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1. Introduction

In introductory course on fractional differential equations,
D2%y(t) = f(t,v,D%u), te(0,1\{t tm}0<a<1, (1)

.....

limt'%v(t) =v() , limt™*D*u(t) = D*u(l), (2)
t-o0t t-o0t

3 1
tlgg}(t - )

(v () = 5 (v(t). @3)

3 1
tim(t=1)

- (D“v(t) - D”‘v(tj)) =1 (v(tj)), 4)

Where,

Dey(t) = (02£)(t) =7) r f (t -1 %v(r)dr

is the standard Riemann—Liouville fractional
derivative, D?* = D*(D%v) is the sequential Riemann—

Liouville fractional derivative .
0<tl<t2<--<t,<LIl,€CRR(G=12..mf
is continuous at every point (t,u,v) € [0,1] X R X R,

Differential equation with fractional order have recently
proved valuable tools in the modeling of many phenomena in
various fields of science and engineering. Recently, many
researchers have paid attention to existence result of solution of
the initial value problem and boundary value problem for
fractional differential equations. For example, Belmekki et al.
investigated the existence and uniqueness of solution of the
following fractional differential equation with periodic
boundary value condition

DSy — () = f(t,v(t)),t€(0,1], 0< §<1, (5)
tl_i)r(])n)f t10u(t) = v(1), (6)

g-‘:—(y(x) = f(xvleg+y)' x € (0' T]v (7)

x4y (0| x=0 = Yo, X1 (DFY) () = y(1) ®)

by using monotone iterative method, where D§, = D“and
DE¢ = D?*are as mentioned above.

A. Theorem
The linear impulsive boundary value problem

D2y (t) + pDu(t) + qu(t) = o(t), te(0, 11\ {t4, ..., t,,} (9)

lim t1%v(t) = v(1), lim t17%D%p(t) = D*v(1), (10)
t-0t t-0t

tlirtn;r(t - tj)l_a (v(t) - v(tj)) = q; j=1,....m, (11)
lim (t —t; ) (D“v(t) - D“U(t}-)) =b; j=1,...,m,(12)

t—>t

Where p, q,a;,b; € Rare constants with p,q > 0and p* >
4q and c€eC[0,1], has the following representation of solutions

v(t) = [} Gia(t,s) [, Gay, (s, D0() dr + X%, T () (b —
10) [, Gryo (6:5)Ga, o (5,5) ds + BT, T (@)Gy, (8

(13)

where G o (t,s)i=12)
Ay =M g, PR (14)
B. Proof

Let (D* — A,)u(t) = x(t), te(0, 11\{t4,..., tm}.

Then the problem (9) — (12)is equivalent to
(D* = 2)v(t) = x(t) , te(0, 11\{ty,..., tm}, (15)
tlirg1+ tI%v(t) = v(1) (16)
lirrgr(t — tj)l_a (u(t) - u(tj)) = qj a7

t—>t}
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And (D% —A)Dx(t) =a(t) , te(0,1\{ty,...,t;n}, (18)
tl_i)rg;r tT=%x(t) = x(1), (19)
lim (¢ — ;)" (x(6) = x(t;)) = b; — A0y (20)

T
t—>tj

k = 0, we obtain that BVPs(15) — (17)and (18) — (20)have
the following representation of solutions

v(t) = [ G, , (t,9)x(s) ds + X1, T(@) Gy, (6. )a;  (22)

x(t) = [} G, , (&, 5)0(s) ds + XL, T(@) Gy, , (6,6 (by
Aa; ) (22)

Respectively, Substituting(22)into (21), we get
v(t)
! 1
= j Gra(t,s) f Gy (s,0)o(1) dt
0

Om
j=1
1 m
— /12a]-) f Gy (6 S)G/h,a(s' t]-) ds + Z I'(a)Gy,, (¢, tj)aj_
0 =

Hence proved.

2. Main result

Let vy, wy € PC;_,[0,1]. wyis called a lower solution of the
problem(1) — (4)if it satisfies,
Dzavo(t) S f(tl vo,Davo); € (Ol 1]\{tll e

sty (23)

tl_i)r(])qftl‘“vo (t) < vo(1), tl_i)rggrtl‘“l)“vo(t) < D%,y(1),

(24)
tlirtr}r(t — tj)l_a (Vo(t) — Vo (tj)) = (vo(tf))’ (25)
Jim (=) (2700 = Do0(0)) <1 (vo(4)) - @)

And wyis called an upper solution of the problem (1) — (4) if
it satisfies
DZ“WO(t) < f(t, WO!DaWO)I

t € (0, 1\{ty,..., tn}, (27)

tlirglthl‘“wo () < wy(1), tlirgl)ftl‘“D”‘wo () = D%*w, (1), (28)

lim (£ = ¢;)" ™ (wo () — wo(t;)) < I (wo(t;)), (29)

T
t—>tj

=) (2o = Do) 1 (o) @)
J

In the following, we assume that
1o (1) < wy(t), te(0,1]: tlir(ggrtl‘“vo(t) < tlir(ggrtl‘“wo(t),
31%1 t1meD %y, (t) < tll%“+ t17¢D%w, (1),
(31)
and define the order interval in space PC{ ,[0,1]:
[vg, wol = {u €PCE,[0,1]: v (t) < u(t) < wy(t), t € (0,1],

lim t'"%v,(t) < lim 1 %u(t) < lim £~ %w, (t),

t—0t t—-0t t-0%

lim t'%v,(t) < lim t1%D%u(t) < lim t17%D%w, ()}
t—0t t—-0t t-0+

Let
M;(T) == D*vy(t) + ﬂz(Wo(t) - Uo(t)), M,(T)
= D%wo(t) + /12(Wo(t) - Vo(t)) )

For convenience, we shall assume that fsatisfies the
following conditions:

(H,) There exist constants p, g > Owith p? > 4q such that

f(t, WO'DaWO) - f(t' WO'DQVO)
= —p(D%wy — Dvg) — q(wy — Vo),

Where t € (0, 1]\{t4, ..., tm}, Vo, Wy € PC{,[0,1]are lower
and upper solutions of problem(1) — (4);

(H,) There exist constants p, g > 0 with p? — 4q such that
f(t,x2,52) — f(t,x1,¥1) = —p(y2 — ¥1) — q(x2 — x1),

Where,
t € (0, 11\{ts,.... t;m}, vo(t) < x; S x5 S wo(t), My (1) < y;
< M,(t),i =12

VUO(tj) Sx<y<s wo(tj),j =12...,m
A. Example
suppose that (H,)and (H;) hold. Then

D“(Wo(t) - vo(t)) - AZ(WO(t) - vo(t)) >0, te(0,1].
B. Proof

Let
y() = D¥(wo(£) — v (1)) — A, (wo () — (D)), ¢ € (0,1].

Then by (H;)and (H;),we have

Dey(t) — ,y(t) = D2 (wo(t) — v (1)) + pD(wo () —
vo(1)) + q(wo(t) — v, (1))
= f(t,wp, D%Wy) — f(t,v9, D%vp) + pDa(Wo(t) - Uo(f))
—q(wo(®) —vo(0)) = 0
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lim ¢2~%y(t) — y(1) = lim+t1‘“(D“W0(t) - impulsive fractional differential equation with periodic
t—0 t—0 b e
oundary conditions.
D0y (1)) — D“(wo(1) — vp(1)) Y
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Hence the proof.

This paper presented existence of solutions for nonlinear



