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Abstract: This paper presents an overview on number theory 

and its new developments. 
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1. Introduction 

Number theory (or arithmetic or higher arithmetic in older 

usage) is a branch of pure mathematics devoted primarily to the 

study of the integers. German mathematician Carl Friedrich 

Gauss (1777–1855) said, "Mathematics is the queen of the 

sciences-and number theory is the queen of mathematics." 

Number theorists study prime numbers as well as the properties 

of objects made out of integers (for example, rational numbers) 

or defined as generalizations of the integers (for 

example, algebraic integers). 

Integers can be considered either in themselves or as 

solutions to equations (Diophantine geometry). Questions in 

number theory are often best understood through the study 

of analytical objects (for example, the Riemann zeta function) 

that encode properties of the integers, primes or other number-

theoretic objects in some fashion (analytic number theory). One 

may also study real numbers in relation to rational numbers, for 

example, as approximated by the latter (Diophantine 

approximation). 

The older term for number theory is arithmetic. By the early 

twentieth century, it had been superseded by "number 

theory". (The word "arithmetic" is used by the general public to 

mean "elementary calculations"; it has also acquired other 

meanings in mathematical logic, as in Peano arithmetic, 

and computer science, as in floating point arithmetic.) The use 

of the term arithmetic for number theory regained some ground 

in the second half of the 20th century, arguably in part due to 

French influence. In particular, arithmetical is preferred as an 

adjective to number-theoretic. 

A. Dawn of arithmetic 

The first historical find of an arithmetical nature is a fragment 

of a table: the broken clay tablet Plimpton 322 (Larsa, 

Mesopotamia, ca. 1800 BCE) contains a list of "Pythagorean 

triples", that is, integers  such that . The triples are too many and 

too large to have been obtained by brute force. The heading 

over the first column reads: "The takiltum of the diagonal 

which has been subtracted such that the width..."  The table's 

layout suggests that it was constructed by means of what 

amounts, in modern language, to the identity which is implicit 

in routine Old Babylonian exercises. If some other method was  

 

used, the triples were first constructed and then reordered by , 

presumably for actual use as a "table", for example, with a view 

to applications. It is not known what these applications may 

have been, or whether there could have been any; Babylonian 

astronomy, for example, truly came into its own only later. It 

has been suggested instead that the table was a source of 

numerical examples for school problems. While Babylonian 

number theory—or what survives of Babylonian 

mathematics that can be called thus—consists of this single, 

striking fragment, Babylonian algebra (in the secondary-school 

sense of "algebra") was exceptionally well developed. Late 

Neoplatonic sources state that Pythagoras learned mathematics 

from the Babylonians. Much earlier sources state 

that Thales and Pythagoras traveled and studied in Egypt. 

Euclid IX 21–34 is very probably Pythagorean; it is very 

simple material ("odd times even is even", "if an odd number 

measures [= divides] an even number, then it also measures [= 

divides] half of it"), but it is all that is needed to prove 

that  is irrational. Pythagorean mystics gave great importance to 

the odd and the even. The discovery that  is irrational is credited 

to the early Pythagoreans (pre-Theodorus). By revealing (in 

modern terms) that numbers could be irrational, this discovery 

seems to have provoked the first foundational crisis in 

mathematical history; its proof or its divulgation are sometimes 

credited to Hippasus, who was expelled or split from the 

Pythagorean sect.  

This forced a distinction between numbers (integers and the 

rationals-the subjects of arithmetic), on the one hand, 

and lengths and proportions (which we would identify with real 

numbers, whether rational or not), on the other hand. 

The Pythagorean tradition spoke also of so 

called polygonal or figurate numbers. While square numbers, 

cubic numbers, etc., are seen now as more natural than 

triangular numbers, pentagonal numbers, etc., the study of the 

sums of triangular and pentagonal numbers would prove fruitful 

in the early modern period (17th to early 19th century). 

We know of no clearly arithmetical material in ancient 

Egyptian or Vedic sources, though there is some algebra in 

both. The Chinese remainder theorem appears as an 

exercise in Sunzi Suanjing (3rd, 4th or 5th century CE.) (There 

is one important step glossed over in Sunzi's solution: it is the 

problem that was later solved by Āryabhaṭa's Kuṭṭaka   

There is also some numerical mysticism in Chinese 

mathematics, but, unlike that of the Pythagoreans, it seems to 

have led nowhere. Like the Pythagoreans' perfect 
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numbers, magic squares have passed from superstition into 

recreation. 

B. Classical Greece and the early Hellenistic period 

Ancient Greek mathematics: Aside from a few fragments, the 

mathematics of Classical Greece is known to us either through 

the reports of contemporary non-mathematicians or through 

mathematical works from the early Hellenistic period. In the 

case of number theory, this means, by and 

large, Plato and Euclid, respectively. While Asian mathematics 

influenced Greek and Hellenistic learning, it seems to be the 

case that Greek mathematics is also an indigenous tradition. 

Eusebius, PE X, chapter 4 mentions of Pythagoras: "In fact the 

said Pythagoras, while busily studying the wisdom of each 

nation, visited Babylon, and Egypt, and all Persia, being 

instructed by the Magi and the priests: and in addition to these 

he is related to have studied under the Brahmans (these are 

Indian philosophers); and from some he gathered astrology, 

from others geometry, and arithmetic and music from others, 

and different things from different nations, and only from the 

wise men of Greece did he get nothing, wedded as they were to 

a poverty and dearth of wisdom: so on the contrary he himself 

became the author of instruction to the Greeks in the learning 

which he had procured from abroad."  

Aristotle claimed that the philosophy of Plato closely 

followed the teachings of the Pythagoreans, and Cicero repeats 

this claim: Platonem ferunt didicisse Pythagorea omnia("They 

say Plato learned all things Pythagorean"). 

Plato had a keen interest in mathematics, and distinguished 

clearly between arithmetic and calculation. (By arithmetic he 

meant, in part, theorizing on number, rather than 

what arithmetic or number theory have come to mean.) It is 

through one of Plato's dialogues—namely, Theaetetus—that 

we know that Theodorus had proven that  are 

irrational. Theaetetus was, like Plato, a disciple of Theodorus's; 

he worked on distinguishing different kinds 

of incommensurables, and was thus arguably a pioneer in the 

study of number systems. (Book X of Euclid's Elements is 

described by Pappus as being largely based on Theaetetus's 

work.) 

Euclid devoted part of his Elements to prime numbers and 

divisibility, topics that belong unambiguously to number theory 

and are basic to it (Books VII to IX of Euclid's Elements). In 

particular, he gave an algorithm for computing the greatest 

common divisor of two numbers (the Euclidean 

algorithm; Elements, Prop. VII.2) and the first known proof of 

the infinitude of primes (Elements, Prop. IX.20). 

In 1773, Lessing published an epigram he had found in a 

manuscript during his work as a librarian; it claimed to be a 

letter sent by Archimedes to Eratosthenes. The epigram 

proposed what has become known as Archimedes's cattle 

problem; its solution (absent from the manuscript) requires 

solving an indeterminate quadratic equation (which reduces to 

what would later be misnamed Pell's equation). As far as we 

know, such equations were first successfully treated by 

the Indian school. It is not known whether Archimedes himself 

had a method of solution. 

C. Diophantus 

Very little is known about Diophantus of Alexandria; he 

probably lived in the third century CE, that is, about five 

hundred years after Euclid. Six out of the thirteen books of 

Diophantus's Arithmetica survive in the original Greek; four 

more books survive in an Arabic translation. The Arithmetica is 

a collection of worked-out problems where the task is 

invariably to find rational solutions to a system of polynomial 

equations, usually of the form  or  Thus, nowadays, we speak 

of Diophantine equations when we speak of polynomial 

equations to which rational or integer solutions must be found. 

One may say that Diophantus was studying rational points, 

that is, points whose coordinates are rational—

on curves and algebraic varieties; however, unlike the Greeks 

of the Classical period, who did what we would now call basic 

algebra in geometrical terms, Diophantus did what we would 

now call basic algebraic geometry in purely algebraic terms. In 

modern language, what Diophantus did was to find rational 

parametrizations of varieties; that is, given an equation of the 

form (say) , his aim was to find (in essence) three rational 

functions  such that, for all values of  and , setting  for  gives a 

solution to Diophantus also studied the equations of some non-

rational curves, for which no rational parametrisation is 

possible. He managed to find some rational points on these 

curves (elliptic curves, as it happens, in what seems to be their 

first known occurrence) by means of what amounts to a tangent 

construction: translated into coordinate geometry (which did 

not exist in Diophantus's time), his method would be visualised 

as drawing a tangent to a curve at a known rational point, and 

then finding the other point of intersection of the tangent with 

the curve; that other point is a new rational point. (Diophantus 

also resorted to what could be called a special case of a secant 

construction.) 

While Diophantus was concerned largely with rational 

solutions, he assumed some results on integer numbers, in 

particular that every integer is the sum of four squares (though 

he never stated as much explicitly). 

D. Āryabhaṭa, Brahmagupta, Bhāskara 

While Greek astronomy probably influenced Indian learning, 

to the point of introducing trigonometry, it seems to be the case 

that Indian mathematics is otherwise an indigenous tradition; in 

particular, there is no evidence that Euclid's Elements reached 

India before the 18th century. Āryabhaṭa (476–550 CE) showed 

that pairs of simultaneous congruences ,  could be solved by a 

method he called kuṭṭaka, or pulveriser; this is a procedure 

close to (a generalisation of) the Euclidean algorithm, which 

was probably discovered independently in India. Āryabhaṭa 

seems to have had in mind applications to astronomical 

calculations.  

Brahmagupta (628 CE) started the systematic study of 

indefinite quadratic equations—in particular, the 
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misnamed Pell equation, in which Archimedes may have first 

been interested, and which did not start to be solved in the West 

until the time of Fermat and Euler. Later Sanskrit authors would 

follow, using Brahmagupta's technical terminology. A general 

procedure (the chakravala, or "cyclic method") for solving 

Pell's equation was finally found by Jayadeva (cited in the 

eleventh century; his work is otherwise lost); the earliest 

surviving exposition appears in Bhāskara II's Bīja-gaṇita 

(twelfth century). Indian mathematics remained largely 

unknown in Europe until the late eighteenth 

century; Brahmagupta and Bhāskara's work was translated into 

English in 1817 by Henry Colebrooke.  

E. Arithmetic in the Islamic golden age 

Mathematics in medieval Islam: Al-Haytham seen by the West: 

frontispice of Selenographia, showing Alhasen representing 

knowledge through reason, and Galileo representing 

knowledge through the senses. 

In the early ninth century, the caliph Al-Ma'mun ordered 

translations of many Greek mathematical works and at least one 

Sanskrit work (the Sindhind, which may  or may 

not  be Brahmagupta's Brāhmasphuṭasiddhānta). Diophantus's 

main work, the Arithmetica, was translated into Arabic 

by Qusta ibn Luqa (820–912). Part of the treatise al-

Fakhri (by al-Karajī, 953 – ca. 1029) builds on it to some extent. 

According to Rashed Roshdi, Al-Karajī's contemporary Ibn al-

Haytham knew what would later be called Wilson's theorem. 

F. Western Europe in the middle ages 

Other than a treatise on squares in arithmetic progression 

by Fibonacci—who traveled and studied in North Africa and 

Constantinople—no number theory to speak of was done in 

western Europe during the Middle Ages. Matters started to 

change in Europe in the late Renaissance, thanks to a renewed 

study of the works of Greek antiquity.  

A catalyst was the textual emendation and translation into 

Latin of Diophantus' Arithmetica.  

G. Early modern number theory 

Pierre de Fermat (1607–1665) never published his writings; 

in particular, his work on number theory is contained almost 

entirely in letters to mathematicians and in private marginal 

notes. He wrote down nearly no proofs in number theory; he 

had no models in the area.  One of Fermat's first interests 

was perfect numbers (which appear in Euclid, Elements IX) 

and amicable numbers; these topics led him to work on 

integer divisors, which were from the beginning among the 

subjects of the correspondence (1636 onwards) that put him in 

touch with the mathematical community of the day.  

Fermat's work in arithmetic includes the following. 

 Fermat's little theorem (1640), stating that, if a is not 

divisible by a prime p, then  

 If a and b are co-prime, then  is not divisible by any 

prime congruent to −1 modulo 4; and every prime 

congruent to 1 modulo 4 can be written in the 

form . These two statements also date from 1640; in 

1659, Fermat stated to Huygens that he had proven the 

latter statement by the method of infinite descent. 

 Fermat posed the problem of solving  as a challenge to 

English mathematicians (1657). The problem was 

solved in a few months by Wallis and 

Brouncker. Fermat considered their solution valid, but 

pointed out they had provided an algorithm without a 

proof (as had Jayadeva and Bhaskara, though Fermat 

would never know this). He states that a proof can be 

found by descent. 

 Fermat states and proves (by descent) in the appendix 

to Observations on Diophantus (Obs. XLV) that  has 

no non-trivial solutions in the integers. Fermat also 

mentioned to his correspondents that  has no non-

trivial solutions, and that this could be proven by 

descent. The first known proof is due to Euler (1753; 

indeed by descent).  Fermat's claim ("Fermat's last 

theorem") to have shown there are no solutions to  for 

all  appears only in his annotations on the margin of 

his copy of Diophantus. 

H. Euler 

The interest of Leonhard Euler (1707–1783) in number 

theory was first spurred in 1729, when a friend of his, the 

amateur Goldbach, pointed him towards some of Fermat's work 

on the subject. This has been called the "rebirth" of modern 

number theory, after Fermat's relative lack of success in getting 

his contemporaries' attention for the subject. Euler's work on 

number theory includes the following:  

 Proofs for Fermat's statements. This includes Fermat's 

little theorem (generalized by Euler to non-prime 

moduli); the fact that  if and only if ; initial work 

towards a proof that every integer is the sum of four 

squares (the first complete proof is by Joseph-Louis 

Lagrange (1770), soon improved by Euler himself); 

the lack of non-zero integer solutions to  (implying the 

case n=4 of Fermat's last theorem, the case n=3 of 

which Euler also proved by a related method). 

 Pell's equation, first misnamed by Euler. He wrote on 

the link between continued fractions and Pell's 

equation.  

 First steps towards analytic number theory. In his 

work of sums of four squares, partitions, pentagonal 

numbers, and the distribution of prime numbers, Euler 

pioneered the use of what can be seen as analysis (in 

particular, infinite series) in number theory. Since he 

lived before the development of complex analysis, 

most of his work is restricted to the formal 

manipulation of power series. He did, however, do 

some very notable (though not fully rigorous) early 

work on what would later be called the Riemann zeta 

function.  

 Quadratic forms. Following Fermat's lead, Euler did 
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further research on the question of which primes can 

be expressed in the form , some of it 

prefiguring quadratic reciprocity.  

 Diophantine equations. Euler worked on some 

Diophantine equations of genus 0 and 1. In particular, 

he studied Diophantus's work; he tried to systematize 

it, but the time was not yet ripe for such an 

endeavour—algebraic geometry was still in its 

infancy. He did notice there was a connection between 

Diophantine problems and elliptic integrals, whose 

study he had himself initiated. 

I. Lagrange, Legendre, and Gauss 

Joseph-Louis Lagrange (1736–1813) was the first to give full 

proofs of some of Fermat's and Euler's work and observations—

for instance, the four-square theorem and the basic theory of the 

misnamed "Pell's equation" (for which an algorithmic solution 

was found by Fermat and his contemporaries, and also by 

Jayadeva and Bhaskara II before them.) He also 

studied quadratic forms in full generality (as opposed to )—

defining their equivalence relation, showing how to put them in 

reduced form, etc. 

Adrien-Marie Legendre (1752–1833) was the first to state 

the law of quadratic reciprocity. He also conjectured what 

amounts to the prime number theorem and Dirichlet's theorem 

on arithmetic progressions. He gave a full treatment of the 

equation  and worked on quadratic forms along the lines later 

developed fully by Gauss. In his old age, he was the first to 

prove "Fermat's last theorem" for  (completing work by Peter 

Gustav Lejeune Dirichlet, and crediting both him and Sophie 

Germain).  

J. Maturity and division into subfields 

Starting early in the nineteenth century, the following 

developments gradually took place: 

 The rise to self-consciousness of number theory 

(or higher arithmetic) as a field of study.  

 The development of much of modern mathematics 

necessary for basic modern number theory: complex 

analysis, group theory, Galois Theory—accompanied 

by greater rigor in analysis and abstraction in algebra. 

 The rough subdivision of number theory into its 

modern subfields—in 

particular, analytic and algebraic number theory. 

Algebraic number theory may be said to start with the study 

of reciprocity and cyclotomy, but truly came into its own with 

the development of abstract algebra and early ideal theory 

and valuation theory; see below. A conventional starting point 

for analytic number theory is Dirichlet's theorem on arithmetic 

progressions (1837), whose proof introduced L-functions and 

involved some asymptotic analysis and a limiting process on a 

real variable. The first use of analytic ideas in number theory 

actually goes back to Euler (1730s), who used formal power 

series and non-rigorous (or implicit) limiting arguments. The 

use of complex analysis in number theory comes later: the work 

of Bernhard Riemann (1859) on the zeta function is the 

canonical starting point; Jacobi's four-square theorem (1839), 

which predates it, belongs to an initially different strand that has 

by now taken a leading role in analytic number theory (modular 

forms). The history of each subfield is briefly addressed in its 

own section below; see the main article of each subfield for 

fuller treatments. Many of the most interesting questions in 

each area remain open and are being actively worked on. 

 Main subdivisions 

 Elementary tools 

The term elementary generally denotes a method that does 

not use complex analysis. For example, the prime number 

theorem was first proven using complex analysis in 1896, but 

an elementary proof was found only in 1949 

by Erdős and Selberg. The term is somewhat ambiguous: for 

example, proofs based on complex Tauberian theorems (for 

example, Wiener–Ikehara) are often seen as quite enlightening 

but not elementary, in spite of using Fourier analysis, rather 

than complex analysis as such. Here as elsewhere, 

an elementaryproof may be longer and more difficult for most 

readers than a non-elementary one. 

Number theory has the reputation of being a field many of 

whose results can be stated to the layperson. At the same time, 

the proofs of these results are not particularly accessible, in part 

because the range of tools they use is, if anything, unusually 

broad within mathematics.[76] 

K. Analytic number theory  

Riemann zeta function ζ(s) in the complex plane. The color 

of a points gives the value of ζ(s): dark colors denote values 

close to zero and hue gives the value's argument. The action of 

the modular group on the upper half plane. The region in grey 

is the standard fundamental domain. 

Analytic number theory may be defined 

 In terms of its tools, as the study of the integers by 

means of tools from real and complex analysis; or 

 In terms of its concerns, as the study within number 

theory of estimates on size and density, as opposed to 

identities.  

Some subjects generally considered to be part of analytic 

number theory, for example, sieve theory, are better covered by 

the second rather than the first definition: some of sieve theory, 

for instance, uses little analysis, yet it does belong to analytic 

number theory. 

The following are examples of problems in analytic number 

theory: the prime number theorem, the Goldbach conjecture (or 

the twin prime conjecture, or the Hardy–Littlewood 

conjectures), the Waring problem and the Riemann hypothesis. 

Some of the most important tools of analytic number theory are 

the circle method, sieve methods and L-functions (or, rather, 

the study of their properties). The theory of modular 

forms (and, more generally, automorphic forms) also occupies 

an increasingly central place in the toolbox of analytic number 

theory.  
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One may ask analytic questions about algebraic numbers, 

and use analytic means to answer such questions; it is thus that 

algebraic and analytic number theory intersect. For example, 

one may define prime ideals (generalizations of prime 

numbers in the field of algebraic numbers) and ask how many 

prime ideals there are up to a certain size. This question can be 

answered by means of an examination of Dedekind zeta 

functions, which are generalizations of the Riemann zeta 

function, a key analytic object at the roots of the subject.[79] This 

is an example of a general procedure in analytic number theory: 

deriving information about the distribution of a sequence (here, 

prime ideals or prime numbers) from the analytic behavior of 

an appropriately constructed complex-valued function.  

L. Algebraic number theory 

An algebraic number is any complex number that is a 

solution to some polynomial equation  with rational 

coefficients; for example, every solution  of  (say) is an 

algebraic number. Fields of algebraic numbers are also 

called algebraic number fields, or shortly number fields. 

Algebraic number theory studies algebraic number fields. Thus, 

analytic and algebraic number theory can and do overlap: the 

former is defined by its methods, the latter by its objects of 

study. 

It could be argued that the simplest kind of number fields 

(viz., quadratic fields) were already studied by Gauss, as the 

discussion of quadratic forms in Disquisitiones 

arithmeticae can be restated in terms of ideals and norms in 

quadratic fields. (A quadratic field consists of all numbers of 

the form , where  and  are rational numbers and  is a fixed 

rational number whose square root is not rational.) For that 

matter, the 11th-century chakravala method amounts—in 

modern terms—to an algorithm for finding the units of a real 

quadratic number field. However, neither Bhāskara nor Gauss 

knew of number fields as such. 

The grounds of the subject as we know it were set in the late 

nineteenth century, when ideal numbers, the theory of 

ideals and valuation theory were developed; these are three 

complementary ways of dealing with the lack of unique 

factorisation in algebraic number fields. (For example, in the 

field generated by the rationals and, the number  can be 

factorised both as  and all of   and  are irreducible, and thus, in 

a naïve sense, analogous to primes among the integers.) The 

initial impetus for the development of ideal numbers 

(by Kummer) seems to have come from the study of higher 

reciprocity laws, that is, generalizations of quadratic 

reciprocity. 

M. Diophantine geometry 

The central problem of Diophantine geometry is to 

determine when a Diophantine equation has solutions, and if it 

does, how many. The approach taken is to think of the solutions 

of an equation as a geometric object. 

For example, an equation in two variables defines a curve in 

the plane. More generally, an equation, or system of equations, 

in two or more variables defines a curve, a surface or some 

other such object in n-dimensional space. In Diophantine 

geometry, one asks whether there are any rational points (points 

all of whose coordinates are rationals) or integral points (points 

all of whose coordinates are integers) on the curve or surface. 

If there are any such points, the next step is to ask how many 

there are and how they are distributed. A basic question in this 

direction is: are there finitely or infinitely many rational points 

on a given curve (or surface)? What about integer points? 

An example here may be helpful. Consider the Pythagorean 

equation ; we would like to study its rational solutions, that is, 

its solutions  such that x and y are both rational. This is the 

same as asking for all integer solutions to ; any solution to the 

latter equation gives us a solution ,  to the former. It is also the 

same as asking for all points with rational coordinates on the 

curve described by . (This curve happens to be a circle of radius 

1 around the origin.) 

 
Two examples of an elliptic curve, that is, a curve of genus 1 

having at least one rational point. (Either graph can be seen as 

a slice of a torus in four-dimensional space.)The rephrasing of 

questions on equations in terms of points on curves turns out to 

be felicitous. The finiteness or not of the number of rational or 

integer points on an algebraic curve—that is, rational or integer 

solutions to an equation , where  is a polynomial in two 

variables—turns out to depend crucially on the genus of the 

curve. 

2. Some recent developments in number theory 

M. Ram Murty In 1916, Srinivasa Aiyangar Ramanujan 

wrote two seminal papers that have shaped the development of 

modern number theory. The first paper modestly entitled, “On 

certain arithmetical functions,” dealt with his celebrated τ -

function and conjectures relating to it as well as numerous 

unexplained congruences that emerged from his work. The 

second paper entitled “On the expression of a number in the 

form ax2 + by2 + cz2 + du2” determined all natural numbers a, 

b, c, d for which the quadratic form ax2+by2+cz2+du2 

represents all natural numbers. He gave a complete list which 

included (a, b, c, d) = (1, 1, 1, 1) that corresponds to the 

celebrated theorem of Lagrange that every natural number can 

be written as a sum of four squares.  

In our brief survey of some recent developments in number 

theory, we will describe how these two papers gave birth to two 

lines of development, one in the theory of quadratic forms, and 

the other in the theory of Galois representations, both of which 
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are now central themes in modern number theory. We begin 

with the second paper first. Quadratic forms Ramanujan’s paper 

addresses a special case of a more general question: which 

positive definite quadratic forms with integral coefficients 

represent all natural numbers? Given a quadratic form Q(x), we 

can write it as a matrix equation x tAx with A a symmetric 

matrix. In 1993, Conway and Schneeberger proved a surprising 

theorem: suppose that A is positive definite with integer entries. 

If the associated quadratic form represents all natural numbers 

up to 15, then it represents all natural numbers. The original 

proof was complicated and never published.  

In 2000, Manjul Bhargava published a much simpler proof. 

Conway conjectured that if we consider integer valued 

quadratic forms (instead of A being integral), then a similar 

result should hold with 15 replaced by 290. In 2005, Manjul 

Bhargava and Jonathan Hanke announced a proof of this 

conjecture. Their work will soon be published in Inventiones 

Math. If we turn our attention to indefinite quadratic forms, then 

a theorem of A. Meyer proved in 1884 asserts that any indefinite 

form Q with rational coefficients in n variables (n ≥ 5) 

represents zero non-trivially. In other words, there is a non-zero 

integral vector x such that Q(x) = 0. It is the best possible 

theorem in terms of the number of variables since the example 

Q(x1, x2, x3, x4) = x 2 1 + x 2 2 − p(x 2 3 + x 2 4 ) with p a 

prime congruent to 3 (mod 4) shows that Q(x) = 0 implies x = 

0. Indeed, if there were a solution, then reducing (mod p) shows 

that x 2 1 ≡ −x 2 2 (mod p). If x2 is not divisible by p, then we 

deduce that −1 is a square (mod p), a contradiction.  

Thus x2 is divisible by p and a fortiori, 1 some recent 

developments in number theory. Math. Newsl. 19 (2010), Sp. 

Number 1, 175–182. Published on the occasion of the 

International Congress of Mathematicians held at Hyderabad, 

India. x1 is divisible by p. Similarly, one deduces that x3 and 

x4 are divisible by p. Thus, by a descent argument, we see that 

x = 0. If we put m(Q) = inf{Q(x) : x ∈ Z n , x 6= 0}, then 

Meyer’s theorem is equivalent to m(Q) = 0 for any (non-

degenerate) indefinite quadratic form which is a multiple of a 

form with rational coefficients for n ≥ 5. If we consider a real 

(non-degenerate) indefinite quadratic form Q which is not a 

multiple of a rational form, then Alexander Oppenheim 

conjectured in 1929 that m(Q) = 0 for n ≥ 5. It was later noted 

by Davenport and Heilbronn that the conjecture should hold for 

n ≥ 3. Building on the 1934 work of Sarvadaman Chowla 

Davenport wrote a series of papers with Birch, Heilbronn, 

Lewis and Ridout attacking the Oppenheim conjecture with the 

main tool being the circle method of Ramanujan. In this way, it 

was shown that Oppenheim’s conjecture is true for n ≥ 21. In 

the 1970’s, M.S. Raghunathan gave a reformulation of the 

Oppenheim conjecture in terms of homogeneous group actions. 

Armed with this new perspective on an old conjecture, Margulis 

resolved the matter in 1986 using a combination of methods 

from Lie theory, ergodic theory and number theory. We refer 

the reader to his highly readable exposition. In the subsequent 

years, Marina Ratner, motivated by conjectures of 

Raghunathan, proved in 1990 a major theorem  concerning 

unipotent flows on homogeneous spaces. Once this theorem is 

available, Oppenheim’s conjecture can be deduced without too 

much difficulty.  

We will give a short description of how this is done. If V is a 

vector space over a field k and f is a bilinear form on V , we 

denote by O(f) the elements of GL(V ) which preserve the form. 

In our context, the matrix A associated with the quadratic form 

Q gives rise to a bilinear form and we can consider the group of 

transformations H such that Q(hx) = Q(x) for all h ∈ H. Thus, 

to prove the Oppenheim conjecture, it suffices to show that for 

any > 0, Q takes values in [−, ] at a point of the form hx with x 

6= 0, h ∈ H and x ∈ Z n . For instance, if we can show that {hx 

: h ∈ H, x ∈ Z n , x 6= 0} contains zero in its closure, then the 

Oppenheim conjecture follows. The advantage of this 

perspective is that we have moved from the standard lattice, 

namely Z n to the H-orbits of the standard lattice. This 

viewpoint slowly allows us to translate the problem into a 

problem of homogeneous spaces. A lattice in R n is the set of 

Z-linear combinations of n linearly independent vectors. It is 

not hard to see that every lattice is of the form gZ n for some g 

∈ GLn(R). Let Ln be the set of lattices in R n and let Ln() be 

the set of lattices that contain v ∈ R n with ||v|| < . The lattice Z 

n can be thought of as a point of Ln. The Oppenheim conjecture 

would follow if we can show the H-orbit of Z n intersects non-

trivially with Ln(), which is a dynamical reformulation of the 

conjecture. To any lattice, we can associate an element X of 

GLn(R) simply by taking the 2 basis of the lattice for its 

columns. It is not hard to see that X and X0 give rise to the same 

lattice if and only if X0 = AX for A ∈ GLn(Z). Thus, the space 

of lattices can be identified with the coset space 

GLn(R)/GLn(Z). Since all the elements of O(f) have 

determinant 1, it is more convenient to move to the coset space 

Kn = SLn(R)/SLn(Z).  

These coset spaces inherit topologies from SLn(R) and 

GLn(R) and can be given the structure of manifolds. Our 

interest now is to consider how the H orbit of Z n sits in this 

homogeneous space. A famous criterion of Mahler says that a 

subset K of Kn is bounded if it does not intersect K() = L() ∩ 

Kn. In other words, our goal is to show that the orbit H[Z n ] is 

unbounded in Kn. An essential feature here is that we are 

dealing with n ≥ 3 and that our form is indefinite, not 

commensurate with a rational form. This means that H contains 

unipotent elements (that is, elements of SLn(R) for which all 

eigenvalues are 1). Now we can explain Ratner’s theorem and 

how the Oppenheim conjecture can be deduced from it. Let H 

⊂ SLn(R) be generated by one-parameter unipotent subgroups. 

Very briefly, Ratner’s theorem is that the closure of the orbit of 

H[Z n ] inside Kn is of the form H0 [Z n ] for a closed subgroup 

H0 ⊇ H. Moreover, there exists an H0 -invariant probability 

measure on H0 [Z n].  

Now the group H = SO(f) is maximal inside SLn(R). So 

Ratner’s theorem implies that H[Z n ] is closed or dense in Kn. 

The former possibility can occur only if Q is a multiple of a 
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rational form, which it isn’t. Thus, the orbit is dense, and this 

completes the proof of the Oppenheim conjecture. (Note that 

we have proved something stronger than the conjecture.) A 

readable and more detailed exposition can be found in 

Venkatesh’s paper [30]. Refinements of Ratner’s theorems 

have found applications in other questions of number theory 

such as in the work of Vatsal [29] settling a conjecture of Mazur 

in the theory of elliptic curves. Higher degree forms The results 

on the Oppenheim conjecture expand our understanding of 

quadratic forms and the values they assume at integer lattice 

points. The situation is not the same when we move to cubic 

forms or higher degree forms. Binary quadratic forms are the 

easiest to study.  

They have a long and venerable history. Already in the work 

of Brahmagupta in sixth century (C.E.) India, we find the 

equation (x 2 1 − dy2 1 )(x 2 2 − dy2 2 ) = (x1x2 + dy1y2) 2 − 

d(x1y2 + x2y1) 2 which is an example of a “composition law.” 

In the 1801 work Disquisitiones Arithmeticae of Gauss, we find 

the complete generalization of this in the form (a1x 2 1 + 

b1x1y1 + c1y 2 1 )(a2x 2 2 + b2x2y2 + c2y 2 2 ) = AX2 + BXY 

+ CY 2 , where X, Y are linear functions of x1x2, x1y2, y1x2, 

y1y2 and A, B, C are determined as functions 3 of a1, b1, c1, 

a2, b2, c2. This is the celebrated law of composition of binary 

quadratic forms. For binary quadratic forms ax2+bxy+cy2 with 

discriminant b 2−4ac fixed, Gauss’s composition law serves to 

establish a one-to-one correspondence between ideal classes of 

the quadratic number field with discriminant D and binary 

quadratic forms of discriminant D.  

This correspondence allows us to define a group law on the 

set of binary quadratic forms of a fixed discriminant. This is the 

essence of Gauss’s theorem. If we identify the binary quadratic 

form ax2 + bxy + cy2 with the integer triple [a, b, c] as a lattice 

point in R 3 , then Gauss’s theorem is that certain lattice points 

may be put in one-to-one correspondence with quadratic 

number fields and their ideal class groups. Viewed in this way, 

it is natural to ask if there are other lattice points in higher 

dimensional Euclidean spaces that could be made to correspond 

in a “natural way” to higher degree number fields and their ideal 

class groups. In 1964, Delone and Fadeev, building on earlier 

work of Hermite discovered a non-trivial lattice correspondence 

betweeen integral binary cubic forms and cubic rings. It is 

precisely this question that is addressed in the Princeton 

doctoral thesis of Manjul Bhargava.  

In particular, Bhargava finds new composition laws that 

allow one to study ideal class groups of quartic and quintic 

extensions. This work has applications to a folklore conjecture 

regarding the enumeration of algebraic number fields with 

absolute discriminant below a given bound. This conjecture 

predicts that the number of algebraic number fields K/Q with 

[K : Q] = n and Galois closure Ke satisfying Gal(K/ e Q) ' Sn 

and discriminant dK satisfying |dK| ≤ X is asymptotically cnX 

as x tends to infinity. For n = 2, this is an easy exercise. For n = 

3, it follows from the work of Davenport and Heilbronn. The 

cases n = 4 and 5 were recently completed by Bhargava [4] [5]. 

A good exposition of this work can be found in the Seminaire 

Bourbaki article.  

The re-interpretation of questions concerning indefinite 

quadratic forms allowed us to use the recent advances in the 

ergodic theory. There is another celebrated conjecture 

formulated in 1930 by Littlewood that also can be reformulated 

in dynamical terms. Littlewood conjectured that for any α, β, 

we have lim inf n→∞ n||nα||||nβ|| = 0. Another way to say this 

is that for any > 0, the inequality |x(xα − y)(xβ − z)| <  can be 

solved with x 6= 0 and x, y, z integers.  

The function L(x, y, z) = x(xα − y)(xβ − z) is a product of 

three linear forms which admits a two-dimensional torus as a 

group of automorphisms. This conjecture has received 

considerable attention recently simply because it fits into this 

dynamical framework and one feels that the new methods of 

ergodic theory and Lie theory 4 should resolve the conjecture. 

Indeed, in a recent paper, Einsiedler, Katok and Lindenstrauss 

showed that the set of exceptions to Littlewood’s conjecture has 

Hausdorff dimension zero. Galois representations and Serre’s 

conjecture Let us now turn to the other paper of Ramanujan 

written in 1916 concerning the τ -function.  

Ramanujan found many interesting congruences for it. For 

example, τ (n) ≡ σ11(n)(mod 691), where σ11(n) denotes the 

sum of the 11-th powers of the positive divisors of n. Similar 

congruences were found by Ramanujan for the modulus 2, 3, 5, 

7, and 23. To explain the mystery of these congruences, Serre 

suggested the existence of an `-adic representation ρ` : 

Gal(Q/Q) → GL2(F`) such that if Frobp denotes the Frobenius 

automorphism, then ρ`(Frobp) has trace τ (p) and determinant p 

11 (mod `).  

Such a representation was discovered by Deligne (in the 

context of his work on the Weil conjectures and Ramanujan’s 

conjecture). Serre and Swinnerton-Dyer studied this 

representation and noted that the special congruences arise from 

the “ramification” of this representation. These results inspired 

Serre to ask if the converse holds. That is, does every such 

representation “arise” from some modular form? To be precise, 

suppose that ρ: Gal(Q/Q) → GL2(F`) is a continuous 

homomorphism such that ρ is simple (that is, there is no basis 

in which the image of ρ is upper triangular). If ρ is odd (that is 

ρ(complex conjugation)= −1) and unramified at all primes 

unequal to `, is there a modular form f (of level 1 and weight k) 

such that the trace of ρ(Frobp) is equal to af (p) (the p-th Fourier 

coefficient of f) and its determinant is p k−1 (mod `)? Serre 

conjectured that the answer is “yes” and this is usually referred 

to as the level one case of Serre’s conjecture. In 2006, 

Chandrasekhar Khare proved this level one case. Serre also 

formulated a higher “level” analogue of his conjecture and this 

was recently settled by Khare and Wintenberge.  

An interesting application of this work that has a “popular 

appeal” is to Fermat’s Last Theorem. The long and complicated 

proof of Ribet, Taylor and Wiles is now replaced with a 

relatively “shorter proof.” In fact, all of the conjectural 

applications given in Serre’s paper are now theorems. Even 
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more astounding about Khare’s work is its application to Artin 

L-series attached to odd two-dimensional complex linear 

representations of the absolute Galois group over Q. 5 These 

non-abelian L-series generalize the classical Riemann ζ-

function and the Dirichlet Lfunctions to the non-abelian Galois 

setting.  

Artin conjectured that each of his non-abelian Lseries 

attached to an irreducible representation ρ extends to an entire 

function. One of the principal goals of the program of 

Langlands is to prove Artin’s conjecture. Indeed, if the image 

of ρ is a finite solvable group of GL2(C), then Langlands [18] 

and Tunnell proved Artin’s conjecture using the full theory of 

the Langlands program for GL2. This was the starting point of 

Wiles’s celebrated proof of Fermat’s Last Theorem. As a 

consequence of his work on Serre’s conjecture, Khare was able 

to show the full Artin conjecture for all odd 2-dimensional 

representations. One can view this as a 2-dimensional version 

of the classical Artin reciprocity law (which includeds the well-

known law of quadratic reciprocity). The study of Galois 

representations and their properties has led to other advances in 

number theory and this short survey cannot do justice to these 

new results. The most notable among these is the resolution of 

the Sato-Tate conjecture in the theory of elliptic curves due to 

Clozel, Harris, Shepherd-Baron and Taylor. A short survey of 

this work along with a generalization related to the Chebotarev 

density theorem can be found in.  

The theory of modular forms is a special case of the larger 

universe of automorphic representations and the Langlands 

program. Central to this program is the fundamental lemma or 

the “fundamental matching conjecture” recently proved by 

Ngo. Surely this work will have significant consequences for 

the theory of L-function in the coming years. Other 

developments and future directions We have not been able to 

discuss the recent advances in additive combinatorics, 

especially the work of Green and Tao.  

Their theorem is quite elementary to state. It is that the 

sequence of prime numbers contains arbitrarily long arithmetic 

progressions. That is, for every natural number k, there is a k-

term arithmetic progression of primes. Here again, the new 

ideas consist of a combination of methods from analytic number 

theory and ergodic theory. What is interesting in this work is 

the use of some classical techniques from analytic number 

theory involving truncted von Mangoldt functions: ΛR(n) := X 

d|n,d≤R µ(d) log(R/d), where µ denotes the Mobius function. 

These functions also appear in work of Goldston, Pintz ¨ and 

Yildirim  who showed that lim inf n→∞ pn+1 − pn log pn = 0, 

which was a famous conjecture for a long time. 6 Another 

important theme inspired by quantum mechanics and number 

theory is the quantum unique ergodicity conjecture. In a special 

case, this conjecture states that if f(z) is a holomorphic cuspidal 

Hecke eigenform of weight k (like ∆(z), with k = 12 for 

example) then for any smooth bounded function in the 

fundamental domain D for the standard action of SL2(Z) on the 

upper half-plane, we have lim k→∞ Z D y k |f(z)| 2 g(z) dxdy 

y 2 → Z D g(z) dxdy y 2 .  

This conjecture was recently proved by Holowinsky and 

Soundararajan . A nice corollary of this result is that the zeros 

of holomorphic Hecke eigenforms become equidistributed in 

the fundamental domain as the weight tends to infinity. An 

essential ingredient in their proof is the recurrent theme of 

“breaking convexity” in the theory of L-functions. The analog 

of this conjecture for Maass forms (which form the non-

holomorphic counterpart of the theory of classical modular 

forms) is that if f(z) is a Maass form which is an eigenfunction 

for all the Hecke operators as well as the non-Euclidean 

Laplacian, (with corresponding eigenvalue λ) then for any 

smooth g(z), Z D |f(z)| 2 g(z) dxdy y 2 → Z D g(z) dxdy y 2 as 

λ → ∞. Lindenstrauss  proved using ergodic methods that the 

limit is as expected, upto a scalar factor of some constant c with 

0 ≤ c ≤ 1. Recently, Soundararajan  showed that c = 1.  

These are some of the highlights in number theory in the 

recent decades. Surely, it is impossible to faithfully record all 

of the accomplishments. However, we hope that in this short 

survey, we have been able to give some flavour of the 

developments that have emerged in the recent past and some 

that are yet to come. Acknowledgements. I would like to thank 

Sanoli Gun, Kumar Murty and Purusottam Rath for their 

comments on an earlier version of this article. References K. 

Belabas, Parametrisation de structure alg ´ ebriques et densit ´ 

e de discriminants, ´ Sem. Bourbabki, 56eme ann ` ee, 2003-

2004, no. 935. M. Bhargava, On the Conway-Schneeberger 

theorem, in Quadratic Forms and Their Applications, (Dublin, 

1999), 27-37, Contemporary Math., 272, American Math. 

Society, Providence, RI. 2000. 7 M. Bhargava, Higher 

Composition Laws I: A new view on Gauss composition and 

quadratic generalizations, Annals of Math., 159 (1) (2004), 

217-250; Higher Composition Laws II: On cubic analogues of 

Gauss composition, Annals of Math., 159 (2) (2004), 865-886; 

Higher Composition Laws III: The parametrization of quartic 

rings, Annals of Math., 159 (3) (2004), 1329-1360; Higher 

Composition Laws IV: The parametrization of quintic rings, 

Annals of Math., 167 (2) (2008), 53-94. 

3. Conclusion 

This paper presented an overview on number theory and its 

new developments. 
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