

Cordial Labeling of Rectilinear Grid

S. Haridass¹, M. Karthigeyan²

¹M.Phil. Scholar, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India ²Assistant Professor, Dept. of Mathematics, Ponnaiyah Ramajayam Inst. of Science and Tech., Thanjavur, India

Abstract: In this paper we introduce an edge product cordial labeling graph. For a graph, G = (V(G), E(G)), a function f: $E(G) \rightarrow \{0, 1\}$ is called an edge product cordial labeling of G if the induced vertex labeling function defined by the product of incident edge such that the edges labeled with 1 and label 0 differ by at most 1.

Keywords: Cordial Labeling, Vertices, edges, total edge product.

1. Introduction

Graphs are discrete structure which constitutes of vertices and edges that connect these vertices. They are not concerned with their internal properties but with their inter-relationship. By a graph theory, we mean a finite undirected graph without loops or multiple edges. Vaidya and Barasara [1] introduced the edge analogue of product cordial labeling and named it as edge product cordial labeling. Aisha explicits the 3-total edge product cordial labeling of rhombic grid [2]. In this paper, we analysis the cordial labeling of rectlinear grid. *Definition: 1.1*

The assignment of integers to the *vertices* or *edges*, or both, which was subjected to certain condition(s) is called graph labeling. If the domain of mapping is the set of vertices (or edges) then the labeling is called a *vertex(or an edge)* labeling. *Definition: 1.2*

For a graph *G*, an edge labeling function φ : *V*(*G*) is denoted by the set {0,1} which induces by the vertex labeling function φ^* : *E*(*G*) denotes {0,1} defined as $\varphi^*(xy) = |\varphi(x) - \varphi(y)|$.

Let us consider the number of vertices of *G* labeled with *i* under φ be $v_{\varphi}(i)$ and the number of edges *G* labeled under φ^* be $e_{\varphi}(i)$ for i = 0,1. This function φ is said to be *cordial labeling* of G.

Since $|e_{\varphi}(0) - e_{\varphi}(1)| \le 1$ and $|v_{\varphi}(0) - v_{\varphi}(1)| \le 1$. A graph is said to be cordial labeling.

Definition: 1.3

For a graph *G*, a vertex labeling function φ : $V(G) \rightarrow \{0,1\}$ induces an edge labeling function φ^* : $E(G) \rightarrow \{0,1\}$ defined as $\varphi^*(xy) = \varphi(x) \ \varphi(y)$. The function φ is called *total product cordial labeling* of *G* if $|(v_{\varphi}(0) + e_{\varphi}(0)) - (v_{\varphi}(1) + e_{\varphi}(1))| \le 1$. A graph is called *total product cordial* if it admits *total product cordial labeling*.

Definition: 1.4

For a graph *G*, an edge labeling function $\varphi^*: E(G) \to \{0,1\}$ induces a vertex labeling function $\varphi: V(G) \to \{0,1\}$ defined as $\varphi(v) = \prod \{ \varphi^*(xy)/xy \in E(G) \}$. The function φ^* is called a *total edge product cordial labeling* of *G*,

if
$$|(v_{\varphi}(0) + e_{\varphi}(0)) - (v_{\varphi}(1) + e_{\varphi}(1))| \le 1.$$

A graph is said to be *total edge product cordial* if it admits *total edge product cordial labeling*.

Definition: 1.5

Let us consider $C_m^{(t)}$ denote the one – point union of *t cycles* of length *m*.

Definition: 1.6

The *Rectilinear* R_m is defined to be the join $C_m + K_I$. The vertex corresponding to K_I is known as *apex vertex*, the vertices corresponding to cycle are known as *rim vertices*.

2. Mathematical formulation

Theorem: 2.1

The rectilinear grid graph with degree sequences (1,1), (2,2,2,2) or (3,2,2,1) are not total edge product cordial graphs. *Proof:*

For the graph with degree sequence (1, 1) has only one edge and two vertices. If we label the edge with 1 or 0 then both the vertices will give the same label.

Theorem: 2.3

The rectilear cycle D_m is a total edge product cordial graph except for $m \neq 4$.

Proof:

Let v_1, v_2, v_3, v_4 , v_m be the vertices of cycle D_m . The following two cases.

Case 1: When *m* is odd.

$$\begin{aligned} \varphi \left(v_i \, v_{i+1} \right) &= 0; \quad 1 \leq i \leq \left\lfloor \frac{m}{2} \right\rfloor \\ \varphi \left(v_i \, v_{i+1} \right) &= 1; \quad \left\lceil \frac{m}{2} \right\rceil \leq i \leq m - 1 \end{aligned}$$

 $\varphi(v_1 v_m) = 1.$

Case 2: When m is even and $m \neq 4$.

$$\varphi (v_i v_{i+1}) = 0; \quad 1 \le i \le \frac{m-4}{2} \\
\varphi (v_i v_{i+1}) = 1; \quad i = \frac{m-2}{2} \\
\varphi (v_i v_{i+1}) = 0; \quad i = \frac{m}{2} \\
\varphi (v_i v_{i+1}) = 1; \quad \frac{m}{2} + 1 \le i \le m-1 \\
\varphi (v_i v_m) = 1.$$

In both the cases we have $v_f(0) + e_f(0) = m$ and

$$v_{\varphi}(1) + e_{\varphi}(1) = m.$$

So, $|(v_{\varphi}(0) + e_{\varphi}(0)) - (v_{\varphi}(1) - e_{\varphi}(1))| \le 1$. Hence, the diamond cycle D_m is a total edge product cordial graph except for $m \ne 4$. *Example 2.2*

The rectlinear graph $D_4^{(3)}$ and its total edge product cordial labeling.

Fig. 1. Rectilinear graph

Theorem: 2.3

The rectlinear shape D_m is a total edge product cordial graph. *Proof.*

Let $v_1, v_2, v_3, \dots, v_m$ be the rim vertices and v be an apex vertex of wheel D_m . To define $\varphi: E(D_m)$ denotes the set $\{0,1\}$ we will consider following two cases.

Case 1: When *m* is even. $\varphi(v_{2i-1}v_{2i}) = 0; \quad 1 \le i \le \frac{m}{2}$ $\varphi(v_1v_n) = 1;$ $\varphi(v_{2i}v_{2i+1}) = 1; \quad 1 \le i \le \frac{m-2}{2}$ $\varphi(vv_i) = 1; \quad 1 \le i \le m.$ We have $v_{\varphi}(0) + e_{\varphi}(0) = \frac{3m}{2} \text{ and } v_{\varphi}(1) + e_{\varphi}(1) = \frac{3m}{2} + 1.$ Case 2: When *m* is odd. $\varphi(v_{2i-1}v_{2i}) = 0; \quad 1 \le i \le \frac{m-1}{2}$

$$\begin{split} \varphi(v_{1}v_{m}) &= 0; \\ \varphi(v_{2i}v_{2i+1}) &= 1; \quad 1 \leq i \leq \frac{m-1}{2} \\ \varphi(vv_{i}) &= 1; \quad 1 \leq i \leq m. \end{split}$$

We have $v_{\varphi}(0) + e_{\varphi}(0) = \frac{3m+1}{2}$ and $e_{\varphi}(1) + e_{\varphi}(1) = \frac{3m+1}{2}$
For both the cases, we have $\left| \left(v_{\varphi}(0) + e_{\varphi}(0) \right) - \left(v_{\varphi}(1) + e_{\varphi}(1) \right) \right| \leq 1. \end{split}$

Hence, the rectilinear grid D_m is a total edge product cordial graph.

3. Conclusion

Labeling of separate structure could be a potential space of analysis. We have discussed the total edge product cordial labeling for rectilinear related graph and derive several results on it.

References

- [1] Vaidya and C. M. Barasara, J. *Math.Comput. Science*, Edge product cordial labeling of graphs, 2(5) (2012)1436-1450.
- [2] A. Javed, M. K. Jamil, AKCE International Journal of Graphs and Combinatorics, On -total edge product cordial labeling of honeycomb, 14, 149-157, 2017.