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Abstract: In this paper, we analyze about the product cordial 

labelling for some new graphs such as cycle with one chord and 

cycle with twin chords. 
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1. Introduction 

 Graphs are discrete structure which constitutes of vertices 

and edges that connect these vertices. They are not concerned 

with their internal properties but with their inter-relationship. 

By a graph theory, we mean a finite undirected graph without 

loops or multiple edges. Vaidya and Barasara [1] introduced the 

edge analogue of product cordial labeling and named it as edge 

product cordial labeling. Further they explicits Product Cordial 

Labeling for some New Graphs [2]. In this paper, we analysis 

the cordial labeling of one chord and twin chord. 

 

Definition: 1.1  

In the product labeling, the mapping  𝑐 ∶  𝑉(𝐺)  →  {0,1} is 

called 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔 of 𝐺 and   𝑓(𝑣) is called the 

𝑙𝑎𝑏𝑒𝑙 of vertex  𝑣 of 𝐺 under  𝑓.   
 

The induced edge labelling 𝑐∗ ∶  𝐸(𝐺) → {0,1}  is given by 

                      𝑐∗(𝑒 = 𝑢𝑣 ) = │𝑐(𝑢) –  𝑐(𝑣)│.  

 

Let 𝑣𝑐(0), 𝑣𝑐(1) be the number of vertices of 𝐺  having labels 0 

and respectively under 𝑓and let  𝑒𝑐(0), 𝑒𝑐(1) be the number of 

edges of 𝐺 having labels 0 and 1 respectively under 𝑐*.   

 

Definition: 1.2 

Let G be the vertex cordial labelling of graph if, 

 

│ 𝑣𝑐(0) − 𝑣𝑐(1)│ ≤ 1 and 

               │𝑒𝑐(0) – 𝑒𝑐(1)│ ≤  1.  

 

A graph is cordial if it admits cordial labelling. 

 

Definition: 1.3 

Let G be the vertex cordial with induced edge labelling  𝑐∗ ∶
 𝐸(𝐺)  →  {0,1} defined by 

   𝑐∗(𝑒 = 𝑢𝑣)  =   𝑐(𝑢)𝑐(𝑣)  

if  |𝑣𝑐(0) – 𝑣𝑐(1)| ≤ 1 and |𝑒𝑐(0) – 𝑒𝑐(1)|  ≤ 1.  

 

A graph 𝐺 is product cordial if it admits product cordial 

labelling.   

 

 

Definition: 1.4 

Let 𝐶𝑚 be the  𝑐ℎ𝑜𝑟𝑑 of cycle is an edge joining two non – 

adjacent vertices of cycle 𝐶𝑚. 

 

Definition: 1.5 

Two chords of a cycle 𝑇𝑚 are said to be twin chords if they form 

a triangle with an edge of cycle 𝐶𝑚.  

2. Mathematical formulation 

Theorem: 2.1  

Cycle  𝐶𝑚  with  one  chord  is  product  cordial  except  when  

𝑛  is  even  and  the  chord  is  joining  the  vertices  at  diameter  

distance. 

Define, 𝑐 ∶ 𝑉(𝐺) →  {0,1}, we  consider  following  two  cases. 

Case 2:  when n is odd.                  
Without loss  of  generality  we  assure  that  let  the  chord  is  

between  vertex  (v1,vc)  where  3 ≤  i  ≤  ⌈
m

2
⌉. 

             f(vc) = 1,            1 ≤  i  ≤  ⌈
𝑚

2
⌉ 

            f(vc) = 0,              otherwise 
 

In view of above labelling pattern we have, 
 

            vf(0) + 1 =  vf (1) = ⌈
𝑚

2
⌉ 

            ef (0) = ef (1) = 
𝑚+1

2
 

 

Case 2:  When m is even.  

 Without  loss  of  generality   we  assume  that  let  the  chord  

is  between  vertex  (v1 ,vi)  where  3 ≤  i  ≤   
𝑚

2
  + 1. 

Subcase1: When  chord  is  between  (v1,vi)  where  i =  
𝑚

2
 + 1. 

 In  order  to  satisfy  the  vertex  condition  for  product  

cordial  graph  it  is  essential to  assign  label  0  to  
𝑛

2
  vertices  

out  of   total  m  vertices.  The  vertex  with  label  0  will  give  

rise  at  least  
𝑚

2
 + 2  edges  with  label  0  and  at  most  

𝑚

2
 - 1  

edges  with  label  1  out  of  total  m + 1  edges  of  G. Therefore 

│ec(0)  –  ec(1)│ = 3.  Here the condition does not satisfied. 

Hence G is not product cordial. 

Subcase 2:  When  chord  is  between  (vc,vi)  where  3 ≤  i  ≤  
1. 

                f(vc) = 1,  1 ≤  i  ≤  1 
                f(vc) = 0,   otherwise 

 

In view of the above labelling pattern we have, 
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                Vc(0) = vc (1) = 1 

                ec(0) = ec (1) - 1 = 
𝑛

2
 + 1 

 

Thus in every case we 

 

 │ 𝑣𝑐(0) − 𝑣𝑐(1)│ ≤ 1 and│𝑒𝑐(0) – 𝑒𝑐(1)│ ≤  1.  

 

Hence the product cordial cycle Cm with one chord. 

 

Theorem: 2.2 

Cycle  C7 with  chords  is  product  cordial  except  when  𝑡  is  

even  and  one  of  the   chord  joining  vertices  at  diameter  

distance. 

Proof: 

Let 𝑡 be the cycle graph with twin chords. Let  𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚 

be the vertices.  Here graph  𝐺  has  𝑡  vertices and  𝑡 +  2  

edges. 

 

Define 𝑓(𝑣) →  {0,1} , we consider following two case. 

 

Case 1:  When  𝑚  is odd. 

In view of the above labelling pattern we have, 

            𝑣𝑐(0)  +  1 =  𝑣𝑐(1)  =  ⌈
𝑚

2
⌉     

                            𝑒𝑐(0) =  𝑒𝑐(1) +  1 =  ⌈
𝑚

2
⌉  +  1  ;  

When chords are between 

                         (v1,vc)and (v1,vc+1)  where  𝑖 =  ⌈
𝑚

2
⌉.                                                                         

                        𝑒𝑐(0) +  1 =  𝑒𝑐(1) =  ⌈
𝑚

2
⌉  +  1:  

When chords are between 

                       (v1,vc)  and (v1,vc+1)  where  3 ≤  𝑖 ≤  ⌈
𝑚

2
⌉  .  

 

Case 2:  When  𝑚  is even. 

Suppose, when  the  chords  are  between  vertex   (𝑣1, 𝑣𝑐)  and 

 (𝑣1, 𝑣𝑐+1)  where  3 ≤   𝑖 ≤   
𝑚

2
. 

Subcase1:  When chords are between  (𝑣1, 𝑣𝑐) and  (𝑣1, 𝑣𝑐+1)  

where  𝑐 =  
𝑚

2
. 

 

 In  order  to  satisfy  the  vertex  condition  for  product  

cordial  graph  it  is  essential  to  assign  label  0 to 
𝑛

2
  vertices  

out  of  total  n  vertices.  The  vertex  with  label  0  will  give  

rise  at  least  
𝑚

2
 + 2  edges  with  label  0  and  at  most  

𝑛

2
  edges  

with  label  1  out  of  total  𝑚 + 2  edges  of  G.  Therefore  

|𝑒𝑐(0) − 𝑒𝑐(1)|  =  2.  Thus  the  edge  condition  for  product  

cordial  graph  is  violated. Hence  𝐺  is not  product  cordial. 

Subcase 2:   

When chords are between (𝑣1, 𝑣𝑐) and (𝑣1, 𝑣𝑐+1) where  3 ≤

  𝑐 ≤   
𝑛

2
. 

  𝑓(𝑣𝑐)  =  1,         1 ≤   𝑐 ≤   
𝑚

2
 

                 𝑓(𝑣𝑐)  =  0,         otherwise 

 

In view of the above labelling pattern we have, 

  𝑣𝑐(0)   =   𝑣𝑐(1)   =   
𝑚

2
 

 𝑒𝑐(0)  =  𝑒𝑐(1)  =  
𝑚

2
 +  1 

 

Thus in each cases we have |𝑣𝑓(0) − 𝑣𝑓(1)| ≤ 1and |𝑒𝑓(0) −

 𝑒𝑓(1)| ≤  1.   

 

Hence cycle 𝑆 with twin chords is product cordial. 

3. Conclusion 

Labeling of separate structure could be a potential space of 

analysis. We have discussed the total edge product cordial 

labeling for rectilinear related graph and derive several results 

on it.  
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