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Abstract: In this paper, we investigate about a sum divisor 

cordial graph, we prove that path, comb, jewel, crown, are sum 

divisor cordial graphs. 
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1. Introduction 

 The divisor cordial labeling is a variant of cordial labeling. It 

is very interesting to investigate graph or graph families which 

are divisor cordial as all the graphs do not admit divisor cordial 

labeling [1]. Here, we proved that path, jewel graph and crown 

graph are divisor cordial graphs.  

2. Mathematic Formulation 

Definition: 1.1 

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a simple graph and 𝑓: 𝑉(𝐺) → {1,2,·
··, |𝑉 (𝐺)|} be a bijection. For each edge 𝑢𝑣, assign the label 1 

if 2|(𝑓(𝑢) + 𝑓(𝑣)) and the label 0 otherwise.The function 𝑓 is 

called a sum divisor cordial labeling if |𝑒𝑓(0) − 𝑒𝑓(1)| ≤  1. A 

graph that admits a total divisor cordial labeling is named a total 

divisor cordial graph. 

 

Definition: 1.2 

 The comb 𝑃𝑛ʘ 𝐾𝑛is the graph obtained from a path by 

attaching a pendant edge to each vertex of the path. 

 

Example: 1.3 

 The join of two graphs 𝐺1 and 𝐺2 is denoted by  𝐺1 + 𝐺2 and 

whose vertex set is 𝑉(𝐺1 + 𝐺2) = 𝑉(𝐺1) ∪ 𝑉(𝐺2) and edge set 

is  

𝐸(𝐺1 + 𝐺2) = 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ {𝑢𝑣: 𝑢 ∈ 𝑉(𝐺1 ), 𝑣 ∈ 𝑉(𝐺2 )} 

 

Example: 1.4 

The jewel 𝐽𝑛is the graph with vertex set 

𝑉(𝐽𝑛) = {𝑢, 𝑣, 𝑥, 𝑦, 𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛} and 

 Edge set 

 𝐸(𝐽𝑛) = {𝑢𝑥, 𝑢𝑦, 𝑥𝑦, 𝑥𝑣, 𝑦𝑣, 𝑢𝑢𝑖, 𝑣𝑢𝑖 ∶  1 ≤ 𝑖 ≤ 𝑛}.  

 

Example: 1.5 

For a simple connected graph 𝐺 the square of graph 𝐺 is 

denoted by 𝐺2 and defined as the graph with the same vertex 

set as of 𝐺 and two vertices are adjacent in 𝐺2 if they are at a 

distance 1 or 2 apart in 𝐺. 

 

Theorem 1.6 

The path 𝑃𝑛 is sum divisor cordial graph. 

 

Proof: 

Let 𝑃𝑛 be a path with consecutive vertices 𝑣1, 𝑣2,···, 𝑣𝑛.Then 

𝑃𝑛is of order 𝑛 and size 𝑛 − 1. 
Define 𝑓: 𝑉(𝑃𝑛) →{1,2, … , 𝑛} as follows: 

 

Case (i): 𝑛 is odd  

         𝑓(𝑣𝑖) = {

  𝑖       if  𝑖 ≡ 0,1(𝑚𝑜𝑑 4) 

𝑖 + 1  if  𝑖 ≡ 2(𝑚𝑜𝑑 4)
𝑖 − 1  if  𝑖 ≡ 3(𝑚𝑜𝑑 4)

for  1 ≤ 𝑖 ≤ 𝑛 

 

Case (ii): 𝑛 is even  

        𝑓(𝑣𝑖) = {

 𝑖        if  𝑖 ≡ 1,2(𝑚𝑜𝑑 4)

𝑖 + 1  if  𝑖 ≡ 3(𝑚𝑜𝑑 4)
𝑖 − 1  if  𝑖 ≡ 0(𝑚𝑜𝑑 4)

for  1 ≤ 𝑖 ≤ 𝑛 

  In both cases the induced edge labels are  

        𝑓∗(𝑣𝑖𝑣𝑖+1) = {
 1     𝑖𝑓 2 |(𝑓(𝑣𝑖) + 𝑓(𝑣𝑖+1)) 
0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

  

 

We observe that, 

       𝑒𝑓(0) = { 

𝑛−1

2
   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛

2
      𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

  

       𝑒𝑓(1) = { 

𝑛−1

2
    𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛−2

2
    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

            

Thus, |𝑒𝑓(0) − 𝑒𝑓(1)| ≤  1. 

 Hence, the path 𝑃𝑛 is sum divisor cordial graph.  

 

Theorem 1.8  

The comb is sum divisor cordial graph. 

Proof: 

 Let 𝐺 be a comb obtained from the path 𝑣1, 𝑣2,···, 𝑣𝑛 by 

joining a vertex 𝑢𝑖 to 𝑣𝑖 for each 𝑖 =1, 2,···,𝑛. Then 𝐺 is of order 

2𝑛 and size 2𝑛 − 1.  

Define  𝑓: 𝑉(𝐺) → {1,2,··· ,2𝑛} as follows: 

             𝑓(𝑣𝑖) = 2 𝑖 − 1;   1 ≤ 𝑖 ≤ 𝑛   
              𝑓(𝑢𝑖) = 2 𝑖;   1 ≤ 𝑖 ≤ 𝑛   

 
Then, the induced edge labels are 

              𝑓∗(𝑣𝑖𝑣𝑖+1) = 1;   1 ≤ 𝑖 ≤ 𝑛 − 1                                 

             𝑓∗(𝑣𝑖𝑢𝑖) =  0;   1 ≤ 𝑖 ≤ 𝑛 
 

We observe that, 𝑒𝑓(0) = 𝑛 and  𝑒𝑓(1) = 𝑛 −1.  

Thus, |𝑒𝑓(0) − 𝑒𝑓(1)| ≤ 1. 

Hence, the comb is sum divisor cordial graph.  
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Theorem 1.9 

The jewel 𝐽𝑛. is sum divisor cordial graph. 

Proof: 

Let 𝐺 = 𝐽𝑛. Let 𝑉 (𝐺) = {𝑢, 𝑣, 𝑥, 𝑦, 𝑢𝑖 ∶   1 ≤  𝑖 ≤ 𝑛} and  

𝐸(𝐺) = {𝑢𝑥, 𝑢𝑦, 𝑥𝑦, 𝑥𝑣, 𝑦𝑣, 𝑢𝑢𝑖, 𝑣𝑢𝑖:  1 ≤ 𝑖 ≤ 𝑛}. Then 𝐺  is 

of order   𝑛 + 4 and size 2𝑛 +  5.  
Define 𝑓 ∶ 𝑉(𝐺) → {1,2,···, 𝑛 + 4} as follows:  

           𝑓(𝑢) = 1;  
            𝑓(𝑣) = 2;  
            𝑓(𝑥) = 3;   
           𝑓(𝑦) = 4;    
         𝑓(𝑢𝑖) = 𝑖 +  4;   1 ≤ 𝑖 ≤ 𝑛. 
 Then, the induced edge labels are  

        𝑓∗(𝑢𝑥)  = 1;  
       𝑓∗(𝑢𝑦)  = 0;  
       𝑓∗(𝑥𝑦)  = 0;   
       𝑓∗(𝑣𝑥)  = 0;  
       𝑓∗(𝑣𝑦)  = 1;  

       𝑓∗(𝑢𝑢2𝑖−1)  = 1;   1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉  

       𝑓∗(𝑢𝑢2𝑖)  =  0;   1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋      

       𝑓∗(𝑣𝑢2𝑖−1)  =  0;   1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉   

       𝑓∗(𝑣𝑢2𝑖)  =  1;   1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ 

We observe that, 𝑒𝑓(0)  =  𝑛 +  3 and  𝑒𝑓(1) = 𝑛 + 2.  

Thus, |𝑒𝑓(0) − 𝑒𝑓(1)| ≤  1. 

Hence, 𝐽𝑛 is sum divisor cordial graph.  

Theorem 1.10 

The gear 𝐺𝑛is sum divisor cordial graph. 

Proof: 

Let 𝐺 = 𝐺𝑛. Let 𝑉(𝐺) = {𝑣, 𝑢𝑖, 𝑣𝑖 :   1 ≤ 𝑖 ≤ 𝑛} and 

 𝐸(𝐺) = {𝑣𝑣𝑖 , 𝑣𝑖𝑢𝑖 ∶  1 ≤ 𝑖 ≤ 𝑛; 𝑢𝑖𝑣𝑖+1 ∶  1 ≤ 𝑖 ≤ 𝑛 −
1; 𝑢𝑛𝑣1}. Then 𝐺 is of  

Order  2𝑛 + 1 and size 3𝑛.  

Define 𝑓: 𝑉(𝐺) → {1,2,··· ,2𝑛 + 1 } as follows: 

           𝑓(𝑣) = 1; 

           𝑓(𝑣2𝑖−1) = 4 𝑖 − 1;   1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉  

           𝑓(𝑣2𝑖) = 4 𝑖;   1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋  

           𝑓(𝑢2𝑖−1) = 4 𝑖 − 2; 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉  

           𝑓(𝑢2𝑖) = 4 𝑖 + 1; 1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ 

Then, the induced edge labels are  

          𝑓∗(𝑣𝑣2𝑖−1) = 1;   1 ≤  𝑖 ≤ ⌈
𝑛

2
⌉  

          𝑓∗(𝑣𝑣2𝑖) = 0;   1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋  

          𝑓∗ (𝑣𝑖𝑢𝑖 ) = 0;   1 ≤  𝑖 ≤ 𝑛 

           𝑓∗ (𝑢𝑖𝑣𝑖+1 ) = 1;   1 ≤  𝑖 ≤ 𝑛 − 1  

           𝑓∗(𝑢𝑛𝑣1) = {
0     if 𝑛 is odd 
1     if 𝑛 is even

  

We observe that, 𝑒𝑓(0)=⌈
3𝑛

2
⌉ and  

                          𝑒𝑓(1) =⌊
3𝑛

2
⌋ 

Thus, |𝑒𝑓(0) − 𝑒𝑓(1)| ≤ 1. 

Hence, 𝐺𝑛 is sum divisor cordial graph 

3. Conclusion 

 The divisor cordial labeling is a variant of cordial labeling. 

Here, we discuss about the sum divisor cordial graph, and also 

prove that path, comb, jewel, crown, are sum divisor cordial 

graphs. 
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