OpenWhisk manages the infrastructure, servers and

scaling using Docker containers. OpenWhisk platform supports

a programming model in which developers write functional

logic (called Actions), in any supported programming language,

that can be dynamically scheduled and run in response to

associated events (via Triggers) from external sources (Feeds)

or from HTTP requests. Apache OpenWhisk provides a

platform neutral implementation of serverless computing,

which can be deployed using Kubernetes, Docker Engine or as

a cluster of Virtual Machine. Apache OpenWhisk, supports

wide variety of programming languages, where actions are

executed in a containerized environment.

Fig. 1. Architecture of Apache OpenWhisk

Apache OpenWhisk has following key components [9],

 Nginx: A high-performance web server and reverse

proxy.

 Controller: This is the main component that manages

entities, handles trigger fires, route action invocation.

 CouchDB: A scalable, document-oriented NoSQL

database.

 Kafka: A distributed, high-performing publish

/subscribe messaging system.

 Invoker: Launching the containers to execute the

actions.

 Action Containers: Actual execution of action, which

is a self-contained docker container.

Apache OpenWhisk stores action properties and context

information as Action Metadata. Action Metadata is transparent

to action code, but not implemented with the purpose to share

across function executions.

4. Shared data plane framework

A. Shared Context

In OpenWhisk, Shared context is a piece of information that

is shared between function invocations. This information is

independent of input parameters, thus being transparent to

multiple function calls along the call tree. This context is made

available to function code allowing inter-function

communication and localized referencing. Shared context can

be explicitly added to a function allowing sharing of

information to functions that previously did not have.

Fig. 2. Conceptual data flow of shared context

B. Dynamic Volume Provisioning

Kubernetes orchestrates pods, which are collection of one or

more containers. These pods can be stateless or stateful.

Stateless pods, as the name suggests are not persistent and data

generated by these pods lives as long as the pod exists. Stateful

pods on the other hand store data permanently onto disk, by

using a method known as “volume mount”. In case of docker,

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

574

volume mounting is a method to attach a mount point of host

machine into a destination path inside the container, allowing

the processes running inside this container environment to

locally access this directory in the container environment, while

read-writes to files are made to host machine mount-point that

is persistent to host machine disk. Kubernetes generalized this

concept of volume mount as persistent volumes. A

PersistentVolume (PV) is a piece of storage in the cluster that

has been provisioned by an administrator or dynamically

provisioned using Storage Classes [10]. These volumes have a

lifecycle independent of the pod, essentially allowing data

persistence across pod restarts. These volumes can be manually

created or dynamically created by a storage class through a

persistent volume claim (PVC). Persistent volume claim

defines the requirement of a persistent volume which are

provisioned by kubernetes via Container storage interface.

Container storage interface is an abstraction provided by

kubernetes to implement volume management and integration

of different storage technologies like NFS, iSCSI, Ceph etc. in

kubernetes. These technologies (say Ceph) is then responsible

for providing objects to store data files which can be separately

managed from kubernetes.

Kubernetes CSI also allow to implement storage operators

that enable dynamic volume provisioning and software defined

storage capabilities for provisioning persistent volumes. Rook

is one example of storage operators that orchestrates Ceph

abstracting the complexity of deploying ceph cluster and

integrating with kubernetes CSI.

Fig. 3. Dynamic volume provisioning in kubernetes with rook

Fig. 4. Architectural approach to implement Shared Data Plane in Apache

OpenWhisk

C. Proposed changes to implement Shared Data Plane

1. OpenWhisk Controller – Extending the invocation

API (REST) to include a context field. Creation of

context when an invocation request is received.

Embedding the context in the activation record.

2. OpenWhisk Invoker - Adding the context to the

environment variables of the container. Defining

configuration to volume mount-points for Action

Containers.

3. OpenWhisk Client Libraries - Extend library API with

optional context parameter. Transparent copying of

the client’s context (environment variable) into the

context field of invocation requests.

5. Experimental setup

Shared Data platform for serverless computing focuses on

data objects that are shared and accessed by functions in

runtime. To test the system as proposed in this paper, the major

objective was to dynamically provide mount points for function

containers to access data objects from those mount points.

These mount points are block or filesystem volumes that store

data as files in them. These volumes are mounted to function

containers with read-only or read-write permissions depending

upon the use-case. In this experimental setup, read-only

filesystem volumes are considered for an inference use case

implemented using machine learning. A major challenge that

needs to be addressed is making a volume available to a

function container running in a distributed environment.

Apache OpenWhisk is a collection of opensource

technologies functioning as a single system in co-ordination

with Controller and Invoker. Apache OpenWhisk can be

deployed as a cluster of virtual machines where individual

services like Kafka, CouchDB and Nginx can be configured in

a highly-available cluster. Apache OpenWhisk deployment

using docker containers deployed by Docker Compose, allows

to setup a development environment with default settings.

Another deployment method is using a Container Orchestration

Platform like Kubernetes [11], which allows greater

configuration options and allows deployment of production

ready environment.

To perform tests as proposed in this paper, Apache

OpenWhisk was deployed using kubernetes and helm charts

[12] on a cluster of four bare-metal nodes. Updates enabling

shared data object management capabilities were pushed to

controller and invoker modules as custom docker containers.

For dynamic volume provisioning a storage-class was

implemented that abstracts volume provisioning as a set of APIs

Table 1

Cluster configuration of Experimental Setup

Hostname K8s
version

OS Image Kernel
Version

Docker
version

Ceph
version

bm-k8s-master v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

bm-k8s-slave-1 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

bm-k8s-slave-2 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

bm-k8s-slave-3 v1.16.4 CentOS 7 3.10.0 v19.0.3 14.2.3

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

575

interacting with Ceph – distributed storage platform.

Hostname K8s version OS Image Kernel Version Docker

version Ceph version

In this experimental setup, Apache OpenWhisk version

8eb922f and Rook v1.2 was used.

The user while creating a function also need to create a

shared data object. This shared data object is created using

modified ‘wsk’ cli, which is also used to create a function. The

controller creates a function and creates associated shared data

object. Metadata of this shared data object is stored as part of

function annotation in CouchDB. The controller is responsible

to create a volume on the distributed storage platform and

initialize it with the provided data files. The appropriate mount

points are updated in function metadata after successful

provisioning of this volume in CouchDB.

The function can be invoked using wsk cli or by making a

HTTP request using function’s API. This function API can be

defined using the same wsk cli. Regardless of the method used

to invoke the function, the controller instructs invoker instance

to execute the request. The controller is also responsible to

instruct the container orchestration platform to mount the

shared volume when invoker instance is started. Depending

upon the programming language the invoker instance is chosen

to execute the function request. The invoker decodes function

metadata provided by Controller and extracts information like

default parameters, function resource limits, execution timeout

and shared data object mount point. As the shared data object

volume is locally mounted inside invoker’s container

environment, the function makes local references to those files.

For the inference use case discussed above, a function is

implemented in python which detects objects in an image. This

function is written in python, which uses tensorflow r2.0,

numpy, matplotlib and pillow python libraries. The function

accepts an image as input and output a json object that contains

percent probability of objects that are present in the input

image. This function is created as a docker action on the

serverless platform discussed above. The function requires a

large 1.5GB ‘model.h5’ file, which contains weights required

for object detection task. A shared data object is created which

is initialized by this model.h5 file. A POST API is created for

the inference function which is used to invoke it via API call.

The size of docker action which included function code and

required libraries was around 1.3GB.

Multiple function invocation were called to test cold-start

performance of the function. These function calls were made

using curl and bash script. In the interval of 15 minutes, 5

consecutive function API calls were made, capturing the

request duration – start and end time of the HTTP request. The

request duration included the time required for the function to

process the image and output the results.

To generate baseline results, another test was performed on a

standard Apache OpenWhisk platform, which did not support

shared data objects. Due the same reason the docker action

created for the inference function, had a size of 2.8GB where

1.5GB is the size of the model.h5 weights used by the function

and remaining 1.3GB was the size of tensorflow and other

libraries included as code in docker action. On similar grounds,

multiple function invocation were called to test the cold-start

performance of this standard docker action. The same curl and

bash script was executed in intervals of 15 minutes to make 5

consecutive function API calls.

6. Results and discussion

Apache OpenWhisk allows to create functions that require

external libraries that are not available as standard libraries for

any specific programming language. In the case of inference

function discussed in experimental setup, these libraries

included tensorflow, numpy etc. To deploy such function

OpenWhisk allows two options, deploying function code and

required libraries as a zip package or deploying the function as

a docker container image, the later is suitable in case of much

more complex function implementations as in the case

discusses here. To deploy a function as docker container, called

as docker action, the container needs to be built using a

Dockerfile, which essentially packages all files as per the

instructions defined in that Dockerfile and generates a docker

image. For the inference function, tensorflow and other libraries

were installed while building the docker action container image.

The size of these file in itself is around 1.3GB. Additionally, the

inference function required weights file (model.h5) which

generated by training the machine learning model. Thus for the

function to execute this weights file need to be packaged inside

the docker action container, increasing the image size of the

action container to a total of 2.8GB. This increase in size of

docker action container image becomes a major issue

considering the fact that every time the inference function is

executed this docker image needs to be pulled from a remote

docker container repository leading to unnecessary network

utilization.

Fig. 5. Graph showing function request time for 5 consecutive API calls

made in the interval of 15 minutes

Thus the shared data object allowed the function to be

deployed as two separate entities of code and data, where this

data is essentially only required to initialize the function

variables. Due to which the size of function’s docker action

container was reduced by almost 46% reducing the data

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

576

footprint of the function created in serverless platform. This is

also ideal for frequent updating of function code, where

changes are only made to the code and the data stays the same.

Fig. 6. Graph showing comparison between cold-start latency

In serverless computing, cold-start is referred to as the time

required to initialize the function environment where that

function will be executed. In the experimental setup discussed

above, network bandwidth was of 1GBps, which is a very ideal

case from the point of view of infrastructure. In other cases,

where network bandwidth is less than this would hamper the

cold-start latency while executing a function.

The table above show results from experiment conducted in

two different environments. First tests was conducted on

serverless platform with shared data plane framework and the

second test was conducted on standard Apache OpenWhisk

serverless platform.

Due to reduced data footprint, this cold-start latency is

significantly decreased. From the experimental results, for a

function created with a shared object, this cold-start latency is

decreased to by 67% as compared with the latency observed

when the same function created as a single docker action on

standard Apache OpenWhisk environment.

Table 2 Experimental results showing HTTP request

duration, actual function execution time and cold-start latency

This capability to separate code from shareable objects in

serverless computing creates an opportunity for application to

run on this new programming model which previously was not

possible. As demonstrated here, serverless computing allows to

implement a highly scalable object detection function capable

of handling parallel requests. Data isolation implemented at the

level of Apache OpenWhisk, Ceph and Kubernetes reduces the

security risks associated in any computing platform.

The results discussed here are showcasing the benefits of

shared data plan in serverless platform from only one single

use-case of a machine learning workload. Where as in other

cases this could lead to highly granular implementation of

application which could benefit from separating code and data

objects. Nonetheless this requires adoption of new serverless

programming model which has a learning curve associated with

it. This makes it difficult for developers to adopt serverless

computing as a mainstream application development strategy

even after experiencing its benefits. Serverless computing also

does not fit in right for every application because of latency

Table 2
Experimental results showing HTTP request duration, actual function execution time and cold-start latency

Environment API Call Request Duration Fn execution time cold-start latency

Serverless Platform with Shared Data Plane Framework 1 11.4 9.9 1.5

2 9.3 9.1 0.2

3 8.9 8.7 0.2

4 9.2 9 0.2

5 9.1 8.9 0.2

6 12.1 10 2.1

7 9.1 9 0.1

8 8.8 8.7 0.1

9 9.2 9 0.2

10 8.9 8.7 0.2

11 11.2 9.9 1.3

12 8.9 8.7 0.2

13 9.2 9.1 0.1

14 8.9 8.7 0.2

15 9.3 9.1 0.2

Standard Serverless Platform 1 15.9 9.8 6.1

2 10.2 9.9 0.3

3 9.9 9.7 0.2

4 8.9 8.7 0.2

5 9.2 9 0.2

6 16.1 9.9 6.2

7 9.5 9.3 0.2

8 9.1 8.9 0.2

9 8.9 8.6 0.3

10 9 8.8 0.2

11 16.2 9.6 6.6

12 9.2 8.9 0.3

13 9.1 8.8 0.3

14 8.9 8.7 0.2

15 9.2 9 0.2

International Journal of Research in Engineering, Science and Management

Volume-3, Issue-2, February-2020

www.ijresm.com | ISSN (Online): 2581-5792

577

associated with executing a function. On the brighter side

serverless computing provides zero server maintenance, out of

the box scalability and cost savings.

7. Conclusion and future work

This paper introduced the concept of Shared Data Plane, a

framework allowing to create shared objects that enable

separation of code and data objects required by a function

defined in serverless platform. The work described in this paper

also addressed the problem of cold-start associated with

serverless platform, and demonstrated improvements in

performance of serverless platform to server functions in

response to API calls. Due to separation of code and data, the

data footprint of functions deployed on Apache OpenWhisk

was reduced improving developer experience and management

of functions. Serverless Computing is a new programming

model which is largely considered to be event-driven restricting

the types of applications that can be developed using serverless

architecture. The concept of Shared Data Plane brings in

opportunities with respect to the type of applications that can be

deployed using serverless technology. As exemplified in this

paper, a machine learning use-case can be implemented on

serverless platform, which previously was hindered due to

constraints with function deployment methods and function

execution efficiency bottlenecks affecting the end user

experience.

The experiment described in this paper, shows reduction in

docker action image size, leading to reduced cold-start latency.

But evidently in this case, the data footprint of inference

function which is around 1.3GB, is still considerably large

because of the fact that required libraries take that much space.

With the goal of reducing this data footprint, shared data plane

could also provide sharing these libraries across multiple

function execution environments further reducing the

deployable function size. To achieve this serverless platform

can utilize Docker’s capability to mount multiple volumes to

the same container. But these libraries need to be available to

the function with minimum nanosecond latency as possible, as

the function logic could require access these libraries

frequently, and any latency introduced in this would lead to

decrease in function execution efficiency.

Acknowledgment

The authors would like to thank all collaborators and

supporters of this work. Satwik K. would like to thank K.

K.W.I.E.E.R to provide an opportunity and their collaboration.

Satwik K. would also like to thank ESDS Software Solution

Pvt. Ltd. to sponsor this research work.

References

[1] Garrett McGrath in Cloud Event Programming Paradigms, 2016 IEEE 9th

International Conference on Cloud Computing.
[2] CNCF Serverless Whitepaper

https://github.com/cncf/wg-

serverless/blob/master/whitepapers/serverless-
overview/cncf_serverless_whitepaper_v1.0.pdf

[3] AWS Lambda FAQs, What programming language does AWS Lambda

support? https://aws.amazon.com/lambda/faqs/.
[4] AWS Lambda Execution Context

https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-

code.html.
[5] Retrieving information about the currently running function

https://github.com/Azure/azure-functions-host/wiki/Retrieving-

information-about-the-currently-running-function.
[6] Cloud Function Execution Environment, File system, as accessed in

January 2020, https://cloud.google.com/functions/docs/concepts/exec.

[7] Development Tips, Using Global Variables,

https://cloud.google.com/run/docs/tips.

[8] What is Apache OpenWhisk? https://openwhisk.apache.org/.

[9] Serverless and OpenWhisk Architecture,
https://www.oreilly.com/library/view/learning-apache-

openwhisk/9781492046158/ch01.html.

[10] Persistent Volumes, in Kubernetes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/.

[11] OpenWhisk deployment on Kubernetes.

https://github.com/apache/openwhisk-deploy-kube.
[12] Helm Package manager Quickstart Guide.

https://helm.sh/docs/intro/quickstart/.

