

# Sum Divisor Cordial Graph

R. Elambarithi<sup>1</sup>, R. Anitha<sup>2</sup>

<sup>1</sup>M.Phil. Scholar, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India <sup>2</sup>Assistant Professor, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India

*Abstract*: In this paper, we investigate about a sum divisor cordial graph, we prove that path, comb, jewel, crown, are sum divisor cordial graphs.

Keywords: Divisor, cordial graph, path.

## 1. Introduction

The divisor cordial labeling is a variant of cordial labeling. It is very interesting to investigate graph or graph families which are divisor cordial as all the graphs do not admit divisor cordial labeling [1]. Here, we proved that path, jewel graph and crown graph are divisor cordial graphs.

# 2. Mathematic Formulation

#### Definition: 1.1

Let G = (V(G), E(G)) be a simple graph and  $f: V(G) \rightarrow \{1, 2, \cdots, |V(G)|\}$  be a bijection. For each edge uv, assign the label 1 if 2|(f(u) + f(v)) and the label 0 otherwise. The function f is called a sum divisor cordial labeling if  $|e_f(0) - e_f(1)| \le 1$ . A graph that admits a total divisor cordial labeling is named a total divisor cordial graph.

## Definition: 1.2

The comb  $P_n O K_n$  is the graph obtained from a path by attaching a pendant edge to each vertex of the path.

## Example: 1.3

The join of two graphs  $G_1$  and  $G_2$  is denoted by  $G_1 + G_2$  and whose vertex set is  $V(G_1 + G_2) = V(G_1) \cup V(G_2)$  and edge set is

$$E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}$$

# Example: 1.4

The jewel  $J_n$  is the graph with vertex set  $V(J_n) = \{u, v, x, y, u_i : 1 \le i \le n\}$  and Edge set  $E(J_n) = \{ux, uy, xy, xv, yv, uu_i, vu_i : 1 \le i \le n\}.$ 

## Example: 1.5

For a simple connected graph *G* the square of graph *G* is denoted by  $G^2$  and defined as the graph with the same vertex set as of *G* and two vertices are adjacent in  $G^2$  if they are at a distance 1 or 2 apart in *G*.

# Theorem 1.6

The path  $P_n$  is sum divisor cordial graph.

# Proof:

Let  $P_n$  be a path with consecutive vertices  $v_1, v_2, \dots, v_n$ . Then  $P_n$  is of order n and size n - 1. Define  $f: V(P_n) \rightarrow \{1, 2, \dots, n\}$  as follows:

Case (i): n is odd

$$f(v_{i}) = \begin{cases} i & \text{if } i \equiv 0,1 (mod \ 4) \\ i+1 & \text{if } i \equiv 2 (mod \ 4) & \text{for } 1 \le i \le n \\ i-1 & \text{if } i \equiv 3 (mod \ 4) \end{cases}$$

*Case (ii): n* is even

$$f(v_{i}) = \begin{cases} i & \text{if } i \equiv 1,2 \pmod{4} \\ i+1 & \text{if } i \equiv 3 \pmod{4} \text{ for } 1 \leq i \leq n \\ i-1 & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

In both cases the induced edge labels are  $f^*(v_i v_{i+1}) = \begin{cases} 1 & if \ 2 \mid (f(v_i) + f(v_{i+1})) \\ 0 & otherwise \end{cases}$ 

We observe that,

$$e_f(0) = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$
$$e_f(1) = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n-2}{2} & \text{if } n \text{ is even} \end{cases}$$
$$\text{Thus, } |e_f(0) - e_f(1)| \le 1 \end{cases}$$

Hence, the path  $P_n$  is sum divisor cordial graph.

## Theorem 1.8

The comb is sum divisor cordial graph. *Proof:* 

Let *G* be a comb obtained from the path  $v_1, v_2, \dots, v_n$  by joining a vertex  $u_i$  to  $v_i$  for each  $i = 1, 2, \dots, n$ . Then *G* is of order 2n and size 2n - 1.

Define 
$$f: V(G) \rightarrow \{1, 2, \dots, 2n\}$$
 as follows:  
 $f(v_i) = 2 i - 1; \ 1 \le i \le n$   
 $f(u_i) = 2 i; \ 1 \le i \le n$ 

Then, the induced edge labels are  $f^*(v_iv_{i+1}) = 1; \ 1 \le i \le n-1$  $f^*(v_iu_i) = 0; \ 1 \le i \le n$ 

We observe that,  $e_f(0) = n$  and  $e_f(1) = n - 1$ . Thus,  $|e_f(0) - e_f(1)| \le 1$ . Hence, the comb is sum divisor cordial graph.



Theorem 1.9 The jewel  $J_n$ . is sum divisor cordial graph. Proof: Let  $G = J_n$ . Let  $V(G) = \{u, v, x, y, u_i : 1 \le i \le n\}$  and  $E(G) = \{ux, uy, xy, xv, yv, uu_i, vu_i: 1 \le i \le n\}$ . Then G is of order n + 4 and size 2n + 5. Define  $f : V(G) \rightarrow \{1, 2, \dots, n+4\}$  as follows: f(u) = 1;f(v) = 2;f(x) = 3;f(y) = 4; $f(u_i) = i + 4; \ 1 \le i \le n.$ Then, the induced edge labels are  $f^{*}(ux) = 1;$  $f^*(uy) = 0;$  $f^*(xy) = 0;$  $f^*(vx) = 0;$  $f^*(vy) = 1;$  $f^*(uu_{2i-1}) = 1; \ 1 \le i \le \left[\frac{n}{2}\right]$  $f^*(uu_{2i}) = 0; \ 1 \le i \le \left|\frac{n}{2}\right|$  $f^*(vu_{2i-1}) = 0; \ 1 \le i \le \left[\frac{n}{2}\right]$  $f^*(vu_{2i}) = 1; \ 1 \le i \le \left|\frac{n}{2}\right|$ We observe that,  $e_f(0) = n + 3$  and  $e_f(1) = n + 2$ . Thus,  $|e_f(0) - e_f(1)| \le 1$ . Hence,  $J_n$  is sum divisor cordial graph. Theorem 1.10 The gear  $G_n$  is sum divisor cordial graph. Proof: Let  $G = G_n$ . Let  $V(G) = \{v, u_i, v_i: 1 \le i \le n\}$  and

 $E(G) = \{vv_i, v_iu_i : 1 \le i \le n; u_iv_{i+1} : 1 \le i \le n - 1\}$ 

1;  $u_n v_1$ }. Then G is of

Order 2n + 1 and size 3n. Define  $f: V(G) \to \{1, 2, \dots, 2n + 1\}$  as follows: f(v) = 1;  $f(v_{2i-1}) = 4 i - 1; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$   $f(v_{2i}) = 4 i; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$   $f(u_{2i-1}) = 4 i - 2; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$   $f(u_{2i}) = 4 i + 1; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ Then, the induced edge labels are  $f^*(vv_{2i-1}) = 1; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$   $f^*(vv_{2i}) = 0; \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$   $f^*(v_iu_i) = 0; \ 1 \le i \le n$   $f^*(u_iv_{i+1}) = 1; \ 1 \le i \le n - 1$   $f^*(u_nv_{1}) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$ We observe that,  $e_f(0) = \left\lceil \frac{3n}{2} \right\rceil$  and  $e_f(1) = \left\lfloor \frac{3n}{2} \right\rfloor$ Thus,  $|e_f(0) - e_f(1)| \le 1$ .

Hence,  $G_n$  is sum divisor cordial graph

## 3. Conclusion

The divisor cordial labeling is a variant of cordial labeling. Here, we discuss about the sum divisor cordial graph, and also prove that path, comb, jewel, crown, are sum divisor cordial graphs.

## References

 S. K. Vaidya and N. H. Shah, "Some Star and Bistar connected Divisor Cordial Graphs," *Annals of Pure and applied math.*, vol. 3, no. 1, pp. 67-77, 2013.