
International Journal of Research in Engineering, Science and Management  

Volume-2, Issue-8, August-2019 

www.ijresm.com | ISSN (Online): 2581-5792     

 

47 

 

Abstract: The heat equation is an important partial differential 

equation which describes the distribution of heat (or variation in 

temperature) in a given region over time. This study, therefore, 

seeks to give a deeper insight into the 1-D heat equations and their 

applicability. Application of Boundary Element Method in a 

solution of potential heat problems (Two-dimensional heat 

equation) is also explored. The study used the Boundary Element 

Method (BEM) of numerical approximation and compared the 

results to the analytical solution. Nodes taken within the solution 

domain were compared to the analytical solutions. The study 

confirmed that the numerical values agreed fairly well with the 

analytical values. The temperature and flux profiles were also 

found to be close to the analytical profile. 
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1. Introduction 

In this research, we have made idealized assumptions, such 

as constant thermal properties of our perfectly circular 

geometry, to facilitate a tractable solution. We first consider 

heat transfer in 1-D and then the potential equation. The study 

also assumed that the steady-state temperature has been reached 

so that any time dependency is ignored; this also implies that 

the heat flux is constant at the particular region of interest. 

Despite all these simplifications, the solution can still give a 

good insight into how heat may be diffused throughout the 

region. This study used the BEM method of numerical 

approximation and compared the results to the analytical 

solution. FORTRAN 95 software was used to compute results 

and graph using G-Sharp [1]. 

A. Governing Equations: Derivation in One Dimension 

The heat equation is derived from Fourier’s law and 

conservation of energy [2]. By Fourier’s law, the flow rate of 

heat energy through a surface is proportional to the negative 

temperature gradient across the surface, 

𝑞 =  −𝑘𝛻𝑢                  (1) 

Where k is the thermal conductivity and u is the temperature. 

In one dimension, the gradient is an ordinary spatial derivative,  

 

and so Fourier’s law is, 

𝑞 =  −𝑘𝑢𝑥                   (2) 

In the absence of work done, a change in internal energy per 

unit volume in material ∆Q is proportional to the change in 

temperature. That is, 

∆𝑄 =  𝑐𝑝𝜌∆𝑢                  (3) 

Where 𝑐𝑝 is the specific heat capacity and 𝜌 is the mass 

density of the material. Choosing zero energy at temperature 

zero, this can be rewritten as, 

𝑄 =  𝑐𝑝𝜌𝑢                   (4) 

The increase in internal energy in a small spatial region of 

the material. 

𝑥 − ∆𝑥 ≤  𝜉 ≥  𝑥 + ∆𝑥  

Over the time period, 

𝑡 − ∆𝑡 ≤  𝜏 ≥  𝑡 +  ∆𝑡  
Is given by 

𝑐𝑝𝜌 ∫ {𝑢(𝜉, 𝑡 + ∆𝑡) − 𝑢(𝜉, 𝑡 − ∆𝑡)}𝑑𝜉 =
𝑥+∆𝑥

𝑥−∆𝑥

𝑐𝑝𝜌 ∫ ∫
𝜕𝑢

𝜕𝜏

𝑥+∆𝑥

𝑥−∆𝑥

𝑡+∆𝑡

𝑡−∆𝑡
𝑑𝜉𝑑𝜏               (5) 

Where the fundamental theorem of calculus was used [3]. 

With no work done, and absent of any heat sources or sinks, this 

change in internal energy in the interval [𝑥 − ∆𝑥, 𝑥 + ∆𝑥] is 

accounted for entirely by the flux of heat across the boundaries. 

By Fourier’s law, this 

𝑘 ∫ {
𝜕𝑢

𝜕𝑥
(𝑥 + ∆𝑥, 𝜏) −

𝜕𝑢

𝜕𝑥
(𝑥 − ∆𝑥, 𝜏)} 𝑑𝜏 =

𝑡+∆𝑡

𝑡−∆𝑡

𝑘 ∫ ∫
𝜕2𝑢

𝜕𝜉2
𝑑𝜉𝑑𝜏

𝑥+∆𝑥

𝑥−∆𝑥

𝑡+∆𝑡

𝑡−∆𝑡
                        (6) 

 

Again by the fundamental theorem of calculus. By 

conservation of energy, 

∫ ∫ {𝑐𝑝𝜌𝑢𝜏 − 𝑘𝑢𝜉𝜉}𝑑𝜉𝑑𝜏 = 0
𝑥+∆𝑥

𝑥−∆𝑥

𝑡+∆𝑡

𝑡−∆𝑡
        (7)

  

This is true for any rectangle [𝑡 − ∆𝑡, 𝑡 + ∆𝑡].  Consequently, 

the integrand must vanish identically; 

𝑐𝑝𝜌𝑢𝜏  −  𝑘𝑢𝑥𝑥  =  0               (8) 

Or, 𝑢𝑡 =
𝑘

𝑐𝑝𝜌
𝑢𝑥𝑥  

This is the one-dimensional heat equation. 

One Dimensional Heat Equations and Two 

Dimensional Steady Heat Flow Equations and 

their Applications 

Anthony Muthondu Kinyanjui1, Francis Muli2, Joseph Njuguna Karomo3 

1,3Department of Pure and Applied Sciences, Kirinyaga University, Kerugoya, Kenya 
2Department of Mathematics and Computer Science, Catholic University of East Africa, Nairobi, Kenya 



International Journal of Research in Engineering, Science and Management  

Volume-2, Issue-8, August-2019 

www.ijresm.com | ISSN (Online): 2581-5792     

 

48 

B. Internal Heat Generation 

The function U above represents the temperature of a body 

in 1-D. Alternatively, it is sometimes convenient to change 

units and represent u as the heat density of a medium. Since heat 

density is proportional to temperature in a homogeneous 

medium, the heat equation is still obeyed in the new units. 

Suppose that a body obeys the heat equation and, in addition, 

generates is own heat per unit volume (e.g., in watts/L) at a rate 

given by a known function q varying in space and time. Then 

the heat per unit volume, U satisfies an equation. 
𝜕𝑢

𝜕𝑡
= (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝑞                   (9) 

C. The Boundary Conditions 

The heat equation is a second-order partial differential 

equation in the spatial coordinates. We need boundary 

conditions in order to specify how our system interacts with the 

outside surroundings. There are three general types of boundary 

conditions: Dirichlet, Neumann and Mixed boundary 

conditions. 

1) Dirichlet Boundary Conditions 

Dirichlet boundary conditions the temperature is specified at 

the boundary as a function of time 

𝑇(𝑋 =  0, 𝑡)  =  𝑇𝑏𝑐1(𝑡)             (10) 

If the temperature is constant, then we have. 

𝑇(𝑋 =  0, 𝑡)  =  𝑇𝑏𝑐1               (11) 

In this case, we have a physical situation where our system is 

touching an infinite heat reservoir that maintains a constant 

temperature. In a one dimensional system, we must have two 

boundary conditions, one at the left-hand-side boundary and 

other at the right-hand-side boundary. If our system is of length 

L in the x-direction, then our second Dirichlet boundary 

condition would be of the form: 

𝑇(𝑋 =  𝐿, 𝑡)  =  𝑇𝑏𝑐2(𝑡)              (12) 

2) Neumann Boundary Conditions 

In Neumann boundary conditions, the heat flux is set at the 

boundary. These conditions are expressed as follows (for the 

one-dimensional case) [4]. 
𝑑𝑇

𝑑𝑥
(𝑋 = 0, 𝑡) =

𝑑𝑇(𝑡)

𝑑𝑥
|𝑏𝑐1             (13) 

That is, at the left-hand-side boundary the one-dimensional 

system, the heat flux is a specified function of time. If the heat 

flux is constant we have: 
𝑑𝑇

𝑑𝑥
(𝑋 = 0, 𝑡) =

𝑑𝑇

𝑑𝑥
|𝑏𝑐1              (14) 

In this case, we have the physical situation where the system 

is touching an infinite heat source that maintains a constant flux 

of heat into the system regardless of the temperature. One end 

of the rod is well insulated. No heat leaves it. The flux is Zero. 

In this case, we would use a Neumann boundary condition [5]. 

In a one-dimensional system, we must have two boundary 

conditions one at the left-hand-side boundary and the other at 

the right-hand- side boundary. 

If our one-dimensional system is of length L in the x-

direction, then our second Neumann boundary condition would 

be of the form: 

𝑑𝑇

𝑑𝑥
(𝑋 = 𝐿, 𝑡) =

𝑑𝑇(𝑡)

𝑑𝑥
|𝑏𝑐2             (15) 

3) Mixed Boundary Conditions 

Mixed Boundary Conditions is a mixture of the Dirichlet and 

Neumann Boundary conditions. They take the following form 

(for the one-dimensional case) [4]. 
𝑑𝑇

𝑑𝑥
(𝑥 = 0, 𝑡)  + 𝑇(𝑥 = 0, 𝑡) = 𝑇𝑏𝑐1(𝑡) + 

𝑑𝑇(𝑡)

𝑑𝑥
|𝑏𝑐1 = 𝑓(𝑡)  

                       (16) 

There are very relevant physical systems which require these 

elaborate boundary conditions. 

D. Initial Conditions 

1) Generalized Initial Condition 

The heat equation is first order in time zero. In general, this 

initial condition can be written as; 

𝑇(𝑥, 𝑦, 𝑡 =  0)  =  𝑇𝑖𝑐(𝑥, 𝑦)            (17) 

2) Steady-State Initial Condition 

If the temperature profile is initially a steady-state (linear) 

profile between two boundary condition temperature 𝑇𝑏𝑐1 and 

𝑇𝑏𝑐2, then we would have the formula for the linear 

interpolation between them, which in one-dimension as: 

𝑇(𝑥, 𝑦, 𝑡 = 0) = 𝑇𝑏𝑐1 +
𝑋

𝐿
(𝑇𝑏𝑐2 − 𝑇𝑏𝑐1)        (18) 

2. Solutions using Fourier series 

The following solution technique for the heat equation was 

proposed by Joseph Fourier in his treatise th´eorie analytique 

de la chaleur [6]. Let us consider the following heat equation 

for one space variable. This could be used to model heat 

conduction in a rod. 

𝑢𝑡  =  𝑘𝑢𝑥𝑥                       (19) 

Assuming the initial condition, 

 𝑢(0, 𝑥)  =  𝑓(𝑥)∀𝑥 ∈  [0, 𝐿]                  (20) 

Where the function f is given and the boundary conditions, 

𝑢(𝑡, 0)  =  0 =  𝑢(𝑡, 𝐿)∀𝑡 >  0               (21)      

The solution to equation (2.1) above is: 

𝑢(𝑥, 𝑡) = ∑ 𝐷𝑛 (𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
) 𝑒

−
𝑛2𝜋2𝑘𝑡

𝐿2+∞
𝑛=1             (22) 

Where, 

𝐷𝑛 =
2

𝐿
∫ 𝑓(𝑥)𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿

0
                    (23) 

A. Generalizing the Solution Technique 

The solution technique used above can be greatly extended 

to many other types of equations. The idea is that the operator 

Uxx with the zero boundary conditions can be presented in terms 

of its eigenvectors. This leads naturally to one of the basic ideas 

of the spectral theory of linear self-adjoint operators. Consider 

the linear operator ∆𝑈 =  𝑈𝑥𝑥. The finite sequence of function,  

𝑒𝑛(𝑥) = √
2

𝐿
𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
  for 𝑛 ≥ 1 are eigenvectors of ∆ indeed, 

∆𝑒𝑛 = −
𝑛2𝜋2

𝐿2
𝑒𝑛 

Moreover, any eigenvector f of ∆ with the boundary 

conditions 𝑓(0)  =  𝑓(𝐿)  =  0 is of the form 𝑒𝑛 for some 𝑛 ≥
 1. The functions 𝑒𝑛  for 𝑛 ≥  1 form an orthonormal sequence 
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with respect to a certain inner product on the space of real-

valued functions on [0, 𝐿]. This means, 

〈𝑒𝑛, 𝑒𝑚〉 = ∫ 𝑒𝑛(𝑥)𝑒𝑚(𝑥)𝑑𝑥 =
𝐿

0
{
0,        𝑛 ≠ 𝑚
1,        𝑚 = 𝑛

    (24) 

Finally, the sequence {𝑒𝑛}, 𝑛 ∈  𝑁   spans a dense linear 

subspace of 𝐿2(0, 𝐿). 
This shows that in effect, we have diagonalized the operator ∆. 

B. Fundamental Solutions 

A fundamental solution, also called a heat kernel, is a 

solution of the heat equation corresponding to the initial 

conditions of an initial point source of heat at a known position. 

These can be used to find a general solution of the heat equation 

over certain domains; In one variable, the Green’s function is a 

solution of the initial value problem. 

{  
𝑢𝑡(𝑥, 𝑡) − 𝑘𝑢𝑥𝑥(𝑥, 𝑡) = 0,     − ∞ < 𝑥 < ∞,   0 < 𝑡 < ∞

𝑢(𝑥, 𝑡 = 0) = 𝛿(𝑥)                                                                      
                       (25) 

Where δ is the Dirac delta function. The solution to this 

problem is the fundamental solution, 

ɸ(𝑥, 𝑡) =
1

√4𝜋𝑘𝑡
exp (−

𝑥2

4𝑘𝑡
)                (26) 

One can obtain the general solution of the one variable heat 

equation with initial condition 𝑈(𝑥, 0)  =  𝑔(𝑥) for −∞ <
 𝑥 <  ∞ and 0 <  𝑡 <  ∞ by applying a convolution: 

𝑢(𝑥, 𝑡) = ∫ɸ (𝑥 − 𝑦, 𝑡)𝑔(𝑦)𝑑𝑦               (27) 

In several spatial variables, the fundamental solution solves 

the analogous problem, 

{
𝑢𝑡(𝑥, 𝑡) − 𝑘 ∑ 𝑢𝑥𝑖𝑥𝑖(𝑋, 𝑡) = 0

𝑛
𝑖=1

 𝑢(𝑋, 𝑡 = 0) = 𝛿(𝑋)                        
                  (28) 

in −∞ <  𝑥 <  ∞ and 0 <  𝑡 <  ∞. The n-variable 

fundamental solution is the product of the fundamental 

solutions in each variable; i.e.,  

ɸ(𝑋, 𝑡) = 𝛷(𝑥1, 𝑡)𝛷(𝑥2, 𝑡)……… .𝛷(𝑥𝑛, 𝑡) =
1

(4𝜋𝑘𝑡)
𝑛
2

𝑒−
𝑋.𝑋

4𝑘𝑡  

                             (29) 

The general solution of the heat equation on ℜn is then 

obtained by a convolution so that to solve the initial value 

problem with  𝑢(𝑥, 0)  =  𝑔(𝑥), one has, 

u(X, t) = ∫ ɸ(X − y, t)g(y)dny
 

ℜn
               (30) 

The general problem on a domain Ω in ℜn  is 

{
ut(X, t) − k∑ uxixi(X, t) = 0,   X ∈ Ω      0 < t < ∞

n
i=1

u(X, t = 0) = g(X),                                                  X ∈ Ω
 (31) 

With either Dirichlet or Neumann boundary data. A Green’s 

function always exists, but unless the domain Ω can be readily 

decomposed into one variable problem, it may not be possible 

to write it down explicitly. The method of the image provides 

one additional technique for obtaining Green’s function 

solutions in 1- D. 

A variety of elementary Green’s function solutions in one-

dimension are recorded here. In some of these, the spatial 

domain is the entire real line (−∞,∞). In others, it is the semi- 

finite interval (0,∞) with either Neumann or Dirichlet 

boundary conditions. One further variation is that some of these 

solve the inhomogeneous equation. 

Ut = kUxx + f                  (32) 

Where f is some given function of x and t. 

Initial value problem on (−∞,∞) 

{
ut = kuxx ,   − ∞ < x < ∞,   0 < t < ∞

u(x, 0) = g(x),      IC:                                 
        (33) 

U(x, t) =
1

√4πkt
∫ exp (−

(x−y)2

4kt

∞

−∞
)g(y)dy       (34) 

Initial value problem on (0,∞) with homogeneous Dirichlet 

boundary conditions. 

{

ut = kuxx,   0 ≤ x < ∞,   0 < t < ∞

u(x, 0) = g(x),   IC;                             

u(0, t) = 0     BC.                                 

         (35) 

u(x, t) =
1

√4πkt
∫ {esp (−

(x−y)2

4kt
) −

∞

0

exp (−
(x+y)2

4kt
)} g(y)dy                 (36) 

Initial value problem on (0,∞) with homogeneous Neumann 

boundary 

conditions. 

      {

ut = kuxx,         0 ≤ x < ∞,   0 < t < ∞

  u(x, 0) = g(x),     IC;                                     

𝑢𝑥(0, t) = 0          BC.                                 
     (37) 

u(x, t) =
1

√4πkt
∫ {esp (−

(x−y)2

4kt
) +

∞

0

exp (−
(x+y)2

4kt
)} g(y)dy                       (38) 

Problem on (0,∞) with homogeneous initial conditions and 

non-homogeneous Dirichlet boundary condition. 

{

ut = kuxx,   0 ≤ x < ∞,   0 < t < ∞

u(x, 0) = g(x),      IC;                             

u(0, t) = h(t)   BC.                                 

                           (39) 

u(x, t) = ∫
x

√4πk(t−s)3
exp(−

x2

4k(t−s)

t

0
)h(s)d(s)        (40) 

Inhomogeneous heat equation problem on (−∞,∞) 
homogeneous initial 

        conditions. 

{
ut = kuxx + f(x, t) ,   − ∞ < x < ∞, 0 < t < ∞ 

u(x, 0) = 0,      IC                                                        
    (41) 

U(x, t) = ∫ ∫
1

√4πk(t−s)

∞

−∞

t

0
exp (−

(x−y)2

4k(t−s)
) f(y, s)dyds  (42) 

Problem on (0,∞) with homogeneous Dirichlet boundary 

conditions and 

     initial conditions. 

{

ut = kuxx + f(x, t) ,   − ∞ < x < ∞, 0 < t < ∞

u(x, 0) = 0,       IC;                                                   
u(0, t) = 0,    BC                                                      

     (43) 

U(x, t) = ∫ ∫
1

√4πk(t−s)

∞

0

t

0
{exp (−

(x−y)2

4k(t−s)
) −

exp (−
(x+y)2

4k(t−s)
)} f(y, s)dyds                         (44) 

3. Two Dimensional Heat Equation 

 We consider a steady-state two-dimensional heat equation 

for simplicity. In this case, we use the potential functions 

(∇²𝑈 = 0) which can be derived from Gauss’ Theorem, also 
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referred to as divergence theorem. 

The partial differential operator, ∇² or ∆ is called the Laplace 

operator, or just Laplacian [7]. 

The starting point for our model is the Fourier's Law (19) 

which specifies that heat transfer is governed by the equation 1. 

If the system is in steady-state, then Conservation of Energy 

(19) implies that, in the absence of heat sinks or sources, the 

heat flux throughout the region must satisfy: 

𝛻. 𝑞 =  0                       (45) 

In one dimension, this would imply that heat flux must be 

constant at all points; in more than one dimension, it implies 

that heat flux entering a control region must equal heat flux 

leaving the same region. Without any heat generation and 

considering 2-D heat flow in steady-state, the conservation of 

energy equation (9) reduces down to Laplace’s equation. 

∇²U =  0                     (46) 

or 

𝜕²𝑈

𝜕𝑥²
+
𝜕²𝑈

𝜕𝑦²
= 0                                                                           (47)  

 

Since 𝑈 is frequently a potential function, this equation is 

also known as a potential equation. 

A boundary value problem which is of practical interest 

requires solving the Laplace equation (3.3) in the two-

dimensional region R bounded by a simply closed curve 𝛤 

subject to the boundary conditions  

𝑈 = 𝑓1(𝑥, 𝑦)for (x, y) ∈ Γ1  
𝜕𝑈

𝜕𝑛
= 𝑓2(𝑥, 𝑦)for (x, y) ∈ Γ2                       (48) 

Where 𝑓1 and 𝑓2 are suitably prescribed functions and 𝛤1 and 

𝛤2 are non-intersecting curves such that 𝛤1𝑈𝛤2 = 𝛤 

It is worth noting that the Laplace equation is both linear and 

homogeneous while the boundary conditions we are specifying 

are linear and non-homogeneous. This creates a problem 

because the separation of variables as discussed in 1-D heat 

equation requires homogeneous boundary conditions. The 

boundary conditions in the equation. (48) imply that at each 

and every point on the boundary, either the temperature or the 

heat flux (but not both) is known. To determine the temperature 

field in the region 𝑅, one has to solve the equation (47) to find 

the solution that satisfies the prescribed boundary condition on 

𝛤. 

The normal derivative 
𝜕𝑈

𝜕𝑛
 is defined by 

𝜕𝑈

𝜕𝑛
= 𝑛𝑥

𝜕𝑈

𝜕𝑥
+ 𝑛𝑦

𝜕𝑈

𝜕𝑦
                 (49) 

Here the unit normal vector [𝑛𝑥, 𝑛𝑦] on 𝛤 is taken to be 

pointing away from the region R. It is worth noting that the 

vector may vary from point to point on 𝛤. Thus,[𝑛𝑥, 𝑛𝑦] is a 

function of x and y. The boundary conditions prescribed in 

equation.(48) are assumed to be well-posed so that the 

boundary value problem has a unique solution, that is, it is 

assumed that one can always find a function 𝑈(𝑥, 𝑦) satisfying 

equations (47) and (48) and that there is only one such function. 

In general, it is difficult (if not impossible) to solve exactly 

the BVP defined by equations (3.3) 𝑎𝑛𝑑 (3.4). The 

mathematical complexity depends on the geometrical shape of 

the region 𝑅 and the boundary conditions given in (3.4). Exact 

solutions can only be found for relatively simple geometries or 

𝑅 (such as square and circular regions) together with particular 

boundary conditions. For more complicated geometries, one 

may have to resort to numerical (approximate) techniques. 

A. The Transformation from Cartesian Coordinates to Polar 

Coordinates 

We consider equation (47) above and the parametric 

equations:  

𝑥 =  𝑟 cos 𝜃 and 𝑦 =  𝑟 sin 𝜃; where r is the radius of 

circular geometry and thus a constant. 

Partially differentiating 𝑈 w.r.t 𝑥 gives 
𝜕𝑈

𝜕𝑥
=

𝜕𝑈

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑈

𝜕𝜃

𝜕𝜃

𝜕𝑥
  

 
𝜕2𝑈

𝜕𝑥2
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑈

𝜕𝜃

𝜕𝜃

𝜕𝑥
) =

𝜕2𝑈

𝜕𝑟𝜕𝑥

𝜕𝑟

𝜕𝑥
+

𝜕𝑈

𝜕𝑟

𝜕2𝑟

𝜕𝑥2
+

𝜕2𝑈

𝜕𝜃𝜕𝑥

𝜕𝜃

𝜕𝑥
+

𝜕𝑈

𝜕𝜃

𝜕2𝜃

𝜕𝑥2
                                                                                              (50)  

Applying the chain rule:  
𝜕²𝑈

𝜕𝑟𝜕𝑥
=

𝜕²𝑈

𝜕𝑟²

𝜕𝑟

𝜕𝑥
+

𝜕²𝑈

𝜕𝜃𝜕𝑟

𝜕𝜃

𝜕𝑥
             (51) 

𝜕²𝑈

𝜕𝜃𝜕𝑥
=

𝜕

𝜕𝜃
(
𝜕𝑈

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑈

𝜕𝜃

𝜕𝜃

𝜕𝑥
) =

𝜕²𝑈

𝜕𝑟𝜕𝜃

𝜕𝑟

𝜕𝑥
+

𝜕²𝑈

𝜕𝜃²

𝜕𝜃

𝜕𝑥
                                                                                (52) 

 Next, we look for  
𝜕𝑟

𝜕𝑥
 and  

𝜕𝜃

𝜕𝑥
 

𝑟 = √(𝑥² + 𝑦²)and 𝜃 = tan−1
𝑦

𝑥
  hence 

𝜕𝑟

𝜕𝑥
=

𝑥

√𝑥²+𝑦²
=

𝑥

𝑟
                      (53) 

𝜕𝜃

𝜕𝑥
=
𝜕

𝜕𝑥
(tan−1

𝑦

𝑥
) =

1

1 + (
𝑦
𝑥
) ²
(−

𝑦

𝑥²
) = −

𝑦

𝑟2
 

𝜕²𝑟

𝜕𝑥²
=

𝜕

𝜕𝑥
(
𝜕𝜃

𝜕𝑥
) =

𝜕

𝜕𝑥
(
𝑥

𝑟
) =

1

𝑟
−

𝑥

𝑟2
(
𝑥

𝑟
) =

𝑟2−𝑥2

𝑟3
=

𝑦2

𝑟3
                                                                                                     (54) 

𝜕²𝜃

𝜕𝑥²
=

𝜕

𝜕𝑥
(
𝜕𝜃

𝜕𝑥
) =

𝜕

𝜕𝑥
(−

𝑦

𝑟²
) =

𝜕

𝜕𝑟
(−

𝑦

𝑟²
)
𝜕𝑟

𝜕𝑥
=

2𝑥𝑦

𝑟⁴
                                                                           (55) 

Substituting equations (51) 𝑡𝑜 (55) into equation (50) and 

simplifying gives; 
𝜕²𝑈

𝜕𝑥²
=   =

𝑥²

𝑟²
(
𝜕²𝑈

𝜕𝑟²
) −

2𝑥𝑦

𝑟3

𝜕2𝑈

𝜕𝑟𝜕𝜃
+

𝑦2

𝑟3

𝜕𝑈

𝜕𝑟
+

2𝑥𝑦

𝑟4

𝜕𝑈

𝜕𝜃
+

𝑦2

𝑟4

𝜕2𝑈

𝜕𝜃2
                                                                                            (56)            

Similarly; 
𝜕²𝑈

𝜕𝑦²
=

𝑦²

𝑟²
(
𝜕²𝑈

𝜕𝑟²
) +

2𝑥𝑦

𝑟³

𝜕²𝑈

𝜕𝑟𝜕𝜃
+

𝑥²

𝑟³

𝜕𝑈

𝜕𝑟
−

2𝑥𝑦

𝑟4

𝜕𝑈

𝜕𝜃
+

𝑥2

𝑟4

𝜕2𝑈

𝜕𝜃2
                                                                                            (57)  

Add equations (56)and 57 gives; 
𝜕²𝑈

𝜕𝑥²
+

𝜕²𝑈

𝜕𝑦²
=

𝜕²𝑈

𝜕𝑟²
+

1

𝑟

𝜕𝑈

𝜕𝑟
+

1

𝑟²

𝜕²𝑈

𝜕𝜃²
  

We, therefore, have the Laplace equation (47) in polar form as  
𝜕²𝑈

𝜕𝑟²
+

1

𝑟

𝜕𝑈

𝜕𝑟
+

1

𝑟²

𝜕²𝑈

𝜕𝜃²
= 0              (58) 
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Under the above assumptions, the equation (47) is 

independent of 𝜃, hence it becomes; 
𝜕²𝑈

𝜕𝑟²
+

1

𝑟

𝜕𝑈

𝜕𝑟
= 0                                                                         (59) 

Whose solution is: 𝑈(𝑟) = 𝐴 𝑙𝑛𝑟 + 𝐵 

Where A and B can be determined if we know 𝑈(𝑟) and 
𝜕𝑈

𝜕𝑟
 

on the boundary of the circle. This solution blows up as 𝑟 →
 ∞ so it is only of limited interest in estimating the temperature 

distribution near the pipe. When the boundary at ground level 

is introduced, it becomes clear we cannot parameterize the 

solution by 𝑟 alone. The purpose of highlighting this solution is 

that it provides the basis for the Fundamental Solution of 

Laplace's Equation at point 𝑝 = (𝑥𝑝, 𝑦𝑝) which is given as. 

𝐺(𝑥, 𝑦|𝑥𝑝, 𝑦𝑝) = −
1

4𝜋
[(𝑥𝑝 − 𝑥)

2
+ (𝑦𝑝 − 𝑦)

2
]    (60) 

G is defined everywhere in ℝ² apart from at (𝑥𝑝, 𝑦𝑝)where it 

is singular. We can now transform the PDE equation (3.15) into 

a Boundary Integral Equation (BIE) which we can solve 

numerically on the boundary of our circular geometry. 

An application of the divergence theorem to convert the 

double integral over R into a line integral over 𝛤 gives 

∫ [(𝑈2
𝜕𝑈1

𝜕𝑥
− 𝑈1

𝜕𝑈2

𝜕𝑥
) 𝑛𝑥 + (𝑈2

𝜕𝑈1

𝜕𝑦
−

 

𝛤

𝑈1
𝜕𝑈2

𝜕𝑦
) 𝑛𝑦] 𝑑𝑠(𝑥, 𝑦) = 0              (61) 

B. Numerical Methods 

There are three broad classes of methods that are commonly 

used for boundary value problems across many fields of 

physics, mathematics and engineering – the finite difference 

method (FDM), the finite element method (FEM) and the 

boundary element method (BEM). The choice of BEM is 

informed by the fact that it can be applied where any potential 

problem is governed by a differential equation that satisfies the 

Laplace equation. Given the advantages of this approach, we 

shall now use this method to obtain a solution for equation (59). 

There are a couple of different ways this can be done via the 

Direct Method (which solves for 𝑈and  
𝜕𝑈

𝜕𝑁
 directly) or the 

Indirect Method (which solves for a density function which then 

generates solutions for 𝑈).  

C. Direct Boundary Element Method 

To derive the boundary integral equation we let 𝑈1 =

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝) the fundamental solution defined in equation 

(60) and 𝑈2 = 𝑈, where 𝑈 is the required solution of the 

boundary value problem defined by equation (47) and (48). 

Since 𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝) is not well defined at the point (𝑥𝑝, 𝑦𝑝), 

the reciprocal relation in equation (61) is valid for 𝑈1 =

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝) and 𝑈2 = 𝑈 only if (𝑥𝑝, 𝑦𝑝) does not lie in the 

region 𝑅 U 𝛤. Thus  

 

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦) = 0  

                   for(𝑥𝑝, 𝑦𝑝) ∉ 𝑅 U 𝛤                    (62)  

For the case in which (𝑥𝑝, 𝑦𝑝)lies in the region R, equation 

(60) is valid if we replace 𝛤 by 𝛤 𝑈 𝛤𝜀, where 𝛤𝜀 is a circle of 

center (𝑥𝑝, 𝑦𝑝) and radius 𝜀. This is because 𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝) and 

its first-order partial derivatives (with respect to x or y) are well 

defined in the region between 𝛤and 𝛤𝜀. Thus we can write 

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤 𝑈 𝛤𝜀

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦) = 0              

This implies that 

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦) =                          

      −∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤𝜀

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)          (63) 

Equation (63) holds for any radius 𝜀 >
0, so long as the circle 𝛤𝜀 lies completely inside the region 

bounded by 𝛤. We can let 𝜀 → 0+ in the equation (63). this 

gives 

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦) =                                 

− lim
𝜀→0+

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤𝜀

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑠, 𝑦)          (64) 

The Taylor series of 𝑈(𝑥, 𝑦) about the point (𝑥𝑝, 𝑦𝑝) is given 

by 

𝑈(𝑥, 𝑦) = ∑∑(
𝜕𝑚𝑈

𝜕𝑥𝑘𝜕𝑦𝑚−𝑘
(𝑈(𝑥, 𝑦)))|

(𝑥,𝑦)=(𝑥𝑝,𝑦𝑝)

𝑚

𝑘=0

∞

𝑚=0

 

(𝑥−𝑥𝑝)
𝑘
(𝑦−𝑦𝑝)

𝑚−𝑘

𝑘!(𝑚−𝑘)!
  

On the circle 𝛤𝜀, 𝑟 = 𝜀. Thus 

 

𝑈(𝑥, 𝑦) = ∑∑(
𝜕𝑚𝑈

𝜕𝑥𝑘𝜕𝑦𝑚−𝑘
(𝑈(𝑥, 𝑦)))|

(𝑥,𝑦)=(𝑥𝑝,𝑦𝑝)

𝑚

𝑘=0

∞

𝑚=0

 

𝜀𝑚𝑐𝑜𝑠𝑘𝜃𝑠𝑖𝑛𝑚−𝑘𝜃

𝑘!(𝑚−𝑘)!
  

for (𝑥, 𝑦) ∈  𝛤𝜀                         (65) 

Similarly, we have 
𝜕

𝜕𝑛
[𝑈(𝑥, 𝑦)]

= ∑∑(
𝜕𝑚𝑈

𝜕𝑥𝑘𝜕𝑦𝑚−𝑘
{
𝜕

𝜕𝑛
[𝑈(𝑥, 𝑦)]})|

(𝑥,𝑦)=(𝑥𝑝,𝑦𝑝)

𝑚

𝑘=0

∞

𝑚=0

 

𝜀𝑚𝑐𝑜𝑠𝑘𝜃𝑠𝑖𝑛𝑚−𝑘𝜃

𝑘! (𝑚 − 𝑘)!
 

 for (𝑥, 𝑦) ∈  𝛤𝜀                    (66) 

Using equations (65)  and (66) and writing 𝑑𝑠(𝑥, 𝑦) = 𝜀𝑑𝜃 

with 𝜃 ranging from 0 to 2𝜋, we attempt to evaluate the limits 

on theright-hand side of equation (64). 
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On 𝛤𝜀, the normal vector [𝑛𝑥, 𝑛𝑦] is given by 

[−𝑐𝑜𝑠𝜃,−𝑠𝑖𝑛𝜃].  We also utilize trigonometric identity 

𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1 to get. 

∫ 𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
[𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)]𝑑𝑠(𝑥, 𝑦) =

 

𝛤𝜀

−
1

2𝜋
𝑈(𝑥𝑝, 𝑦𝑝) ∫ 𝑑𝜃

2𝜋

0
  

          −
1

2𝜋
∑∑

𝜀𝑚

𝑘! (𝑚 − 𝑘)!

𝑚

𝑘=0

∞

𝑚=1

(
𝜕𝑚𝑈

𝜕𝑥𝑘𝜕𝑦𝑚−𝑘
)|
(𝑥,𝑦)=(𝑥𝑝,𝑦𝑝)

 

∫ 𝑐𝑜𝑠𝑘𝜃𝑠𝑖𝑛𝑚−𝑘
2𝜋

0
𝜃𝑑𝜃                                      

→ −𝑈(𝑥𝑝, 𝑦𝑝)as 𝜀 → 0+              (67) 

and 

∫ 𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
 

𝛤𝜀

𝜕

𝜕𝑛
[𝑈(𝑥. 𝑦)]𝑑𝑠(𝑥, 𝑦) =

1

2𝜋
∑ ∑ (

𝜕𝑚𝑈

𝜕𝑥𝑘𝜕𝑦𝑚−𝑘
{
𝜕

𝜕𝑛
[𝑈(𝑥, 𝑦)]})|

(𝑥,𝑦)=(𝑥𝑝,𝑦𝑝)

𝑚
𝑘=0

∞
𝑚=1   

×
𝜀𝑚+1𝑙𝑛(𝜀)

𝑘!(𝑚−𝑘)!
∫ 𝑐𝑜𝑠𝑘𝜃
2𝜋

0
𝑠𝑖𝑛𝑚−𝑘𝜃𝑑𝜃          (68) 

                    → 0 as ε → 0+  since𝜀𝑚+1 ln(𝜀) → 0 as 𝜀
→ 0+ for m = 1,2, ………  

 

Consequently, as 𝜀 → 0+, equation (64) becomes 

 

𝑈(𝑥𝑝, 𝑦𝑝) = ∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)  

𝑓𝑜𝑟 (𝑥𝑝, 𝑦𝑝) ∈ 𝑅                 (69) 

Together with the fundamental equation (65), equation (64) 

provides us with a boundary integral solution for 2-D Laplace’s 

equation. 

If both 𝑈 and 
𝜕𝑈

𝜕𝑛
 are known at all points on 𝛤, the line integral 

in equation (69) can be evaluated to calculate 𝑈 at any point 

(𝑥𝑝, 𝑦𝑝) in the interior of R. 

From the boundary conditions (3.4), at any given point on 𝛤, 

either 𝑈 or 
𝜕𝑈

𝜕𝑛
 , not both, is known. To solve the interior 

boundary problem, we must find the unknowns either 𝑈 or 
𝜕𝑈

𝜕𝑛
 

on the outer and inner boundaries. 

Rather than having an expression relating the value of 𝑈 at 

some point inside the domain to boundary integrals, a more 

useful expression would be one relating the value of 𝑈 at some 

point on the boundary to boundary integrals. 

In case the point (𝑥𝑝, 𝑦𝑝) lies on 𝛤,  equation (64) holds if we 

replace the curve 𝛤 by 𝐷 𝑈 𝐷𝜀 

If 𝛤𝜀 is the circle of center (𝑥𝑝, 𝑦𝑝) and radius 𝜀, then 𝐷 is 

part of 𝛤 that lies outside 𝛤𝜀 and 𝐷𝜀 is part of 𝛤𝜀 that lies inside 

R. Thus  

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝐷

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)  

𝛤𝜀 = − ∫[𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝))

 

𝐷𝜀

− 𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)  

                      (70) 

As 𝜀 → 0+, the curve 𝐷 in equation (70) tends to 𝛤. Thus we 

write 

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)   

= − lim
𝜀→0+

∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝐷𝜀

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)               (71) 

We expect 𝐷𝜀 to tend to a semi-circle as 𝜀 → 0+, if (𝑥𝑝, 𝑦𝑝) 

lies on a smooth part of 𝛤. It then follows that in attempting to 

evaluate the limit on the right-hand side of equation (70), we 

have to integrate over only half a circle. 

Equations (67) and  (68) becomes 

lim
𝜀→0+

∫ 𝑈(𝑥, 𝑦)
 

𝐷𝜀

𝜕

𝜕𝑛
[𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)]𝑑𝑠(𝑥, 𝑦) =

−
1

2
𝑈(𝑥𝑝, 𝑦𝑝) ,    

lim
𝜀→0+

∫ 𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
 

𝐷𝜀

𝜕

𝜕𝑛
[𝑈(𝑥. 𝑦)]𝑑𝑠(𝑥, 𝑦) = 0   

Hence equation  (71)becomes 
1

2
𝑈(𝑥𝑝, 𝑦𝑝) = ∫ [𝑈(𝑥, 𝑦)

𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)         (72) 

for(𝑥𝑝, 𝑦𝑝) lying on a smooth part of  𝛤   

Together with the boundary conditions in equation (48), 

equation  (72)can be utilized to obtain a numerical procedure 

for determining the unknown 𝑈 and or 
𝜕𝑈

𝜕𝑛
 on the boundary 𝛤. 

Once 𝑈 and 
𝜕𝑈

𝜕𝑛
 are known at all points on 𝛤, the solution of the 

interior boundary value problem defined equations (47) and 

(48) is given by equation (69) at any point (𝑥𝑝, 𝑦𝑝) inside R. 

For convenience, we may write equations (62),(69)and 

(72) as a single equation given as  

𝛽(𝑥𝑝, 𝑦𝑝)𝑈(𝑥𝑝, 𝑦𝑝) = ∫ [𝑈(𝑥, 𝑦)
𝜕

𝜕𝑛
(𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)) −

 

𝛤

𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)
𝜕

𝜕𝑛
(𝑈(𝑥. 𝑦))] 𝑑𝑠(𝑥, 𝑦)          (73) 

D. Numerical Discretization of The BIE 

We transform the integral equation (3.29) into a system of 

algebraic equations. The boundary 𝛤 is discretized into N small 

straight line elements 𝛤(1), 𝛤(2), …… , 𝛤(𝑁−1) and 𝛤(𝑁) 

That is Г ≃ 𝛤(1)𝑈𝛤(2)𝑈……… .𝑈𝛤(𝑁−1)𝑈𝛤(𝑁) [8]      (74)                     

These straight lines are called boundary elements. The center 

of each element is referred to as a collocation node.  

To construct the boundary elements, we put N-well spaced 

out points (𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)),……… , (𝑥(𝑁−1), 𝑦(𝑁−1))and 

(𝑥(𝑁), 𝑦(𝑁))on 𝛤, in the order given following counter-

clockwise direction. 
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Defining (𝑥(𝑁+1), 𝑦(𝑁+1)) = (𝑥(1), 𝑦(1)), we take 𝛤(𝑘) to be 

the boundary element from (𝑥(𝑘), 𝑦(𝑘)) to (𝑥(𝑘+1), 𝑦(𝑘+1)) for 

𝑘 = 1,2, ……… ,𝑁 

For an approximation of 𝑈 and 
𝜕𝑈

𝜕𝑛
 on the boundary 𝛤, we 

assume that these functions are constants over each of the 

boundary elements. Specifically, we make the following 

approximation: 

𝑈 ≃ 𝑈
(𝑘)
and

𝜕𝑈

𝜕𝑛
= 𝑃

(𝐾)
 for(𝑥, 𝑦) ∈ 𝛤(𝑘)(𝑘 =

1,2, ……… ,𝑁)                   (75) 

Where 𝑈
(𝑘)

 and 𝑃
(𝐾)

 are respectively the values of 𝑈 and 
𝜕𝑈

𝜕𝑛
 

at the mid-point of 𝛤(𝑘). 
With equations (74) and  (75), equation (73) can be written as  

𝛽(𝑥𝑝, 𝑦𝑝)𝑈(𝑥𝑝, 𝑦𝑝) = ∑ {𝑈
(𝑘)
𝐹2
(𝑘)(𝑥𝑝, 𝑦𝑝) −

𝑁
𝑘=1

𝑃
(𝐾)
𝐹1
(𝑘)(𝑥𝑝, 𝑦𝑝)}                 (76) 

where 

𝐹1
(𝑘)(𝑥𝑝, 𝑦𝑝) = ∫ 𝐺(𝑥, 𝑦;

 

𝛤(𝑘)
𝑥𝑝, 𝑦𝑝)𝑑𝑠(𝑥, 𝑦)  

 𝐹2
(𝑘)(𝑥𝑝, 𝑦𝑝) = ∫

𝜕

𝜕𝑛

 

𝛤(𝑘)
[𝐺(𝑥, 𝑦; 𝑥𝑝, 𝑦𝑝)]𝑑𝑠(𝑥, 𝑦)    (77) 

For a given 𝑘, either 𝑈
(𝑘)

 or  𝑃
(𝐾)

is known from the boundary 

conditions in equation (48). Thus, there are N unknown 

constants on the right-hand side of equation (78). To determine 

their values, we have to generate N equations containing the 

unknowns.  

We let (𝑥𝑝, 𝑦𝑝) in equation (3.32) be given in turn by the 

midpoints of  𝛤(1), 𝛤(2), …… , 𝛤(𝑁−1) and 𝛤(𝑁)  and obtain; 
1

2
𝑈
(𝑚)

= ∑ {𝑈
(𝑘)
𝐹2
(𝑘) (𝑥

(𝑚)
, 𝑦
(𝑚)
) −𝑁

𝑘=1

𝑃
(𝑘)
𝐹1
(𝑘) (𝑥

(𝑚)
, 𝑦
(𝑚)
)}                 (78) 

for 𝑚

= 1,2, ……… . , 𝑁, and (𝑥
(𝑚)
, 𝑦
(𝑚)
) is the midpoint of 𝛤(𝑚) 

In the derivation of equation (3.34), we take 

𝛽 (𝑥
(𝑚)
, 𝑦
(𝑚)
) =

1

2
, since (𝑥

(𝑚)
, 𝑦
(𝑚)
) being the midpoint of 

𝛤(𝑚) lies on a smooth part of the approximate boundary  i.e. 

𝛤(1)𝑈𝛤(2)𝑈……… .𝑈𝛤(𝑁−1)𝑈𝛤(𝑁) . 
Equation (78) constitutes a system of N linear algebraic 

equations containing the N unknowns on the right-hand side of 

equation (78). Since both  𝑈
(𝑘)

 and 𝑃
(𝐾)

 contain known as well 

as unknown boundary data, it is necessary to write the equations 

with all unknowns appearing on one side as given below. 

∑ 𝑎(𝑚𝑘)𝑍(𝑘)𝑁
𝑘=1 = ∑ 𝑏(𝑚𝑘)  for 𝑚 = 1,2, ……… . , 𝑁 𝑁

𝑘=1   (79) 

Where 𝑎(𝑚𝑘), 𝑏(𝑚𝑘) and 𝑍(𝑘) are defined by  

𝑎(𝑚𝑘) =

{
−𝐹1

(𝑘) (𝑥
(𝑚)
, 𝑦
(𝑚)
)  if 𝑈 is specified over 𝛤(𝑘)

𝐹2
(𝑘) (𝑥

(𝑚)
, 𝑦
(𝑚)
) −

1

2
𝛿(𝑚𝑘)if

𝜕𝑈

𝜕𝑛
 is specified over𝛤(𝑘)

  

𝑏(𝑚𝑘) =

{
 
 

 
 𝑈

(𝑘)
(−𝐹2

(𝑘) (𝑥
(𝑚)
, 𝑦
(𝑚)
) +

1

2
𝛿(𝑚𝑘))

 if 𝑈 is specified over𝛤(𝑘)

𝑃
(𝑘)
𝐹1
(𝑘) (𝑥

(𝑚)
, 𝑦
(𝑚)
) if

𝜕𝑈

𝜕𝑛
 is specified over𝛤(𝑘)

  

𝛿(𝑚𝑘)

= {
0 if 𝑚 ≠ 𝑘                                                                                                    
 1 if 𝑚 = 𝑘                                                                                                     

 

  𝑍(𝑘) = {
𝑃
(𝑘)
if 𝑈 is specified over 𝛤(𝑘)

𝑈
(𝑘)
if
𝜕𝑈

𝜕𝑛
 is specified over𝛤(𝑘)

       (80) 

We notice that by collocating the load point 𝑈(𝑥𝑝, 𝑦𝑝) with 

the nodes 𝑘 = 1,………… . . , 𝑁, we get 𝑁system of equations. 

Equation (76) with 𝛽(𝑥𝑝, 𝑦𝑝) = 1 provides us with an 

explicit formula for computing 𝑈 in the interior of 𝑅 that is; 

𝑈(𝑥𝑝, 𝑦𝑝) ≃ ∑{𝑈
(𝑘)
𝐹2
(𝑘)(𝑥𝑝, 𝑦𝑝)

𝑁

𝑘=1

− 𝑃
(𝐾)
𝐹1
(𝑘)(𝑥𝑝, 𝑦𝑝)}  for (𝑥𝑝, 𝑦𝑝) ∈ 𝑅 

                      (81) 

4. Methods of Solution and Discussion of Results 

This section presents computation and discussion of results 

on heat distribution around a simply connected circular 

geometry. Rearranging equation (81) according to the specified 

conditions, we develop BEM code for the computation of the 

solution. Temperature and fluxes are specified on some 

boundaries and the values computed with the numerical model. 

The results are then compared to the analytical solution to 

ascertain the efficiency of the BEM. 

Consider steady heat transfer to the exterior of circular 

geometry. We deal with Neumann boundary conditions. 

 

 
Fig. 1.  Approximate and analytical temperature profiles for 64 nodes 

A. Discussion of the results 

The temperature distribution around a circular pipe presents 

a sine curve. This is in agreement with research carried out by 

[9]. They made the conclusion that temperature distribution 

around a circular pipe under isotropic condition presents a sine 

curve regardless of the physical conditions of the circular 

geometry. 
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In our case above, we have Cauchy boundary conditions at 

inner and outer boundaries. A few nodes taken within the 

solution domain were compared to the analytical solutions. It’s 

evident that the numerical values agreed fairly well with the 

analytical values. 

5. Conclusion 

It is evident that many physical phenomena can be modeled 

using partial differential equations in particular heat transfer. In 

many cases, an analytical solution is not enough thus we rely 

on numerical solutions to obtain more information on the 

inherent problems. In this paper, we have observed that the 

application of numerical methods is limited to the cases where 

the functions under consideration are well behaved. We have 

demonstrated that BEM is a powerful numerical method that 

involves discretizing the boundary of a potential problem so as 

to get solutions that are in line with the experimental results. 

The temperature and flux profiles were close to the analytical 

profile. 
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