Comparative Evaluation of PI and Fuzzy Logic Controller for Doubly Fed Induction Generator Based Wind Energy Conversion System

Saba Hussain¹, Vishnu Kumar Sahu²

¹M.Tech. Student, Dept. of Electrical Engineering, Shri Shankaracharya Group of Institutions, Bhilai, India
²Assistant Professor, Dept. of Electrical Engineering, Shri Shankaracharya Group of Institutions, Bhilai, India

Abstract: The aim of this project is the analysis of wind turbine generator configuration for a variable speed wind turbine Generator using doubly Fed induction generator. Different types of generator configurations that include DC generator, Synchronous generator, induction Generators are used for wind energy conversion system. Among all, Both Permanent Magnet Synchronous Generator and Doubly fed induction generator are widely used for WECS. But, DFIG proved out to be more advantageous over PMSG in terms of production of energy in large wind farms, cost, Converter Size, etc. This paper presents the control of Rotor side converter and stator side converter for the control of active and reactive power using two different controllers-PI controller and Fuzzy Logic Controller. The complete mathematical modeling of DFIG is implemented using MATLAB/SIMULINK and the performance results of both the controller are compared in terms of output power, Torque, Rotor and stator currents etc.

Keywords: Doubly fed induction generator (DFIG), Voltage source converter (VSC), Wind energy conversion system (WECS), Rotor side converter (RSC), Grid side converter (GSC), PI controllers, Static compensator (STATCOM), Voltage-oriented control (VOC), Pulse width modulation (PWM).

1. Introduction

Due to increase in global warming and devastating contamination of the world’s environment there is an increase in the use of non-conventional resources to fulfil the energy needs of the society which includes solar cells, wind turbines, hydro power and biomass etc. There are many engineers and several institutes working for making the optimal utilization of all these non-conventional energy sources possible. Wind energy is one of the alternative forms of energy that has played an important role in the history of civilization. In earlier generation, non-conventional energy resources were not used in large scale production due to lack of technology. But now wind turbine technology has emerged out with an exponential growth in the generation of power. The wind power has its own importance because of the various advancements and improved performance of several Wind Energy Conversion Systems (WECS). Most of the global energy is being increasingly generated by modern wind power systems. Germany is among the biggest wind power markets. Along with Germany there are many countries like US, Spain, France, Denmark, China and India as well which considers wind energy as a serious alternate for generation of electricity. During 1980, the world’s installed wind capacity was almost 13 MW. 59.024 GW of wind power was in operation by the end of 2005. By the end of 2006, the total installed capacity of wind turbines has reached 74.150 GW with an annual growth of approximately 23.8%. This installed capacity increased 93.926 GW and 121.188 GW in end of 2007 and 2008 respectively with annual growth of approximately 26%. It is expected that by the end of 2012 and 2017 and as updated on 4th June 2019 the total installed wind power capacity has reached to 597 GW all over the world. Also in India, Wind power generation capacity has increased in recent years. As seen from the data of 31 March 2019 the total installed wind power capacity was 336.625 GW [1]. The total wind farms are grown to 443 in India. Thus India has the fourth largest installed wind power capacity in the world. Wind power capacity is mainly spread across the South, West, North and East regions. There are a number of options available for the selection of wind power installation. Because of this a major focus is kept on wind power conversion systems in the current paper.

2. Mathematical modelling of DFIG

Firstly, the Kinetic Energy of the wind is transformed into the mechanical energy in the rotor turbine blades. The kinetic energy of the wind can be expressed as:

\[K.E = \frac{1}{2} m v^2 \]

Where ‘m’ is the mass of the air stream moving with velocity ‘v’. If A= area of the rotor blades swept due to exposed wind stream, and \(\rho \) is the density of air in kg/m³, \(\theta \) is the volume of air available to the rotor and thickness = wind velocity. This K.E can also be expressed in

\[K.E = \frac{1}{2} \rho A v^3. \]

On further calculation we have the mechanical power developed in the turbine which is expressed by:
\[P_m = \frac{1}{2} \rho A v^3 \]

The actual power produced by the rotor by using a power coefficient \(C_p \) which is defined as the ratio of mechanical power of the rotor blades to the wind power. Thus, the maximum power that can be extracted is calculated by the equation:

\[P_m = \frac{1}{2} \rho A C_p v^3 \]

The voltage equations used in modeling DFIG is obtained from the equivalent circuit of DFIG. The voltage differential equations for stator and rotor coils in vector form is expressed as:

\[
\ddot{V}_s = i_s R_s + \frac{d}{dt} \frac{\dot{\phi}_s}{R_s} \\
\ddot{V}_r = i_r R_r + \frac{d}{dt} \frac{\dot{\phi}_r}{R_r}
\]

The methodology used in the control of DFIG involves the use of Clarke and park transformation to convert the three phase rotating reference frame quantities into Two phase stationary reference frame using Clarke’s transformation and then to two phase stationary reference frame by using Park Transformation. For Modeling of DFIG, we need to transform the above equation from three phase to two phase components and subsequently rotating all the variables into a synchronous rotating reference frame (d-q) oriented along the stator flux. [6] Using this transformation concept the dynamic model of WRIM is developed in a synchronously rotating reference frame and stationary reference frame as well. The final voltage and flux linkage equations that represent the dynamic model of induction machine in stationary reference frame \((\alpha-\beta)\) for stator and rotor are given below:

\[
\begin{align*}
\dot{V}_{as} &= r_{as} i_{as} + \frac{d}{dt} (\phi_{as}) \\
\dot{V}_{bs} &= r_{bs} i_{bs} + \frac{d}{dt} (\phi_{bs}) \\
\phi_{as} &= L_s i_{as} + L_m i_{ar} \\
\phi_{bs} &= L_s i_{bs} + L_m i_{br} \\
\dot{V}_{ar} &= r_{ar} i_{ar} + \frac{d}{dt} \phi_{ar} + \omega_r \phi_{br} \\
\dot{V}_{br} &= r_{br} i_{br} + \frac{d}{dt} \phi_{br} - \omega_r \phi_{ar} \\
\phi_{ar} &= L_s i_{as} + L_m i_{ax} \\
\phi_{br} &= L_s i_{bs} + L_m i_{bx} \\
\end{align*}
\]

The stator and stator referred rotor self-inductance are equal to their magnetizing inductance and respective leakage inductance and is given as:

\[
\begin{align*}
\phi_{r,dq} &= L_s i_{r,dq} + L_m i_{s,dq} \\
\phi_{r,dq} &= L_s i_{r,dq} + L_m i_{s,dq} \\
\end{align*}
\]

The rotor and stator equations when combined gives the equivalent circuit. Therefore, we have the following DFIG equivalent circuit and equations describing the behavior of DFIG in rotating reference frame oriented along stator flux [7] as:

The model of DFIG expressed in d-q reference frame rotating at synchronous speed is derived by considering the axis position as shown in Fig. 1.
Where the d-q are the axis of stator flux reference syste

\[V_{s,dq}, i_{s,dq}, \Phi_{s,dq} \] are the stator voltage, current and flux vector.

\[V_{r,dq}, i_{r,dq}, \Phi_{r,dq} \] are the rotor voltage, current and flux vector.

\(\omega_s \) and \(\omega_r \) are the stator flux reference system and rotor electrical speed. The final equation representing the stator and rotor active and reactive powers for the DFIG are given by:

\[P_s = \frac{3}{2} (V_{ds}i_{ds} + V_{qs}i_{qs}) \]

\[Q_s = \frac{3}{2} (V_{qs}i_{ds} - V_{ds}i_{qs}) \]

\[P_r = \frac{3}{2} (V_{dr}i_{dr} + V_{qr}i_{qr}) \]

\[Q_r = \frac{3}{2} (V_{qr}i_{dr} - V_{dr}i_{qr}) \]

In this proposed model we aim at controlling the above active and reactive power using Rotor side control and Grid side control. The DFIG model includes the rotor side converter and stator side converter whose control strategy is discussed in the below section.

3. Control strategy

A. Rotor Side Control

RSC’s main purpose is to extract maximum energy with independent control of active and reactive power. RSC is controlled in voltage-oriented reference frame. Active and reactive power are controlled by direct and quadrature axis rotor currents \(i_{dr} \) and \(i_{qr} \) respectively. The rotor side control was developed using the PI controller equivalent steady-state circuit using the pulse-width modulation technique. The three phase currents are decomposed into their d and q components in this control structure. Such components are compared with the reference signal and the error signal is transmitted through a proportional integral (PI) producing the d and q components.

B. Grid side converter control

The grid side controller’s main objective is to keep a steady DC-link voltage independent of the rotor energy flow value and path. The rotating reference axis d-q is aligned along the grid voltage to power the grid side converter. The line side converter control consists of d and q current references generated using the dc voltage error and the reactive power references, followed by a hysteresis current control block for generation of the gating signals. Again, for grid voltage synchronization and proper conversion to dq components, a PLL is needed.

The control of both the Rotor and stator is done by two separate controllers, one is PI Controller and the Second is the Fuzzy Logic Controller.

4. Simulation results

The proposed Fuzzy Logic control model is implemented in MATLAB/SIMULINK and Fuzzy Logic Toolbox. The simulated model of DFIG is rated at 2MW with a nominal bus voltage 690V. The wind speed is assumed to be 12m/sec with \(R_s=R_r=0.0029 \text{ohm}; L_s=L_r=0.0026 \text{H}; L_m=0.0025 \text{H}; J=135 \text{Kg}; \) no.of pole pairs=2 as the machine parameters. The model is tested for load transient and fluctuation in wind speed at various instants i.e. at \(t=0.25 \text{ sec}, t=2 \text{ sec}, t=4 \text{ sec} \) and \(t=6 \text{ sec} \) respectively and its transient performance is analyzed at these instants.
5. Conclusion

The dynamic models of the Doubly Fed Induction Generator are studied and analyzed in various reference frames as a clear understanding is needed for the development of control algorithms for stand-alone WECS based on DFIG. Two control algorithms are implemented to achieve the desired goal which involve the use of the PI controller and the Fuzzy logic controller and evaluate their transient output performance is analyzed during sudden load transients and wind speed changes. Vector control technique is used for the control of Rotor side converter and stator side converter. Vector control technique is used for the control of Rotor side and stator side converter. The results show the importance of the control strategy, and both controllers were used to obtain the results. The performance of the proposed model is compared in terms of current, voltage, power Quality, Torque, Active power and Reactive Power. As a result, we can conclude that fuzzy logic controller show a better performance than with the use of conventional PI controller specially at lower wind speed.

References