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Abstract: In this work, through the use of the theory of 

fractional calculus, fixed point technique and a new concept called 

(β,u) resolvent family, we have been established the controllability 

result of a class of fractional evolution nonlocal impulsive quasi-

linear delay integro-differential system in a complete vector space.  
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1. Introduction 

In the past decade, many authors investigated the existence 

result for fractional evolution equation; see [25, 26].  Moreover, 

there are different type of mild solutions that have been proved.  

For example, the first one was constructed in terms of a 

probability density function given by El-Borai [27] and was 

then developed by Zhou et al.  [28, 29], and the second one was 

presented in terms of an 𝛽-resolvent family provided by Araya 

et al. [30] and then Mophou et al.  [31]. But, in both senses, if 

the closed operator in the evolution equation is dependent on 

more then the considered case can be taken as an open problem.  

For this reason, we will introduce in this article a new concept 

called (𝛽, 𝑢) - resolvent family, which is based on Araya-

Lizama concepts [30], and Hill-phillips principles [32].  Our 

paper is organized as follows.  Section 2 is devoted to a review 

of some essential results in fractional calculus and the resolvent 

operators that will be used in this work to obtain our main 

results.  In section 3, we state and prove the controllability 

result.  Section 4 deals with an example to illustrate the 

abstracts.     

2. Preliminaries 

Consider the fractional integro-differential control system of 

the form 
𝑑𝛽𝑢(𝑡)

𝑑𝑡𝛽 + 𝐴(𝑡, 𝑢(𝑡))𝑢(𝑡) = (𝐵𝜇)(𝑡) +

𝜑(𝑡, 𝑓 (𝑡, 𝑢(𝛾(𝑡))) , ∫ 𝑔 (𝑡, 𝑠, 𝑢(𝛿(𝑠))) 𝑑𝑠
𝑡

0
     ………….. (1) 

u(0)+h(u) =𝑢0,                                                          …    (2) 

∆𝑢(𝑡𝑖) =  𝐼𝑖(𝑢(𝑡𝑖)),                                                  …    (3) 

Where the state u(.) takes values in the Complete Vector  

 

Space X, 0 <  𝛼 ≤ 1, 𝑡 ∈ [0, 𝑎], 𝑢0  ∈ 𝑋, i = 1,2,…m and 0 

<𝑡1 < 𝑡2 < 𝑡3 < ⋯ 𝑡𝑚 < 𝑎.  We assume that –A(t,.) is a closed 

linear operator defined on a dense domain D(A) in X into X 

such that D(A) is independent of t.  It is assumed also that – 

A(t,.) generates an evolution operator in the Complete Vector 

Space X, the control function 𝜇 belongs to the space 𝐿2(𝑆, 𝑈), 

a Complete Vector Space of admissible control functions with 

U as a Complete Vector Space and B : U→X is a bounded linear 

operator.  The functions f : 𝑆 × 𝑋2 → 𝑋, g : Λ × Xk → X, φ ∶
S × X2 → X, ℎ ∶  PC(S, X)  → X, 𝑢(𝛾) = (𝑢(𝛾1), … 𝑢(𝛾𝑟)), 

𝑢(𝛿) = (𝑢(𝛿1), … 𝑢(𝛿𝑘)), and 𝛾𝑝,𝛿𝑞 ∶ 𝑆 → 𝑆 are given, where 

p = 1,2,…,r, q = 1,2,…,k.  Here S = [0, 𝑎] and Λ = {(𝑡, 𝑠): 0 ≤
𝑠 ≤ 𝑡 ≤ 𝑎}. 

Let 𝑝𝑐(𝑆, 𝑋) consist of functions 𝑢 from S into 𝑋, such that 

𝑢(𝑡) is continuous at 𝑡 ≠ 𝑡𝑖 and left continuous at 𝑡 = 𝑡𝑖 and 

the right limit 𝑢(𝑡𝑖
+) exists for                  𝑖 = 1,2, … 𝑚. clearly 

𝑝𝑐(𝑆, 𝑋) is a Complete Vector Space with the norm  ‖𝑢‖𝑝𝑐 =

𝑠𝑢𝑝𝑡∈𝑗‖𝑢(𝑡)‖, and let Δ𝑢(𝑡𝑖) =  𝑢(𝑡𝑖
+) − 𝑢(𝑡𝑖

−) constitute an 

impulsive condition. 

     In recent years, fractional differential equations have 

attracted the attention of many mathematician and physicists, 

see for instance, Baleanu et al. [1-3], Agarwal and 

Lakshmikantham et al. [5-8] and Kilbas et. al. [9,10].  See also 

[11-15].  The existence results to evolution equations with 

nonlocal conditions in Banach spach was studied first by 

Byszewski [16, 17]. Deng [18] indicated that, using the 

nonlocal condition 𝑢(0) + ℎ(𝑢) = 𝑢0 to describe for instance, 

the diffusion phenomenon of a small amount of gas in a 

transparent tube can give better result than using the usual local 

Cauchy problem𝑢(0) = 𝑢0.  Let as observe also that since 

Deng’s papers, the function ℎ is considered  

                      ℎ(𝑢) = ∑ 𝑐𝑘𝑢(𝑡𝑘),
𝑝
𝑘=1                …………. (4) 

Where 𝑐𝑘, 𝑘 = 1,2, … , 𝑝 are given constants and 0 ≤ 𝑡1 <

⋯ < 𝑡𝑝 ≤ 𝑎. 

     Let X and Y be two Complete Vector Spaces such that Y 

is densely and continuously embedded in X.  For any Complete 

Vector Space Z, the norm of Z is denoted by‖. ‖𝑧.  The space of 

all bounded linear operators from X and Y is denoted by 

𝐵(𝑋, 𝑌) and 𝐵(𝑋, 𝑋) is written as 𝐵(𝑋).   
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A. Definition 

The fractional integral of order 𝛽 > 0 is defined by  

𝐼𝑎
𝛼𝑓(𝑡) =

1

Γ(𝛼)
∫

𝑓(𝑠)

(𝑡 − 𝑠)1−𝛽

𝑡

𝑎

𝑑𝑠 

Where Γ is the gamma function and 𝑓 ∈ 𝐿1([𝑎, 𝑏], ℝ+). 

      If 𝑎 = 0, we can write 𝐼𝛼𝑓(𝑡) = (𝑔𝛽 ∗ 𝑓)(𝑡), where  

𝑔𝛽(𝑡) = {

1

Γ(𝛽)
𝑡𝛽−1, 𝑡 > 0

0  ,          𝑡 ≤ 0

 

As usual, * denotes the convolution of functions, also we 

have         𝑙𝑖𝑚𝛽→0𝑔𝛽(𝑡) = 𝛿(𝑡), which is the delta function. 

Definition 

The Riemann-Liouville fractional derivative of order 𝑛 −
1 < 𝛽 < 𝑛 is defined by  

𝑎𝐷
𝑡
𝛽

𝑓(𝑡) =
1

Γ(𝑛 − 𝛽)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝑠)

(𝑡 − 𝑠)1+𝛽−𝑛

𝑡

𝑎

𝑑𝑠, 

Where f is an abstract continuous function on the interval 

[𝑎, 𝑏] and 𝑛 ∈ ℕ∗, also the Caputo fractional derivative of order 

𝑛 − 1 < 𝛽 < 𝑛 is defined by  

𝐷𝑎
𝑐

𝑡
𝛽

𝑓(𝑡) =
1

Γ(𝑛 − 𝛽)
∫

𝑓(𝑛)(𝑠)

(𝑡 − 𝑠)1+𝛽−𝑛

𝑡

𝑎

𝑑𝑠. 

This definition is still now a basic source for all authors that 

are working in the field of fractional calculus. 

Definition 

     A two parameter family of bounded linear operators 

𝑈(𝑡, 𝑠), 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑎, on X is called an evolution system if 

the following two conditions are satisfied 

(i)𝑈(𝑡, 𝑡) = 𝐼, 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝑠) = 𝑈(𝑡, 𝑠) for 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑡 ≤
𝑎 

(ii) (𝑡, 𝑠) → 𝑈(𝑡, 𝑠) is strongly continuous for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑎 

     Let E be the Complete Vector Space formed from D(A) 

with the graph norm,  since – 𝐴(𝑡) is closed operator, it follows 

that  – 𝐴(𝑡) is in the set of bounded operator from E to X. 

B. Definition  

 Let 𝐴(𝑡, 𝑢) be a closed and linear operator with domain 

D(A) defined on a Complete Vector Space X and 𝛽 > 0 .  let 

𝜌[𝐴(𝑡, 𝑢)] be the resolvent set of  𝐴(𝑡, 𝑢) the generator of an 

(𝛽, 𝑢)-resolvent family if there exist 𝜔 ≥ 0 and a strongly 

continuous function 𝑅(𝛽,𝑢): ℝ+
2 → 𝐿(𝑋) such that {𝜆𝛽: 𝑅𝑒(𝜆) >

𝜔} ⊂ 𝜌(𝐴) and for 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞, 

𝜆𝛽𝐼 − 𝐴(𝑠, 𝑢))−1𝑣 = ∫ 𝑒−𝜆(𝑡−𝑠)𝑅(𝛽,𝑢)(𝑡, 𝑠)𝑣
∞

0

𝑑𝑡,   𝑅𝑒(𝜆)

> 𝜔, (𝑢, 𝑣) ∈ 𝑋2. 
In this case , 𝑅(𝛽,𝑢)(𝑡, 𝑠) is called the (𝛽, 𝑢)-resolvent family 

generated by A(t,u). 

C. Definition 

 Let mild solution  
𝑑𝛽𝑢(𝑡)

𝑑𝑡𝛽 + 𝐴(𝑡, 𝑢(𝑡))𝑢(𝑡) = (𝐵𝜇)(𝑡) +

𝜑(𝑡, 𝑓 (𝑡, 𝑢(𝛾(𝑡))) , ∫ 𝑔 (𝑡, 𝑠, 𝑢(𝛿(𝑠))) 𝑑𝑠
𝑡

0
     ………….. (1) 

∆𝑢(𝑡𝑖) =  𝐼𝑖(𝑢(𝑡𝑖)),                                                  …………... 

(3) 

 (1)-(3) we mean a function 𝑢 ∈ 𝑃𝐶(𝑆: 𝑋) with values in Ω 

satisfying the integral equation 

𝑢𝜇(𝑡)

= 𝑅(𝛽,𝑢)(𝑡, 0)𝑢0 − 𝑅(𝛽,𝑢)(𝑡, 0)ℎ(𝑢)

+ ∫ 𝑅(𝛽,𝑢)(𝑡, 𝑠)[(𝐵𝜇)(𝑠)

𝑡

0

+ 𝜙(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜂, 𝑢(𝛿(𝜂))) 𝑑𝜂)]𝑑𝑠

𝑠

0

+ ∑ 𝑅(𝛽,𝑢)(𝑡, 𝑡𝑖)𝐼𝑖(𝑢(𝑡𝑖)),

0<𝑡𝑖<𝑡

𝑡 ∈ 𝐽 

     For all 𝑢0 ∈ 𝑋 and admissible control 𝜇 ∈ 𝐿2(𝑆, 𝑈).  we 

assume the following conditions. 

 (𝐻1) The bounded linear operator 𝐸: 𝐿2(𝑆, 𝑈) → 𝑋 defined 

by  

𝐸𝜇 = ∫ 𝑅(𝛽,𝑢)(𝑎, 𝑠)𝐵𝜇

𝑎

0

(𝑠)𝑑𝑠, 

Has an induced inverse operator 𝐸̃−1 which takes values in 

𝐿2(𝑆, 𝑈) ker 𝐸⁄  and there exists positive constants 𝑀1, 𝑀2, such 

that ‖𝐵‖ ≤ 𝑀1 and ‖𝐸̃−1‖ ≤ 𝑀2. 

   (𝐻2)ℎ: 𝑝𝑐(𝑆: Ω) → 𝑌 is lipschitz continuous in X and 

bounded in Y, that is there exists 𝐾1 > 0  and 𝐾2 > 0 such that  

‖ℎ(𝑢)‖𝛿 ≤ 𝐾1, 
‖ℎ(𝑢) − ℎ(𝑣)‖𝛾 ≤ 𝐾2 max

𝑡∈𝑆
‖𝑢 − 𝑣‖𝑃𝐶 ,          𝑢, 𝑣 ∈ 𝑃𝐶(𝑆: 𝑋). 

For conditions (𝐻3) − (𝐻5) let Z taken as both X and Y. 

        (𝐻3)𝑔: Λ × 𝑧𝑘 → 𝑧 is continuous and there exist 

constants 𝐾3 > 0 and 𝐾4 > 0 such that  

∫‖𝑔(𝑡, 𝑠, 𝑢1, … , 𝑢𝑘) − 𝑔(𝑡, 𝑠, 𝑣1, … , 𝑣𝑘)‖𝑧

𝑡

0

𝑑𝑠

≤ 𝑘3 ∑‖𝑢𝑞 − 𝑣𝑞‖
𝑧

𝑘

𝑞=1

,     𝑢𝑞 , 𝑣𝑞 ∈ 𝑋, 𝑞

= 1,2, … , 𝑘, 

𝑘4 = max{∫‖𝑔(𝑡, 𝑠, 0, … ,0)‖𝑧𝑑𝑠 ∶   (𝑡, 𝑠) ∈ Λ}.

𝑡

0

 

 (𝐻4)𝑓: 𝑆 × 𝑧𝑟 → 𝑧 is continuous and there exist constants 

𝑘5 > 0 and 𝑘6 > 0 such that  

‖𝑓(𝑡, 𝑢1, … , 𝑢𝑟) − 𝑓(𝑡, 𝑣1, … , 𝑣𝑟)‖𝑧

≤ 𝑘5 ∑‖𝑢𝑝 − 𝑣𝑝‖
𝑧

𝑟

𝑝=1

,     𝑢𝑝, 𝑣𝑝 ∈ 𝑋, 𝑝

= 1,2, … , 𝑟, 
𝑘6 = max

𝑡∈𝐽
‖𝑓(𝑡, 0, … ,0)‖𝑧. 

(𝐻5) ∅: 𝑆 × 𝑍2 → 𝑍 is continuous and there exists constants 

𝑘7 > 0 and 𝑘8 > 0 such that 



International Journal of Research in Engineering, Science and Management  

Volume-2, Issue-7, July-2019 

www.ijresm.com | ISSN (Online): 2581-5792     

 

20 

‖∅(𝑡, 𝑢1, 𝑢2) − ∅(𝑡, 𝑣1, 𝑣2)‖𝑧

≤ 𝑘7(‖𝑢1 − 𝑣1‖𝑧

+ ‖𝑢2 − 𝑣2‖𝑧),   𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑋, 
𝑘8 = max

𝑡∈𝑆
‖∅(𝑡, 0,0)‖𝑧 . 

(𝐻6) 𝛾𝑝, 𝛿𝑞: 𝑆 → 𝑆 are bijective absolutely continuous and 

there exist constants 𝑐𝑝 > 0and 𝑏𝑞 > 0 such that 𝛾𝑝
′(𝑡) ≥  𝑐𝑝 

and  𝛿𝑝
′ (𝑡) ≥  𝑏𝑞  respectively for 𝑡 ∈ 𝑆, 𝑝 = 1, … 𝑟 and 𝑞 =

1, … 𝑘. 
(𝐻7)𝐼𝑖: 𝑋 → 𝑋 are continuous and there exist constants 𝐼𝑖 >

0, 𝑖 = 1,2, … 𝑚 such that ‖𝐼𝑖(𝑢) − 𝐼𝑖(𝑣)‖ ≤ 𝐼𝑖‖𝑢 − 𝑣‖,    𝑢, 𝑣 ∈
𝑋. 

Let us take 𝑀0 = max‖𝑅(𝛽,𝑢)(𝑡, 𝑠)‖
𝐵(𝑧)

,   0 ≤ 𝑠 ≤ 𝑡 ≤

𝑎, 𝑢 ∈ Ω. 
 (𝐻8) There exist positive constants 𝐶1, 𝐶2, 𝐶3 ∈ (0, 𝐶 3]⁄  and 

𝜆1, 𝜆2, 𝜆3, 𝜆4 ∈ [0, 1

4
) such that  

𝐶1 = 𝑀0‖𝑢0‖ + 𝑀0𝑘1, 
𝐶2 = 𝑀0𝑀1𝑀2[‖𝑢1‖ + 𝑀0‖𝑢0‖ + 𝑀0𝑘1 + 𝑀0𝑘7𝜃 + 𝑀0𝑘8𝑎

+ 𝑀0𝜉]𝑎, 
𝐶3 = 𝑀0𝑘7𝜃 + 𝑀0𝑘8𝑎 + 𝑀0𝜉, 

And  

𝜆1 = 𝑘𝑎‖𝑢0‖ + 𝑘1𝑘𝑎 + 𝑀0𝑘2, 

𝜆2 = 2𝑎2𝑘𝑀1𝑀2{‖𝑢1‖𝑦

+ 𝑀0(‖𝑢0‖𝑦 + 𝑘1 + 𝑘7𝜃 + 𝑘8𝑎 + 𝜉)}, 

𝜆3 = 𝑘𝑎(𝑘7𝜃 + 𝑘8𝑎) + 𝑀0𝑘7𝜌, 

𝜆4 = 𝑘𝑎𝜉 + 𝑀0 ∑ 𝐼𝑖 ,

𝑚

𝑖=1

 

Where 𝜌 = 𝑎[𝑘5(1 𝑐1 + ⋯⁄ +
1 𝑐𝑟) + 𝑘3(1 𝑏1 + ⋯⁄ + 1 𝑏𝑘)], 𝜃 = 𝜌𝛿 + 𝑎(𝑘4 + 𝑘6)⁄⁄  and 

𝜉 = ∑ (𝐼𝑖𝐶 + ‖𝐼𝑖(0)‖).𝑚
𝑖=1  

D. Definition 

      We shall say that the fractional system (1)-(3) is 

controllability on the interval S if for all 𝑢0, 𝑢1 ∈ 𝑋, there exists 

a control 𝜇 ∈ 𝐿2(𝑆, 𝑈), such that the mild solution u(.) of (1)-

(3) corresponding to 𝜇, verifies:𝑢(0) + ℎ(𝑢) = 𝑢0, ∆𝑢(𝑡𝑖) =

𝐼𝑖(𝑢(𝑡𝑖)), 𝑖 = 1,2, … 𝑚 and 𝑢𝜇(𝑎) = 𝑢1. 

3. Controllability result 

Lemma: 3.1 

     Let 𝑅(𝛽,𝑢)(𝑡, 𝑠) be the (𝛽, 𝑢)-resolvant family for the 

fractional problem (1)-(3).   There exists a constant 𝑘 > 0such 

that 

‖𝑅(𝛽,𝑢)(𝑡, 𝑠)𝜔 − 𝑅(𝛽,𝑣)(𝑡, 𝑠)𝜔‖ ≤ 𝑘‖𝜔‖𝑌 ∫‖𝑢(𝜏) − 𝑣(𝜏)‖𝑑𝜏,

𝑡

𝑠

 

For every 𝑢, 𝑣 ∈ 𝑃𝑐(𝑆: 𝑋) with values in Ω and every 𝜔 ∈ 𝑌. 
Proof: 

Since the resolvent operator is similarly to the evolution 

operator for nonautonomous differential equations in a 

Complete Vector Space, then we can use a similar manner as in 

[41, lemma 4.4,p.202]. 

     Let 𝑠𝐶 = {𝑢: 𝑢 ∈ 𝑃𝐶(𝑆: 𝑋), 𝑢(0) + ℎ(𝑢) = 𝑢0, ∆𝑢(𝑡𝑖) =

𝐼𝑖(𝑢(𝑡𝑖)), ‖𝑢‖ ≤ 𝐶}, for 𝑡 ∈ 𝑆, 𝐶 > 0, 𝑢0 ∈ 𝑋 and 𝑖 = 1, … , 𝑚. 

Theorem: 3.2 

     Suppose that the operator – 𝐴(𝑡, 𝑢) generates an (𝛽, 𝑢)-

resolvent family with ‖𝑅(𝛽,𝑢)(𝑡, 𝑠)‖ ≤ 𝑀𝑒−𝜎(𝑡,𝑠) for some 

constants M, 𝜎 > 0.  If hypothesis (𝐻1) − (𝐻8) are satisfied, 

then the fractional control integro-differential system (1) with 

nonlocal condition (1,2) and impulsive condition (1,3) is 

controllable on J. 

Proof 

     Using hypothesis (𝐻1), for an arbitrary function 𝑢(. ), we 

define the control  

𝜇(𝑡)

= 𝐸̃−1[𝑢1 − 𝑅(𝛽,𝑢)(𝑎, 0)𝑢0 + 𝑅(𝛽,𝑢)(𝑎, 0)ℎ(𝑢)

− ∫ 𝑅(𝛽,𝑢)(𝑎, 𝑠)𝜙(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜂, 𝑢(𝛿(𝜂))) 𝑑𝜂)𝑑𝑠

0

𝑠

𝑎

0

− ∑ 𝑅(𝛽,𝑢)(𝑎, 𝑡𝑖)𝐼𝑖(𝑢(𝑡𝑖))](𝑡)

𝑚

𝑖=1

 

We define an operator 𝑝: 𝑠𝐶 → 𝑠𝐶   by 

(𝑃𝑢𝜇)(𝑡)

= 𝑅(𝛽,𝑢)(𝑡, 0)𝑢0 − 𝑅(𝛽,𝑢)(𝑡, 0)ℎ(𝑢)

+ ∫ 𝑅(𝛽,𝑢)(𝑡, 𝜂)𝐵𝐸̃−1 [𝑢1 − 𝑅(𝛽,𝑢)(𝑎, 0)𝑢0

𝑡

0

+ 𝑅(𝛽,𝑢)(𝑎, 0)ℎ(𝑢)

− ∫ 𝑅(𝛽,𝑢)(𝑎, 𝑠)∅(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)𝑑𝑠
𝑠

0

𝑎

𝑜

− ∑ 𝑅(𝛽,𝑢)(𝑎, 𝑡𝑖)𝐼𝑖(𝑢(𝑡𝑖))

𝑚

𝑖=1

] (𝜂)𝑑𝜂

+ ∫ 𝑅(𝛽,𝑢)(𝑡, 𝑠)∅(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠)))
𝑡

0

, ∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)𝑑𝑠
𝑠

0

+ ∑ 𝑅(𝛽,𝑢)(𝑡, 𝑡𝑖)𝐼𝑖(𝑢(𝑡𝑖))

0<𝑡𝑖<𝑡

. 

     Using this controller we shall show that operator P has a 

fixed point.  This fixed point is then a solution of equation. 

     Clearly 𝑃𝑢𝜇(𝑎) = 𝑢1, which means that the control 𝜇 

steers system (1)-(3) from the initial state 𝑢0 to 𝑢1 in time a, 

provided e can obtain a fixed point of the nonlinear operator p. 

     Now we show that p maps 𝑠𝐶  into itself. 
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‖(𝑃𝑢𝜇)(𝑡)‖

≤ ‖𝑅(𝛽,𝑢)(𝑡, 0)𝑢0‖ + ‖𝑅(𝛽,𝑢)(𝑡, 0)ℎ(𝑢)‖

+ ∫ ‖𝑅(𝛽,𝑢)(𝑡, 𝜂)‖‖𝐵𝐸̃−1‖ [‖𝑢1‖ + ‖𝑅(𝛽,𝑢)(𝑎, 0)𝑢0‖
𝑡

0

+ ‖𝑅(𝛽,𝑢)(𝑎, 0)ℎ(𝑢)‖ + ∫ ‖𝑅(𝛽,𝑢)(𝑎, 𝑠)‖
𝑎

0

× {‖∅(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)
𝑠

0

− ∅(𝑠, 0, 0)‖ + ‖∅(𝑠, 0, 0)‖} 𝑑𝑠

+ ∑‖𝑅(𝛽,𝑢)(𝑎, 𝑡𝑖)‖{‖𝐼𝑖(𝑢(𝑡𝑖)) − 𝐼𝑖(0)‖ + ‖𝐼𝑖(0)‖}

𝑚

𝑖=1

] 𝑑𝜂

+ ∫ ‖𝑅(𝛽,𝑢)(𝑡, 𝑠)‖
𝑡

0

× {‖∅(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) ∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)
𝑠

0

− ∅(𝑠, 0, 0)‖ + ‖∅(𝑠, 0, 0)‖} 𝑑𝑠

+ ∑ ‖𝑅(𝛽,𝑢)(𝑡, 𝑡𝑖)‖{‖𝐼𝑖(𝑢(𝑡𝑖)) − 𝐼𝑖(0)‖ + ‖𝐼𝑖(0)‖}

0<𝑡𝑖<𝑡

. 

Using  𝐻1, 𝐻2, 𝐻5 and 𝐻7, we get 

‖(𝑃𝑢𝜇)(𝑡)‖ ≤ 𝑀0‖𝑢0‖ + 𝑀0𝐾1

+ ∫ 𝑀0𝑀1𝑀2 [‖𝑢1‖ + 𝑀0‖𝑢0‖ + 𝑀0𝐾1

1

0

+ ∫ 𝑀0 {𝐾7 (‖𝑓 (𝑠, 𝑢(𝛾(𝑠)))‖

𝑎

0

+ ‖∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)
𝑠

0

‖) + 𝐾8} 𝑑𝑠

+ 𝑀0 ∑(𝐼𝑖𝐶 + ‖𝐼𝑖(0)‖)

𝑚

𝑖=1

] 𝑑𝜂

+ ∫ 𝑀0 {𝐾7 (‖𝑓 (𝑠, 𝑢(𝛾(𝑠)))‖
𝑡

0

+ ‖∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)
𝑠

0

‖) + 𝐾8} 𝑑𝑠

+ 𝑀0 ∑(𝐼𝑖𝐶 + ‖𝐼𝑖(0)‖).

𝑚

𝑖=1

 

   We have  

‖(p𝑢𝜇)(𝑡)‖ ≤ 𝑀0‖𝑢0‖ + 𝑀0𝑘1

+ 𝑀0𝑀1𝑀2[‖𝑢1‖ + 𝑀0‖𝑢0‖ + 𝑀0𝑘1

+ 𝑀0𝑘7θ + 𝑀0𝑘8a + 𝑀0𝜉]𝑎 + 𝑀0𝑘7θ
+ 𝑀0𝑘8a + 𝑀0𝜉. 

     From assumption 𝐻8, one gets (p𝑢𝜇)(𝑡) ≤ 𝐶.  thus p maps 

𝑠𝐶  into itself. 

     Now for 𝑢, 𝑣 ∈ 𝑠𝐶 , we have  

‖p𝑢𝜇(𝑡) − p𝑣𝜇(𝑡)‖ ≤ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4, 

     Where  

𝐼1 = ‖𝑅(𝛽,𝑢)(𝑡, 0)𝑢0 − 𝑅(𝛽,𝑣)(𝑡, 0)𝑢0‖ +

‖𝑅(𝛽,𝑢)(𝑡, 0)ℎ(𝑢) − 𝑅(𝛽,𝑣)(𝑡, 0)ℎ(𝑣)‖, 

𝐼2

= ∫ {‖𝑅(𝛽,𝑢)(𝑡, 𝜂)𝐵𝐸̃−1[𝑢1 − 𝑅(𝛽,𝑢)(𝑎, 0)𝑢0

𝑡

0

− 𝑅(𝛽,𝑢)(𝑎, 0)ℎ(𝑢)

− ∫ 𝑅(𝛽,𝑢)(𝑎, 𝑠)∅(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)𝑑𝑠
𝑠

0

𝑎

𝑜

− ∑ 𝑅(𝛽,𝑢)(𝑎, 𝑡𝑖)𝐼𝑖(𝑢(𝑡𝑖))] − 𝑅(𝛽,𝑣)(𝑡, 𝜂)

𝑚

𝑖=1

𝐵𝐸̃−1[𝑢1

− 𝑅(𝛽,𝑣)(𝑎, 0)𝑢0 − 𝑅(𝛽,𝑣)(𝑎, 0)ℎ(𝑣)

− ∫ 𝑅(𝛽,𝑣)(𝑎, 𝑠)∅(𝑠, 𝑓 (𝑠, 𝑣(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏))) 𝑑𝜏)𝑑𝑠
𝑠

0

𝑎

0

− ∑ 𝑅(𝛽,𝑣)(𝑎, 𝑡𝑖)𝐼𝑖(𝑣(𝑡𝑖))]

𝑚

𝑖=1

‖} 𝑑𝜂, 

𝐼3

= ∫ ‖𝑅(𝛽,𝑢)(𝑡, 𝑠)∅(𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏)

𝑠

0

𝑡

0

− 𝑅(𝛽,𝑣)(𝑡, 𝑠)∅(𝑠, 𝑓 (𝑠, 𝑣(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏))) 𝑑𝜏)

𝑠

0

‖ 

And  

𝐼4 = ∑‖𝑅(𝛽,𝑢)(𝑡, 𝑡𝑖)𝐼𝑖(𝑢(𝑡𝑖)) − 𝑅(𝛽,𝑣)(𝑡, 𝑡𝑖)𝐼𝑖(𝑣(𝑡𝑖))‖.

𝑚

𝑖=1

 

    Applying lemma 3.1 and 𝐻2, we get 

𝐼1 ≤ ‖𝑅(𝛽,𝑢)(𝑡, 0)𝑢0 − 𝑅(𝛽,𝑣)(𝑡, 0)𝑢0‖

+ ‖𝑅(𝛽,𝑢)(𝑡, 0)ℎ(𝑢) − 𝑅(𝛽,𝑣)(𝑡, 0)ℎ(𝑢)‖

+ ‖𝑅(𝛽,𝑣)(𝑡, 0)ℎ(𝑢) − 𝑅(𝛽,𝑣)(𝑡, 0)ℎ(𝑣)‖ 

≤ {𝑘𝑎‖𝑢0‖ + 𝑘1𝑘𝑎 + 𝑀0𝑘2} max
𝜏∈𝑆

‖𝑢(𝜏) − 𝑣(𝜏)‖. 

     Also we apply lemma 3.1 and 3.2 𝐻1, 𝐻2, 𝐻5 and 𝐻8, we 

obtain 
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   𝐼2

≤ 𝑎2𝑘𝑀1𝑀2 {‖2𝑚𝑎𝑥 ([𝑢1 − 𝑅(𝛽,𝑢)(𝑎, 0)𝑢0

+ 𝑅(𝛽,𝑢)(𝑎, 0)ℎ(𝑢)

− ∫ 𝑅(𝛽,𝑢)(𝑎, 𝑠)∅ (𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏))) 𝑑𝜏
𝑠

0

) 𝑑𝑠
𝑎

0

− ∑ 𝑅(𝛽,𝑢)(𝑎, 𝑡𝑖){𝐼𝑖(𝑢(𝑡𝑖)) − 𝐼𝑖(0) + 𝐼𝑖(0)}

𝑚

𝑖=1

] , [𝑢1

− 𝑅(𝛽,𝑣)(𝑎, 0)𝑢0 + 𝑅(𝛽,𝑣)(𝑎, 0)ℎ(𝑣)

− ∫ 𝑅(𝛽,𝑣)(𝑎, 𝑠)𝜑 (𝑠, 𝑓 (𝑠, 𝑣(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏))) 𝑑𝜏
𝑠

0

) 𝑑𝑠
𝑎

0

− ∑ 𝑅(𝛽,𝑣)(𝑎, 𝑡𝑖){𝐼𝑖(𝑣(𝑡𝑖)) − 𝐼𝑖(0) + 𝐼𝑖(0)}

𝑚

𝑖=1

])‖} max
𝜏𝜖𝑆

‖𝑢(𝜏)

− 𝑣(𝜏)‖ 

≤ 2𝑎2𝑘𝑀1𝑀2{‖𝑢1‖𝑌 + 𝑀0(‖𝑢0‖𝑌 + 𝐾1 + 𝐾7𝜃 + 𝐾8𝑎 +
𝜉)} max

𝜏𝜖𝑆
‖𝑢(𝜏) − 𝑣(𝜏)‖. 

Again, Lemmas 3.1,𝐻3 − 𝐻6 and 𝐻8 imply that 

   𝐼3

≤ ∫ {‖𝑅(𝛽,𝑢)(𝑡, 𝑠)∅ (𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏))) 𝑑𝜏
𝑠

0

)
𝑡

0

− 𝑅(𝛽,𝑣)(𝑡, 𝑠)𝜑 (𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏))) 𝑑𝜏
𝑠

0

)‖

+ ‖𝑅(𝛽,𝑢)(𝑡, 𝑠)∅ (𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏))) 𝑑𝜏
𝑠

0

)

− 𝑅(𝛽,𝑣)(𝑡, 𝑠)𝜑 (𝑠, 𝑓 (𝑠, 𝑢(𝛾(𝑠))) , ∫ 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏))) 𝑑𝜏
𝑠

0

)‖} 𝑑𝑠 

≤ 𝐾𝑎(𝐾7𝜃 + 𝐾8𝑎) max
𝜏𝜖𝑆

‖𝑢(𝜏) − 𝑣(𝜏)‖

+ 𝑀0𝐾7 ∫ {‖𝑓 (𝑠, 𝑢(𝛾(𝑠))
𝑡

0

− 𝑓 (𝑠, 𝑣(𝛾(𝑠))))‖

+ ∫ ‖𝑔 (𝑠, 𝜏, 𝑢(𝛿(𝜏)))
𝑠

0

− 𝑔 (𝑠, 𝜏, 𝑣(𝛿(𝜏)))‖} 𝑑𝑠 

≤ 𝐾𝑎(𝐾7𝜃 + 𝐾8𝑎) max
𝜏𝜖𝑆

‖𝑢(𝜏) − 𝑣(𝜏)‖

+ 𝑀0𝐾7 ∫ {𝐾5 ∑ ‖𝑢 (𝛾𝑝(𝑠))

𝑟

𝑝=1

𝑡

0

− 𝑣 (𝛾𝑝(𝑠))‖ (
𝛾𝑝

′(𝑠)

𝑐𝑝

)

+ 𝐾3 ∑ ‖𝑢 (𝛿𝑝(𝑠))

𝑟

𝑝=1

− 𝑣 (𝐶𝑝(𝑠))‖ (
𝛿𝑞

′ (𝑠)

𝑏𝑝

)} 𝑑𝑠 

≤ {𝐾𝑎(𝐾7𝜃 + 𝐾8𝑎 + 𝑀0𝑘7𝜌)} max
𝜏𝜖𝑆

‖𝑢(𝜏) − 𝑣(𝜏)‖. 

Now, form lemma 3.1, 𝐻7 𝑎𝑛𝑑 𝐻8 , we have  

   𝐼3 ≤ ∑{+‖−𝑅(𝛽,𝑣)(𝑡, 𝑡𝑖)𝐼𝑖(𝑢(𝑡𝑖))‖}

𝑚

𝑖=1

 

≤ {𝑘 ∑(𝑙𝑖𝐶 + ‖𝐼𝑖(0)‖)𝑎 + 𝑀0 ∑ 𝑙𝑖

𝑚

𝑖=1

𝑚

𝑖=1

} max
𝜏𝜖𝑆

‖𝑢(𝜏) − 𝑣(𝜏)‖. 

It follows from these estimations that  

‖𝑃𝑢𝜇(𝑡) − 𝑃𝑣𝜇(𝑡)‖ ≤ ∑ 𝐼𝑗

4

𝑗=1

≤ ∑ 𝜆𝑗

4

𝑖=1

max
𝜏𝜖𝑆

‖𝑢(𝜏) − 𝑣(𝜏)‖. 

Therefore, P is a contraction mapping and hence there exists 

a unique fixed point 𝑢𝜖𝑋, such that 𝑃𝑢(𝑡) = 𝑢(𝑡).  Any fixed 

point of P is a mild solution of (1.1)-(1.3) on J which satisfies 

𝑢(𝑎) = 𝑢1.  Thus, system (1)-(3) is controllable on J. 

4. Example 

Consider the following fractional nonlocal impulsive 

integro-partial differential control system of the form 

𝜕𝛽

𝜕𝑡𝛽
𝑧(𝑡, 𝑦) =  

𝜕2

𝜕𝑦2
𝑧(𝑡, 𝑦) + 𝜇(𝑡, 𝑦)

+ 𝑘0(𝑦) sin 𝑧(𝑡, 𝑦) + 𝑘1 ∫ 𝑒−𝑧(𝑠,𝑦)𝑑𝑠 ,
𝑡

0

 

𝑧(0, 𝑦) + ∑ 𝑐𝑖𝜑(𝑡𝑖, 𝑦) =

𝑚

𝑖=1

 𝑧0(𝑦),     𝜑 ∈ 𝑧, 0 ≤ 𝑦 ≤ 𝜋, 

𝑧(𝑡, 0) = 𝑧(𝑡, 𝜋) = 0,      𝑡 ∈ 𝐽 =  [0, 𝑏], 
Where 0 < 𝛼 < 1, 𝑘0(𝑦) is continuous on [0, 𝜋] and 𝑐𝑖 >

0, 𝑘1 > 0. 
Let us take 

    𝑋 = 𝑈 = 𝐿2[0, 𝜋],         𝑍 = 𝐶([0, 𝑏], 𝐵𝑟),       𝐵𝑟 = {𝑦 ∈
𝐿2[0, 𝜋]: ‖𝑦‖ ≤ 𝑟}.        

 Put 𝑥(𝑡) = 𝑧(𝑡, . ) 𝑎𝑛𝑑 𝑢(𝑡) = 𝜇(𝑡, . ) 𝑤ℎ𝑒𝑟𝑒 𝜇: 𝐽 ×
[0, 𝜋] → [0, 𝜋] is continuous, 

𝑔(𝜑(𝑡, . )) = ∑ 𝑐𝑖

𝑚

𝑖=1

(𝜑(𝑡, . )) 

     𝑎𝑛𝑑     𝑓(𝑡, 𝑥, 𝐻𝑥) =  𝑘0(. ) sin 𝑧(𝑡, . ) +  𝐻𝑥, ℎ(𝑡, 𝑠, 𝑥) =

𝑘1𝑒−𝑧(𝑠,.).   
Let 𝐴: 𝐷(𝐴) ⊂ 𝑋 → 𝑋  be the operator defined by 𝐴𝑧 = 𝑧′′ 

with the domain 

          𝐷(𝐴) = {𝑧 ∈ 𝑋: 𝑧, 𝑧′ 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑧′′ ∈
𝑋, 𝑧(0) = 𝑧(𝜋) = 0}. 

Then  

𝐴𝑧 = ∑ 𝑛2(𝑧, 𝑧𝑛)

∞

𝑛=1

𝑧𝑛 ,     𝑧 ∈ 𝐷(𝐴) 

Where 𝑧𝑛(𝑦) = √2 𝜋⁄  sin 𝑛𝑦 , 𝑛 = 1, 2, 3, … is the 

orthogonal set of eigenvector of A.  it is well known that A is 

the infinitesimal generator of an analytic semigroup 𝑇(𝑡), 𝑡 ≥ 0 

in X and is given by  

𝑇(𝑡)𝑧 = ∑ 𝑒−𝑛2𝑡

∞

𝑛=1

(𝑧, 𝑧𝑛)𝑧𝑛 ,      𝑧 ∈ 𝑋. 
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     With this choice of 𝐴, 𝑓, 𝑔, 𝐻 𝑎𝑛𝑑 𝐵 = 𝐼, Assume that the 

operator  𝑊: 𝐿2(𝐽, 𝑈)/ ker 𝑊 → 𝑋 defined by  

               𝑊𝑢 =
1

Γ(𝛽)
∫ (𝑏 − 𝑠)𝛽−1𝑇(𝑏 − 𝑠)𝑢(𝑠)𝑑𝑠

𝑏

0

=
1

Γ(𝛽)
∑(𝑏

∞

𝑛=1

− 𝑠)𝛽−1𝑒−𝑛2(𝑏−𝑠)(𝑢(𝑠), 𝑧𝑛)𝑧𝑛 𝑑𝑠 

has an inverse operator.  

5. Conclusion 

In this article, the controllability result for a class of 

fractional evolution nonlocal impulsive quasilinear multi-delay 

integro-differential systems in a Complete vector space has 

been considered.  A new set of sufficient conditions are derived 

for our main result by using the theory of  fractional calculus, 

fixed point technique and (𝛽, 𝑢)-resolvent family (a new 

concept). 
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