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Abstract: In this paper, we deal with a new-fangled class of
reflected backward stochastic differential equations driven by G-
Brownian motion, the existence and uniqueness of the backward
stochastic differential equations are obtained by way of snell
covering and fixed point theorem.
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1. Introduction

The nonlinear BSDE were introduced by Pardoux and Peng
[1] who proved the existence and uniqueness of the result in the
Lipchitz condition for benevolent the probabilistic elucidation
of the semi linear parabolic partial differential equations.
Firstly, studied the backward doubly stochastic differential
equations which are driven by two kinds of G- Brownian
motions. Then, Boufoussi et. al.[10] established BSDE and
semi linear stochastic partial differential equations with a
Neumann boundary condition. We deliberate the reflected
backward doubly stochastic differential equations driven by
Levy process and the equations driven by finite G-Brownian
motion.

2. Notations

Q is the positive constant. Throughout the paper (A, I, p ) is
complete Probablity space prepared with the ordinary filtration
{ K4 }q=0 satisfying the usual conditions. {e;(q)}2, are
mutually independent one dimensional standard Brownian
motion on the probability space. W¢(q) is the standard G-
Brownian motion on R¢ which is independent of a;(q).

Assume that K, = (V2; Ko ) VKR VN ...(1)
Where any process {uq}%}, = 8{u, — 7 < p < q}

¥, = K, and N denotes the class of pnull sets of X
Let us initiate a few spaces:

(YH? = {(cpq)osqu an X, gradually measurable R valued

process such that IEfOQ|¢>q|2 dqH? < oo}
(i) 72 = {(nq)0<q<Q ; K, gradually measurable R¢ valued

continuous process such that E(Sup05q5Q|nq|2 < o0}

(iii)J? = {(Kg)o<q<o an ¥, adopted continuous increased
process such that K, = 0, E[K,]* < oo}

with the preceding measures, we deliberate the following
RBSDES:

X =+ [] FO X V) dr + 22, [ 9:(r, X, V) dety (r)-
qu Y, dW(r) + Ky — K, 0 < ¢ < Q...(2)
where f:A x [0,Q] X R x R* - R and g;: A x [0,Q] X R x
R4 > R
Definition 1: A Solution of (2) is a triple of R x R¢ - R,
value process (X, Yy, K;)o<q<o Which satisfies (2)and
(i) Xr 2 Ry
(”) (XTI yrr Kq)Osqu € :72 X (72 X C’qz
(iii) KK, is a incessant and growing process with K, =
0and [2(X, —R,)dK, =0
To facilitate get the solution of (2), we intend the following
assumptions:
(a) ¢ is an K, assessable square integrable random variable;
(b)the obstacle {R,:0<gq < Q}is an K, progressive
measurable incessant real valued process which satisfies
Esuppeq<q(Ry)? < co. we always assume that R, < (;
(©) f(.,x,y) and g;(.,x,y) are two progressive measurable
functions such that , for any q €[0,Q],x.,x; €
R,y1,¥; € R*
(2a)f (r,.,.) is incessant and |f(r,x,y)| < M1+ |x| +
lyD;
(2b) € [1f (q,0,0)|%dq < co.
O)f(r, %, 1) — f(r, %2, y2) > < Pl — x,|% + |y, —
Y2:z' 19:(r, %0, 71) — 9:(r, %2, )| < Pilxy — x| + Bilys —
V2
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where M, P, P;and B;
21 P; < oo.and
B=) pi<t
i=1

3. Main result

In order to get the solution of (2), we consider the following
RBSDEs driven by the finite Brownian motions:

Xg =3+ [ F@ X V) dr + 52, [ 9, X, V) dey (r)-
qu Y, dWS(r) + Ky — K, 0< g < Q ...(3)

Firstly, we consider a special case of (3), the functions f and
g do not depend on (X,Y)

Xo =0+ [P dr+ 2, [ 9:(r)day(r)-
quYrdWG(r)+]KQ—]Kq,0SqSQ,nZl...(4)

Theorem 2:
Assume that (i) —(ii) ,f € 2%, g € H? then,there exists a
triple (X, Y, K;)o<qeo € H? X I% X J?

are non negative constants with

Proof:

Let =F, 3G V(V21 o) -..(5)
Define u = {“q}OquQ as

Mg = Clio<qsy + Rglg<q + foqf(r)dr +
Ly Jy 9i(r) day(r) ...(6)

Then, p is F,; adopted continuous process; furthermore;

sup
OquQl‘uQ| € I2(N) ...(7)

The snell envelope ofy is given by
R, () = **°2XE[u, such that F,] ...(8)

Where X is set of all 7, stopping time such that 0 < v < Q
By the definition of u we can deduce that

E[,o. RG] < o0 ...9)

Due to the doop-meyer decomposition, we have
Rq(1)= E[z + o f@dr + Ty [ 9i(r) de () +
Ky: Tq] K, ...(10)

Where {Kg}o<q<o IS @ adopted, continuous and non
decreasing process such that K,
have

=0and IE]KQ2 < 00,50 we
0< <Q|
...(1D)

Martingale representation theorem yields that there exists F,
progressive measurable process {Y; }€ R4

E[ + [1 f()dr + Ty [ g:() day () + Ko: Ry

q n q
A E (+f f(r)dr+Zf gi(M) da;(r) + Ky: Fy
0 i=1"0

(12)

=M+ [ ,dWe(r),0<q<Q ...

let X, = esssupyex E [(1U=Q + Ry + fqvf(r)dr +
i=1 f: gi(r)da; (T)|Tq] ; then,
q LB
Xq +f f(r)dr+Zj gi(r)da;(r)
0 i=1"1
=R, () = M, — K, ...(13)
=M, + foq yrdw®(r) — K,

therefore, X, = { + fo(r) dr + 31 1fQ gi(Mda;(r)-
qu Y, dWE(r) + K, — K,...(14)

by the definition of X and R, (1), { = Ry,
q g
X, +f f(r)dr+Zj 9:(r) da; ()
0 = Jo
=R, (W), = 14

{1y-g +Rq1q<Q+qu(r)dr+z 1f"gl(r) da;(r).
so we have X, < R,

finally ,from Hamadene[15],we get fOQ(Rq W) — pg)dK, =
0 then
J2(Xg = Ry) dK, =0 ...(16)

it shows that the process, (X,

(4).

Y4, Kg)o<q<0 IS the solution of

Theorem 3:

Under the assumptions of (a)-(c), their exists a unique
solution (X4, Yy, Kg)o<q<0 OF (3)

proof:

let P = 7% x #? be endowed with the norm

IX, Yl = (IE (17 e (1,12 + |Yr|2))1/2...<17>

for a suitable constant @ > 0 .we define the map ¢ from P
into itself and ( X, Y) and (X’,Y") are two elements of P. define
XY)=¢( X,7),(X",Y) =X, Y") where (X,Y,K) and
(X", Y',K")) are the solutions of (4) associated with

L&f @ X, ¥)),g:(a, X, ¥),R) and

@, f(q,X’ ¥)).9:(q,X',¥"), R")), respectively . set (X,7) =
(Xqg=X'qYg—Y'y) and

Yar(@) = a®1_pr<asrey + M (2a — M) 1gspy
M) yeyy -..(18)

— M (2a +
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if we define 1')c(a)/a = 2 when a=0,then 0< ¢’ (X,)/
X, <2. applying ito formula to e®@y, (X,),we have
ey (X)) +
a [0 e (Xdr + [ e e | T Py

=2 ety (R (F(r, Ky, T) = (Fr, Ky, Y)dr +

_ T
?=1 qu eaql{—MsxrsMﬂgi(T, X Y) — gi(r:X Y r)| dr —
L[ ey, (%) (900 % T — gi(r X', V7)) day(r)

[P e’ (RITdwC (1) + et (%) (dK, —

dK’,). ...(19)

taking expectation on both sides of (19) and noticing that
qu ey’ (X,)(dK, — dK',) < 0,we have

Q
Ee®,,(X,) + IEaf e P (X, )dr
q
Q J—
+ ]Ef ear1{—Ms)?rsM}|Yr|2dr
q

Q
<E j Y (R (F(r K, T — (f (r, Ky, ) dr
q

LY

+Zf Earl{_]v[sy_rsj\/[}|gi(r')?r' Y_vr)
i=1"4 5

- gi(r'ilr.y—rrﬂ ar

Q
< 2E j T (f(r X, T) — (f (r, Ky, ) dr

q
n Q _ B
+Z]Ej e“r|gi(r,Xr,Yr)
i=1 4

— gi(r, )?’r,Y_’r) |2dr

Q v o) - Q v
< ZE[2e X1 + (22, P+ S0 E [P e |y —
X dr + Z2E [0 |7, — V| dr ..(20)

let 1=2"—a,P =282, P+ (1 - a)/2)/(1 + ), § =
A+ Pj,and M — oo; we have

Q . Q _
13IEJ e“r|X_r—Xr’|2dr+IEJ e Y, — Y |2dr
q q

—1 T2 17 T
< ZUE [ e (PR - X | + 1% - V17 ..21)

1+a

that is ”Xr: lelz < T ”X’r; Y’r"gz (22)

It follows that A is astrict contradiction on with the norm
[I.1lo where « is defined as above. Then A has a fixed point
(X,Y,KK) which is the unique solution of (4) from the
Burholder-Davis—Gundy inequality.

Theorem 4:

Under the conditions of (a)-(c) , their exists a unique solution
(Xq» Yo Kq) 0520 €

Proof(existence)by the theorem 3 ,for any n> 1, there exists
a unique solution of (3),denoted by ((X,",Y,", K,™)),

Q Q
an:( fq f(T, X‘rn' an)dT'i'Z?:l fq i (T’, X‘rn' an)dai(r)'
qu YRAWS (r) + Ko™ — K,"s ...(23)

In the following parts , we will claim that (X,",Y,", K,™) is
a Cauchy sequence in J?xJ2xH? .without loss of
generality. we let n < m.applying general formula to |Xq" -

X,™|" we have
X" = x, " + [2 1, — v, 2dr
q q q r T
Q
=2[ %" - X" X% = f(r, X, ™dr

m
Q
£ 3 [l nm = g R
i=n+1"1
o [Q
-2 Z f (Xrn_er)(gi(errnran)
i=n+1"1

— 9 (T', er, Yrm)dai(r)
=2 206" = X" =Y, AW () + 2 [ (X" -
X, (dK,"—K,™) ...(24)

Taking expectation on both sides of (24) and nothing that
qu(Xrn - X,")(dK,"-K,™) < 0, we obtain

2
E|X," - X, + EI," = Y, |?dr

Q
< ZEJ & =-X"(f(r XY - f(r, X )dr
q

2 B[00 X ) = gi(r XY P (25)

By (c) and elementary inequality 2xy < ax? + (i) y%a>
0, we obtain
2 Q
E|X" =X, + E [JIY," =Y, Pdr
2P

Q
< n_y m|2 _
_1_BEL|Xr X, 2dr + (1 - B)

Q
/2 Ef 1X,™ — X, |2dr
q

+a-py2E |

q
HE P a PIE [1X7 = X 2dr X, = X, L(26)

Q Q
Y, — Y, 2dr + ﬁEf IY,™ — Y, |2dr
q

Furthermore,

E|X," =X, +1-B/2 E J2Iv," - v, Pdr <
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P E|X," = X, "dr ...27)

2P 1-
Where PC = (ﬁ) + Tﬁ + Z;’Zn+1 Pi

By Gronwell’s inequality and Burholder-Davis-Gundy
inequalityE [ AR Yrmlzdr] 50...28)
0=q=<Q

Denote the limit of (X, Y,", K,")by (X, Y, K,) ; we will
show that (X,,Y,, K,) satisfies (2). If it is necessary ,we can
choose a subsequence of (3). By Holder’s inequality,

2

E

Q
f f(T, Xr: Yr) - f((T, Xrn: an))
q

< QB [[2£G X, %) = F(G X )| dr = 0..29)

From (27),we know Ef0Q|Xq” —qu|2 -0...(30)

1
2n

and X," - X,, soJE Fx =X, < = ..(1) for

any n,
|an| S |Xq1| + Zz;%lquﬂ _qu| S |Xq1| +
S| X =X, -..(32)

Then ,we have /EfOQ Suz|Xq"|2dq
Q o) 2
< fe [ (1 Yl - 1) a
0 k=1
< JE [21x,}| dq +

3 Q 2 2
Zkzl\/E Jo 1257 = x4 X = X4 dg ...33)
Q 2 w 1
< JEJ1X da + B
Q
E.[ Sufllf(r; X Y) — f((r'Xrn' an)lzdr
0

< 2PE [P01X,M2 + X7 + PRI + 1Y 2 dr < oo
...(34)

Applying Lebesgue convergence theorem, we deduce that
(Xq, Yy Ky) is the solution of (2) by the continuity of the
functions fand g.

Uniqueness: Let (X, Y., K,*) (k = 1,2) be two solutions
of 2), X, = X,' — X,°, ¥, = Y,' — Y,%. We apply Ito formula
to e (X,) + qu e P (Y )dr +

Q =2
fq earl{—MSY_rSM} Yq dr

Q "

=f e XU (r X0 - f(r X2 )dr -+

T [ e Carsgronn 9 ((r X 1) —
2 [e9) (N Y

gi((rn X2 0| dr = Sy [P ey, () x
(gi((r' Xrlt le) - gi((r: sz, er))dai(r)

— [ e !\ ) Todwe + [ ey’ () (dKE —
dIK2)....(35)

Taking expectation of (35),

Ee®,(X,) + aE qu e Py (V)dr +

Q — 2
Efq earl{—]v[sY_rsJV[} Yq dr
Q
<2E f e XD (r XN YY) — (. X2 Y, )dr
q

Y1 E qu e 1_mevrerny|9i (X1 V1) —
2 I , P
9:((rn X202 dr — By [P ey, (K dr

2P - 1-Y% B ¢
< —m+ZPi+M Ef e X, |2dr
1_2]{:131' =1 2 q

1+37 1 Bi Q 7 |2
+—SEE e |V, | dr

Let M - o
theorem,we have

Ee"“7|)Tq|2 + (a -

and applying monotone convergence

2P _ g0 p 1B
15 Zk=1 b Z)X

Eque“rlX_rlzdr +%Efq‘2 e |7 |2dr < 0...(37)

When « is taken sufficiently large ,we have 17q:0 .

It follows that A is astrict contradiction on with the norm
[I.1l, where « is defined as above. Then A has a fixed point
(X,Y,IKK) which is the unique solution of (4) from the
Burholder-Davis—Gundy inequality.

Theorem 4:
Under the conditions of (a)-(c) , their exists a unique solution

(Xq Yo Kg) 0sq20 €
Proof(existence)by the theorem 3 ,for any n> 1, there exists
a unique solution of (3),denoted by ((X,",Y,", K,™)),
Y, "=C +
[2 F0 X 6N dr+ T [ gi (X Y e (r)-
qu YRAWE (1) + Ko™ — K, ...(23)

In the following parts , we will claim that (X,",Y,", K,™) is
a Cauchy sequence in  .without loss of generality. we let n <

m.applying general formula to |X," — qu|2.we have
2, Q
X" = X"+ J, "= 2dr
=2qu(Xr" - X", X" — f(r, X, ™ dr
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)

i=n+1

Q
f |gi (T, Xrn' yrn) - gi(r’ er' Yrm)lzdr
q

e
-2 f (Xrn - er)(gi (T, Xrn: an)
i=n+1"4
- gi(r' er' Yrm)dai (T‘)

=2 206" = X" =Y, AW () + 2 (X" -
X, (dK,"~K,™) ...(24)

Taking expectation on both sides of (24) and nothing that
qu(Xr" - X" (dK,"-K,™) < 0, we obtain
E|x,* — X, " + EIY," — Y, |2dr
Q
<2E j O™ = X" (P X ™ = F XY™ dr

g n+1EfQ|gl-(r X% = gi(r, X", Y, ™) dr
By (c) and elementary inequality 2xy < ax? + ( )y a>
0, we obtain

E|Xq"—Xm|2+EfQIY”— Y, "™ 2dr
X — X, 2dr + (1 —
<17 f| [2dr + (1 - )
/2Ef IX,™ — X, ™|2dr
q

Q Q
+(1—ﬁ)/2Ef IYT"—Yr””IZdr+BEf Y, — Y, |2dr
q

+[ZP 41 PIE [ = X, Pdr X, = X, ™2 ...(26)
Furthermore,
E|Xq"—qu|2+1—ﬁ/2 Equlyr”—Y,der <

P, E|X," = X, dr ...27)

Where P, = (ﬁ) = ﬁ+ZL L

inequality and Burholder-Davis-Gundy
fQIY” ””Izdr]—>0...(28)

By Gronwell’
inequalityE [

Denote the limit of (X, ¥,", K," )by (X,,Y,, K,) ; we will
show that (X,,Y,, K,) satisfies (2). If it is necessary ,we can
choose a subsequence of (3). By Holder’s inequality,

Q 2
E f £ XY — £ X Y™
q

< QE[[2£G X, %) = F(@ X )| dr = 0..29)

From (27)we know E [2|X," —X,™|° >0 ...(30) and

X" —>Xq,so\/EfoQ|Xq"+1 m| <— ..(31) for any n,
X" < Xq"| + ZRZH|X = x| < [xg'[ +
Tra|X = X, ...32)

Then ,we have /EfOQ Su:|Xq"|2dq
Q (o]
B[+ Y -
0 k=1
= \,EfoQ|Xq1|2dq

o0 Q
+Zk=1\/Ef0 |qu+1 _x
Q 2 o 1
< /Efo X' da + Zi1 52
Q
Ef Sufllf(r: X, Y) = f((r, X, ) 2dr
0

< 2PE [P0X,"7 + X7 + "GP + |V 2 dr < oo
..(3%)

2

qu|> dq

qu|2dq .

k|2 |qu+1 _ '(33)

Applying Lebesgue convergence theorem, we deduce that
(X4, Yq, Ky) is the solution of (2) by the continuity of the
functions f and g.

*,K,*) (k = 1,2) be two solutions
=Y,' —Y,%. We apply Ito formula

Uniqueness: Let (X"
of (2), X4 = X' — X2 ¥,
to

Q
e (Kg) + @ [ e e ()dr

q
Q =2
+J earl{—MSY_rsM} Yq dr
q
Q 12 Y
:fq earlp M(Xr)(f(T: Xrlryrl) - f(T: sz,YTZ)dr +
o Q
k=1 fq eml{—Msy_rsMﬂgi((T' AR AN
2 2 2 [ee) Q arf,! vV
gi((r'Xr 'Yr ))| dr _Zkzl fq e l/J M(Xr) X
(gi((r' Xrlf le) - gi((r' szf er))dai(r)
[ e () Fydw + [ ey () (I~
dK2)....(35)
Taking expectation of (35),
Ee®y,(X,) + aE qu e P (V)dr +
Q =2
Efq earl{—MSY_TSM} Yq dr

Q
< 2Ef e XIS (r XYY — f(r, X2 %, )dr
q

Yk E qu e 1 _yrevarny|9i (r. X5 Y1) —
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2 oo Q ! VvV
gi((T’,sz,er))| dr _Zk=1 fq ear.(l} M(Xr) dr
2P = 1-Y2, B e
< —w+ZPi +M Ef e X, |2dr
1 _Zk=1ﬁi =1 2 q

Zoo= ; _— 2
R zlﬁ E quear|yq| dr ...(36s)

Let M — oo and applying monotone convergence
theorem,we have
12 2P o0 1-B
Ee“q|Xq| + ((l —ﬁ—zkzlpi —T) X

E [ e (X, 2dr +2LE [ e IT 2dr <0...37)
When «a is taken sufficiently large ,we have ¥,=0 .

4. Conclusion

This paper has some concepts of reflected backward
stochastic differential equations driven by countable G-
Brownian motions. The existence and uniqueness of RBSDEs
are obtained.
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