

# Cordial Labeling of Twin Chord

S. Haridass<sup>1</sup>, M. Karthigeyan<sup>2</sup>

<sup>1</sup>M.Phil. Scholar, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India <sup>2</sup>Assistant Professor, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India

*Abstract*: In this paper, we analyze about the product cordial labelling for some new graphs such as cycle with one chord and cycle with twin chords.

Keywords: Cordial Labeling, Vertices, chord.

#### 1. Introduction

Graphs are discrete structure which constitutes of vertices and edges that connect these vertices. They are not concerned with their internal properties but with their inter-relationship. By a graph theory, we mean a finite undirected graph without loops or multiple edges. Vaidya and Barasara [1] introduced the edge analogue of product cordial labeling and named it as edge product cordial labeling. Further they explicits Product Cordial Labeling for some New Graphs [2]. In this paper, we analysis the cordial labeling of one chord and twin chord.

#### Definition: 1.1

In the product labeling, the mapping  $c: V(G) \rightarrow \{0,1\}$  is called *binary vertex labelling* of *G* and f(v) is called the *label* of vertex *v* of *G* under *f*.

The induced edge labelling  $c^* : E(G) \to \{0,1\}$  is given by  $c^*(e = uv) = |c(u) - c(v)|.$ 

Let  $v_c(0)$ ,  $v_c(1)$  be the number of vertices of *G* having labels 0 and respectively under *f* and let  $e_c(0)$ ,  $e_c(1)$  be the number of edges of *G* having labels 0 and 1 respectively under  $c^*$ .

Definition: 1.2

Let G be the vertex cordial labelling of graph if,

$$\begin{vmatrix} v_c(0) - v_c(1) \end{vmatrix} \le 1$$
 and  
 $|e_c(0) - e_c(1)| \le 1.$ 

A graph is cordial if it admits cordial labelling.

Definition: 1.3

Let G be the vertex cordial with induced edge labelling  $c^*$ :  $E(G) \rightarrow \{0,1\}$  defined by  $c^*(e = uv) = c(u)c(v)$ if  $|v_c(0) - v_c(1)| \le 1$  and  $|e_c(0) - e_c(1)| \le 1$ .

A graph G is product cordial if it admits product cordial labelling.

Definition: 1.4

Let  $C_m$  be the *chord* of cycle is an edge joining two non – adjacent vertices of cycle  $C_m$ .

# Definition: 1.5

Two chords of a cycle  $T_m$  are said to be twin chords if they form a triangle with an edge of cycle  $C_m$ .

# 2. Mathematical formulation

Theorem: 2.1

Cycle  $C_m$  with one chord is product cordial except when n is even and the chord is joining the vertices at diameter distance.

Define,  $c : V(G) \rightarrow \{0, l\}$ , we consider following two cases. *Case 2: when n is odd.* 

Without loss of generality we assure that let the chord is between vertex  $(v_1, v_c)$  where  $3 \le i \le \left[\frac{m}{2}\right]$ .

$$f(v_c) = 1, \qquad 1 \le i \le \left\lceil \frac{m}{2} \right\rceil$$
$$f(v_c) = 0, \qquad \text{otherwise}$$

In view of above labelling pattern we have,

$$v_{\rm f}(0) + 1 = v_f(1) = \left[\frac{m}{2}\right]$$
  
 $e_f(0) = e_f(1) = \frac{m+1}{2}$ 

Case 2: When *m* is even.

Without loss of generality we assume that let the chord is between vertex  $(v_1, v_i)$  where  $3 \le i \le \frac{m}{2} + 1$ . *Subcase1:* When chord is between  $(v_1, v_i)$  where  $i = \frac{m}{2} + 1$ .

In order to satisfy the vertex condition for product cordial graph it is essential to assign label 0 to  $\frac{n}{2}$  vertices out of total *m* vertices. The vertex with label 0 will give rise at least  $\frac{m}{2} + 2$  edges with label 0 and at most  $\frac{m}{2} - 1$  edges with label 1 out of total m + 1 edges of *G*. Therefore  $|e_c(0) - e_c(1)| = 3$ . Here the condition does not satisfied. Hence G is not product cordial.

Subcase 2: When chord is between  $(v_c, v_i)$  where  $3 \le i \le 1$ .

$$f(v_c) = 1, \ 1 \le i \le 1$$
  
 $f(v_c) = 0, \ \text{otherwise}$ 

In view of the above labelling pattern we have,



$$V_c(0) = v_c(1) = 1$$
  
 $e_c(0) = e_c(1) - 1 = \frac{n}{2} + 1$ 

Thus in every case we

$$|v_c(0) - v_c(1)| \le 1$$
 and  $|e_c(0) - e_c(1)| \le 1$ .

Hence the product cordial cycle  $C_m$  with one chord.

Theorem: 2.2

Cycle  $C_7$  with chords is product cordial except when t is even and one of the chord joining vertices at diameter distance.

Proof:

Let t be the cycle graph with twin chords. Let  $t_1, t_2, t_3, ..., t_m$  be the vertices. Here graph G has t vertices and t + 2 edges.

Define  $f(v) \rightarrow \{0, l\}$ , we consider following two case.

Case 1: When m is odd.

In view of the above labelling pattern we have,

$$v_c(0) + l = v_c(l) = \left[\frac{m}{2}\right]$$
  
 $e_c(0) = e_c(l) + l = \left[\frac{m}{2}\right] + l =$ 

When chords are between

$$(v_1, v_c)$$
 and  $(v_1, v_{c+1})$  where  $i = \left\lfloor \frac{m}{2} \right\rfloor$ .  
 $e_c(0) + 1 = e_c(1) = \left\lfloor \frac{m}{2} \right\rfloor + 1$ :

When chords are between

$$(v_1, v_c)$$
 and  $(v_1, v_{c+1})$  where  $3 \le i \le \left\lfloor \frac{m}{2} \right\rfloor$ 

Case 2: When m is even.

Suppose, when the chords are between vertex  $(v_1, v_c)$  and  $(v_1, v_{c+1})$  where  $3 \le i \le \frac{m}{2}$ .

Subcase1: When chords are between  $(v_1, v_c)$  and  $(v_1, v_{c+1})$  where  $c = \frac{m}{2}$ .

In order to satisfy the vertex condition for product cordial graph it is essential to assign label 0 to  $\frac{n}{2}$  vertices out of total n vertices. The vertex with label 0 will give rise at least  $\frac{m}{2} + 2$  edges with label 0 and at most  $\frac{n}{2}$  edges with label 1 out of total m + 2 edges of G. Therefore  $|e_c(0) - e_c(1)| = 2$ . Thus the edge condition for product cordial graph is violated. Hence G is not product cordial. *Subcase 2:* 

When chords are between  $(v_1, v_c)$  and  $(v_1, v_{c+1})$  where  $3 \le c \le \frac{n}{2}$ .

$$f(v_c) = l, \quad l \le c \le \frac{m}{2}$$
  
 $f(v_c) = 0, \quad \text{otherwise}$ 

In view of the above labelling pattern we have,

$$v_c(0) = v_c(1) = \frac{m}{2}$$
  
 $e_c(0) = e_c(1) = \frac{m}{2} + 1$ 

Thus in each cases we have  $|v_f(0) - v_f(1)| \le l$  and  $|e_f(0) - e_f(1)| \le l$ .

Hence cycle *S* with twin chords is product cordial.

# 3. Conclusion

Labeling of separate structure could be a potential space of analysis. We have discussed the total edge product cordial labeling for rectilinear related graph and derive several results on it.

#### References

- S. K. Vaidya and N. B. Vyas, "Product Cordial Labeling in the context of Tersor Product of Graphs," *Journal of mathematics Research*, vol. 3, no. 3, pp. 83 – 88, 2011.
- [2] S. K. Vaidya and C. M. Barasara, "Product Cordial Labeling for some New Graphs, *Journal of mathematics Research*, vol. 3, no. 2, pp. 206 – 211, 2011.