Sum Divisor Cordial Graph

R. Elambarithi1, R. Anitha2
1M.Phil. Scholar, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India
2Assistant Professor, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India

Abstract: In this paper, we investigate about a sum divisor cordial graph, we prove that path, comb, jewel, crown, are sum divisor cordial graphs.

Keywords: Divisor, cordial graph, path.

1. Introduction

The divisor cordial labeling is a variant of cordial labeling. It is very interesting to investigate graph or graph families which are divisor cordial as all the graphs do not admit divisor cordial labeling \cite{1}. Here, we proved that path, jewel graph and crown graph are divisor cordial graphs.

2. Mathematical Formulation

Definition: 1.1
Let $G = (V(G), E(G))$ be a simple graph and $f: V(G) \rightarrow \{1, 2, \cdots, |V(G)|\}$ be a bijection. For each edge uv, assign the label 1 if $2|(f(u) + f(v))$ and the label 0 otherwise. The function f is called a sum divisor cordial labeling if $|e_f(0) - e_f(1)| \leq 1$. A graph that admits a total divisor cordial labeling is named a total divisor cordial graph.

Definition: 1.2
The comb $P_n \cdot K_2$ is the graph obtained from a path by attaching a pendant edge to each vertex of the path.

Example: 1.3
The join of two graphs G_1 and G_2 is denoted by $G_1 + G_2$ and whose vertex set is $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and edge set is $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uv; u \in V(G_1), v \in V(G_2)\}$

Example: 1.4
The jewel J_n is the graph with vertex set $V(J_n) = \{u, v, x, y, u_1: 1 \leq i \leq n\}$ and edge set $E(J_n) = \{ux, uy, xy, xv, yv, uu_1, vv_1: 1 \leq i \leq n\}$.

Example: 1.5
For a simple connected graph G the square of graph G is denoted by G^2 and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^2 if they are at a distance 1 or 2 apart in G.

Theorem 1.6
The path P_n is sum divisor cordial graph.

Proof: Let P_n be a path with consecutive vertices v_1, v_2, \cdots, v_n. Then P_n is of order n and size $n - 1$.
Define $f: V(P_n) \rightarrow \{1, 2, \cdots, n\}$ as follows:

Case (i): n is odd
\[f(v_i) = \begin{cases} i & \text{if } i \equiv 0, 1 \pmod{4} \\ i + 1 & \text{if } i \equiv 2 \pmod{4} \end{cases} \text{ for } 1 \leq i \leq n \\ i - 1 & \text{if } i \equiv 3 \pmod{4} \]

Case (ii): n is even
\[f(v_i) = \begin{cases} i & \text{if } i \equiv 1, 2 \pmod{4} \\ i + 1 & \text{if } i \equiv 3 \pmod{4} \end{cases} \text{ for } 1 \leq i \leq n \\ i - 1 & \text{if } i \equiv 0 \pmod{4} \]

In both cases the induced edge labels are $f^*(v_iv_{i+1}) = \begin{cases} 1 & \text{if } 2 | (f(v_i) + f(v_{i+1})) \\ 0 & \text{otherwise} \end{cases}$

We observe that,
\[e_f(0) = \begin{cases} n-1 & \text{if } n \text{ is odd} \\ n & \text{if } n \text{ is even} \end{cases} \]
\[e_f(1) = \begin{cases} n-1 & \text{if } n \text{ is odd} \\ n & \text{if } n \text{ is even} \end{cases} \]

Thus, $|e_f(0) - e_f(1)| \leq 1$.

Hence, the path P_n is sum divisor cordial graph.

Theorem 1.8
The comb is sum divisor cordial graph.

Proof: Let G be a comb obtained from the path v_1, v_2, \cdots, v_n by joining a vertex u_i to v_i for each $i = 1, 2, \cdots, n$. Then G is of order $2n$ and size $2n - 1$.
Define $f: V(G) \rightarrow \{1, 2, \cdots, 2n\}$ as follows:
\[f(v_i) = 2i - 1; 1 \leq i \leq n \]
\[f(u_i) = 2i; 1 \leq i \leq n \]

Then, the induced edge labels are $f^*(v_iv_{i+1}) = \begin{cases} 1 & \text{if } 1 \leq i \leq n - 1 \\ 0 & \text{if } 1 \leq i \leq n \end{cases}$
\[f^*(v_iu_i) = 0; 1 \leq i \leq n \]

We observe that, $e_f(0) = n$ and $e_f(1) = n - 1$.
Thus, $|e_f(0) - e_f(1)| \leq 1$.
Hence, the comb is sum divisor cordial graph.
The jewel J_n is sum divisor cordial graph.

Proof:

Let $G = J_n$. Let $V(G) = \{u, v, x, y, u_i : 1 \leq i \leq n\}$ and $E(G) = \{ux, uy, xy, xv, uv, u_iu_i : 1 \leq i \leq n\}$. Then G is of order $n + 4$ and size $2n + 5$.

Define $f : V(G) \rightarrow \{1, 2, \ldots, n + 4\}$ as follows:

$$
\begin{align*}
 f(u) &= 1; \\
 f(v) &= 2; \\
 f(x) &= 3; \\
 f(y) &= 4; \\
 f(u_i) &= i + 4; \quad 1 \leq i \leq n.
\end{align*}
$$

Then, the induced edge labels are

$$
\begin{align*}
 f^*(ux) &= 1; \\
 f^*(uy) &= 0; \\
 f^*(xy) &= 0; \\
 f^*(vx) &= 0; \\
 f^*(vy) &= 1; \\
 f^*(u_iu_{2i-1}) &= 1; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f^*(u_2v_{2i}) &= 0; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f^*(vuv_{2i-1}) &= 0; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f^*(u_2v_{2i}) &= 1; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor
\end{align*}
$$

We observe that, $e_f(0) = n + 3$ and $e_f(1) = n + 2$.

Thus, $|e_f(0) - e_f(1)| \leq 1$.

Hence, J_n is sum divisor cordial graph.

Theorem 1.10

The gear G_n is sum divisor cordial graph.

Proof:

Let $G = G_n$. Let $V(G) = \{v, u_i, v_i : 1 \leq i \leq n\}$ and $E(G) = \{vv_i, v_iu_i : 1 \leq i \leq n; uiv_{i+1} : 1 \leq i \leq n - 1; u_nv_1\}$. Then G is of order $2n + 1$ and size $3n$.

Define $f : V(G) \rightarrow \{1, 2, \ldots, 2n + 1\}$ as follows:

$$
\begin{align*}
 f(v) &= 1; \\
 f(v_{2i-1}) &= 4i - 1; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f(v_{2i}) &= 4i; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f(u_{2i-1}) &= 4i - 2; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f(u_{2i}) &= 4i + 1; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor
\end{align*}
$$

Then, the induced edge labels are

$$
\begin{align*}
 f^*(vv_{2i-1}) &= 1; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f^*(vv_{2i}) &= 0; \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
 f^*(v_iu_i) &= 0; \quad 1 \leq i \leq n \\
 f^*(u_iv_{i+1}) &= 1; \quad 1 \leq i \leq n - 1 \quad \text{if n is odd} \\
 f^*(u_nv_1) &= 1 \quad \text{if n is even}
\end{align*}
$$

We observe that, $e_f(0) = \left\lfloor \frac{3n}{2} \right\rfloor$ and $e_f(1) = \left\lfloor \frac{3n}{2} \right\rfloor$

Thus, $|e_f(0) - e_f(1)| \leq 1$.

Hence, G_n is sum divisor cordial graph.

3. Conclusion

The divisor cordial labeling is a variant of cordial labeling. Here, we discuss about the sum divisor cordial graph, and also prove that path, comb, jewel, crown, are sum divisor cordial graphs.

References