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Abstract: This paper presents a study on DSR in MANETs using 

NS2 Simulator. 
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1. Introduction of MANET 

The advancement in establishing a network which is self-

configuring and infrastructure less has led to development of 

MANET Mobile AD-Hoc Network. But limitation of range and 

unavailability of protocols for highly synchronized working 

also with limitation of power supply has always been a problem. 

The project aims to simulate a network for military operation in 

scenario where a team of members required communicating and 

topology changes are dynamic. The DSR Dynamic Source 

Routing protocol which is area of research is used, for its feature 

that is fast updating topologies. The MANET is one of the 

widely used networks for communication where there are the 

movement or mobile sources. The sources itself act as router 

independently and forms a connection to all available devices 

in its range. In case of natural calamity like earthquake, flood, 

cyclone infrastructure based communication is bound to suffer 

disturbance or lack of operability. Rescue or relief teams 

generally have to be well equipped with expensive equipments 

to enable communication between individuals. Introduction of 

ad-hoc network based voice communication can serve well in 

this purpose. Also people suffering such disaster can have a way 

to communicate with each other and the rescue team. Since this 

network doesn’t require any predefined setup or any non-

regular device, connectivity is instant and useful. Like any other 

infrastructure less network, ad-hoc network suffers from lot of 

complexities due to its dynamic nature and it fails to provide 

the reliability of a structured network.  

There are lots of things to be done in this field. The primary 

goal of this research work is to go in deep of this field and to 

make ad-hoc voice communication as close as possible to voice 

communication systems available to general users in terms of 

both performance and usability. A wireless ad-hoc network is a 

collection of mobile/semi-mobile nodes with no pre-established 

infrastructure, forming a temporary network. Each of the nodes 

has a wireless interface and communicates with each other over  

 

either radio or infrared. Laptop computers and personal digital 

assistants that communicate directly with each other are some 

examples of nodes in an ad-hoc network. Nodes in the ad-hoc 

network are often mobile, but can also consist of stationary 

nodes, such as access points to the Internet. Semi mobile nodes 

can be used to deploy relay points in areas where relay points 

might be needed temporarily. The outermost nodes are not 

within transmitter range of each other. However, the middle 

node can be used to forward packets between the outermost 

nodes. The middle node is acting as a router and the three nodes 

have formed an ad-hoc network. An ad-hoc network uses no 

centralized administration. This is to be sure that the network 

won’t collapse just because one of the mobile nodes moves out 

of transmitter range of the others. Nodes should be able to 

enter/leave the network as they wish. Because of the limited 

transmitter range of the nodes, multiple hops may be needed to 

reach other nodes. Every node wishing to participate in an 

adhoc network must be willing to forward packets for other 

nodes. Thus every node acts both as a host and as a router. A 

node can be viewed as an abstract entity consisting of a router 

and a set of affiliated mobile hosts. 

A router is an entity, which, among other things runs a 

routing protocol. A mobile host is simply an IP-addressable 

host/entity in the traditional sense. Ad-hoc networks are also 

capable of handling topology changes and malfunctions in 

nodes. It is fixed through network reconfiguration. For instance, 

if a node leaves the network and causes link breakages, affected 

nodes can easily request new routes and the problem will be 

solved. This will slightly increase the delay, but the network 

will still be operational. Wireless ad-hoc networks take 

advantage of the nature of the wireless communication medium. 

In other words, in a wired network the physical cabling is done 

a priori restricting the connection topology of the nodes. This 

restriction is not present in the wireless domain and, provided 

that two nodes are within transmitter range of each other, an 

instantaneous link between them. 

There is no clear picture of what these kinds of networks will 

be used for. The suggestions vary from document sharing at 

conferences to infrastructure enhancements and military 

applications. In areas where no infrastructure such as the 
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Internet is available an ad-hoc network could be used by a group 

of wireless mobile hosts. This can be the case in areas where a 

network infrastructure may be undesirable due to reasons such 

as cost or convenience. Examples of such situations include 

disaster recovery personnel or military troops in cases where 

the normal infrastructure is either unavailable or destroyed. 

Other examples include business associates wishing to share 

files in an airport terminal, or a class of students needing to 

interact during a lecture. If each mobile host wishing to 

communicate is equipped with a wireless local area network 

interface, the group of mobile hosts may form an ad-hoc 

network. Access to the 12 Internet and access to resources in 

networks such as printers are features that probably also will be 

supported. With more and more portable devices with Wi-Fi 

radio pre-built coming into market soon it might be get some 

real acceptance in the field of insecure but free voice 

communication over short rage in case of campus talk or 

disaster scenarios where no infrastructure might be up and 

running. 

2. Characteristics 

Ad-hoc networks are often characterized by a dynamic 

topology due to the fact that nodes change their physical 

location by moving around. This favours routing protocols that 

dynamically discover routes over conventional routing 

algorithms like distant vector and link state. Another 

characteristic is that a host/node has very limited CPU capacity, 

storage capacity, battery power and bandwidth, also referred to 

as a “thin client”. This means that the power usage must be 

limited thus leading to a limited transmitter range. The access 

media, the radio environment, also has special characteristics 

that must be considered when designing protocols for ad-hoc 

networks. One example of this may be unidirectional links. 

These links arise when for example two nodes have different 

strength on their transmitters, allowing only one of the hosts to 

hear the other, but can also arise from disturbances from the 

surroundings. Multi hop in a radio environment may result in 

an overall transmit capacity gain and power gain, due to the 

squared relation between coverage and required output power. 

By using multi hop, nodes can transmit the packets with a much 

lower output power. 

3. Routing 

Because of the fact that it may be necessary to hop several 

hops multi-hop before a packet reaches the destination, a 

routing protocol is needed. The routing protocol has two main 

functions, selection of routes for various source destination 

pairs and the delivery of messages to their correct destination. 

The second function is conceptually straightforward using a 

variety of protocols and data structures routing tables. Routing 

protocols use metrics to evaluate what path will be the best for 

a packet to travel. A metric is a standard of measurement; such 

as path bandwidth, reliability, delay, current load on that path 

etc; that is used by routing algorithms to determine the optimal 

path to a destination. To aid the process of path determination, 

routing algorithms initialize and maintain routing tables, which 

contain route information.  

4. Conventional protocols 

The main problem with link-state and distance vector is that 

they are designed for a static topology, which means that they 

would have problems to converge to a steady state in an ad-hoc 

network with a very frequently changing topology. Link state 

and distance vector would probably work very well in an ad-

hoc network with low mobility, i.e. a network where the 

topology is not changing very often. The problem that still 

remains is that link-state and distance-vector are highly 

dependent on periodic control messages. As the number of 

network nodes can be large, the potential number of 

destinations is also large. This requires large and frequent 

exchange of data among the network nodes. This is in 

contradiction with the fact that all updates in a wireless 

interconnected ad hoc network are transmitted over the air and 

thus are costly in resources such as bandwidth, battery power 

and CPU. Because both link-state and distance vector tries to 

maintain routes to all reachable destinations, it is necessary to 

maintain these routes and this also wastes resources for the 

same reason as above. 

Another characteristic for conventional protocols are that 

they assume bidirectional links, e.g. that the transmission 

between two hosts works equally well in both directions. In the 

wireless radio environment this is not always the case. Because 

many of the proposed ad-hoc routing protocols have a 

traditional routing protocol as underlying algorithm, it is 

necessary to understand the basic operation for conventional 

protocols like distance vector, link state and source routing. 

A. Link state 

In link-state routing, each node maintains a view of the 

complete topology with a cost for each link. To keep these costs 

consistent; each node periodically broadcasts the link costs of 

its outgoing links to all other nodes using flooding. As each 

node receives this information, it updates its view of the 

network and applies a shortest path algorithm to choose the 

next-hop for each destination. Some link costs in a node view 

can be incorrect because of long propagation delays, partitioned 

networks, etc. Such inconsistent network topology views can 

lead to formation of routing-loops. These loops are however 

short-lived, because they disappear in the time it takes a 

message to traverse the diameter of the network.  

Link state routing protocols maintain complete road map of 

the network in each router running a link state routing protocol. 

Each router running a link state routing protocol originates 

information about the router, its directly connected links, and 

the state of those links. This information is sent to all the routers 

in the network as multicast messages. Link-state routing always 

tries to maintain full networks topology by updating itself 

incrementally whenever a change happen in network. 
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B. Distance vector 

In distance vector each node only monitors the cost of its 

outgoing links, but instead of broadcasting this information to 

all nodes; it periodically broadcasts to each of its neighbours an 

estimate of the shortest distance to every other node in the 

network. The receiving nodes then use this information to 

recalculate the routing tables, by using a shortest path 

algorithm. Compared to link-state, distance vector is more 

computation efficient, easier to implement and requires much 

less storage space. However, it is well known that distance 

vector can cause the formation of both short-lived and long-

lived routing loops. The primary cause for this is that the nodes 

choose their next-hops in a completely distributed manner 

based on information that can be stale.  

C. Source routing 

Source routing means that each packet must carry the 

complete path that the packet should take through the network. 

The routing decision is therefore made at the source. The 

advantage with this approach is that it is very easy to avoid 

routing loops. The disadvantage is that each packet requires a 

slight overhead. 

D. Flooding 

Many routing protocols uses broadcast to distribute control 

information, that is, send the control information from an origin 

node to all other nodes. A widely used form of broadcasting is 

flooding and operates as follows. The origin node sends its 

information to its neighbours in the wireless case; this means 

all nodes that are within transmitter range. The neighbours relay 

it to their neighbours and so on, until the packet has reached all 

nodes in the network. A node will only relay a packet once and 

to ensure this some sort of sequence number can be used. This 

sequence number is increased for each new packet a node sends. 

5. Classification 

Routing protocols can be classified into different categories 

depending on their properties. 

 Centralized vs. Distributed 

 Static vs. Adaptive 

 Reactive vs. Proactive 

One way to categorize the routing protocols is to divide them 

into centralized and distributed algorithms. In centralized 

algorithms, all route choices are made at a central node, while 

in distributed algorithms, the computation of routes is shared 

among the network nodes. Another classification of routing 

protocols relates to whether they change routes in response to 

the traffic input patterns. In static algorithms, the route used by 

source-destination pairs is fixed regardless of traffic conditions. 

It can only change in response to a node or link failure. This 

type of algorithm cannot achieve high throughput under a broad 

variety of traffic input patterns. Most major packet networks 

use some form of adaptive routing where the routes used to 

route between source-destination pairs may change in response 

to congestion A third classification that is more related to ad-

hoc networks is to classify the routing algorithms as either 

proactive or reactive. Proactive protocols attempt to 

continuously evaluate the routes within the network, so that 

when a packet needs to be forwarded, the route is already 

known and can be immediately used. The family of Distance-

Vector protocols is an example of a proactive scheme. Reactive 

protocols, on the other hand, invoke a route determination 

procedure on demand only. Thus, when a route is needed, some 

sort of global search procedure is employed. The family of 

classical flooding algorithms belongs to the reactive group. 

Proactive schemes have the advantage that when a route is 

needed, the delay before actual packets can be sent is very 

small. On the other side proactive schemes needs time to 

converge to a steady state. This can cause problems if the 

topology is changing frequently. The tools used for simulation 

provides all facilities for standard comparisons by visual as well 

as graph generation for simulation with event driven 

programming. 

6. DSR protocol description 

A. Overview and important properties of the protocol 

The DSR protocol is composed of two mechanisms that work 

together to allow the discovery and maintenance of source 

routes in the ad hoc network: Route Discovery is the 

mechanism by which a node S wishing to send a packet to a 

destination node D obtains a source route to D. Route Discovery 

is used only when S attempts to send a packet to D and does not 

already know a route to D. 

Route Maintenance is the mechanism by which node S is able 

to detect, while using a source route to D, if the network 

topology has changed such that it can no longer use its route to 

D because a link along the route no longer works. When Route 

Maintenance indicates a source route is broken, S can attempt 

to use any other route it happens to know to D, or can invoke 

Route Discovery again to find a new route. Route Maintenance 

is used only when S is actually sending packets to D. Route 

Discovery and Route Maintenance each operate entirely on 

demand. In particular, unlike other protocols, DSR requires no 

periodic packets of any kind at any level within the network. 

For example, DSR does not use any periodic routing 

advertisement, link status sensing, or neighbour detection 

packets, and does not rely on these functions from any 

underlying protocols in the network. This entirely on-demand 

behaviour and lack of periodic activity allows the number of 

overhead packets caused by DSR to scale all the way down to 

zero, when all nodes are approximately stationary with respect 

to each other and all routes needed for current communication 

have already been discovered. As nodes begin to move more or 

as communication patterns change, the routing packet overhead 

of DSR automatically scales to only that needed to track the 

routes currently in use. In response to a single Route Discovery 

(as well as through routing information from other packets 

overheard), a node may learn and cache multiple routes to any 
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destination. This allows the reaction to routing changes to be 

much more rapid, since a node with multiple routes to a 

destination can try another cached route if the one it has been 

using should fail. This caching of multiple routes also avoids 

the overhead of needing to perform a new Route Discovery each 

time a route in use breaks. The operation of Route Discovery 

and Route Maintenance in DSR are designed to allow uni-

directional links and asymmetric routes to be easily supported. 

In particular, as noted, it is possible that a link between two 

nodes may not work equally well in both directions, due to 

differing antenna or propagation patterns or sources of 

interference. DSR allows such uni-directional links to be used 

when necessary, improving overall performance and network 

connectivity in the system. DSR also supports internetworking 

between different types of wireless networks, allowing a source 

route to be composed of hops over a combination of any types 

of networks available. For example, some nodes in the ad hoc 

network may have only short-range radios, while other nodes 

have both short-range and long-range radios; the combination 

of these nodes together can be considered by DSR as a single 

ad hoc network. In addition, the routing of DSR has been 

integrated into standard Internet routing, where a “gateway” 

node connected to the Internet also participates in the ad hoc 

network routing protocols; and has been integrated into Mobile 

IP routing, where such a gateway node also serves the role of a 

Mobile IP foreign agent. 

  
Fig. 1.  Route discovery example: node A is the initiator, and node E is the 

target 

B. Basic DSR route discovery 

When some node S originates a new packet destined to some 

other node D, it places in the header of the packet a source route 

giving the sequence of hops that the packet should follow on its 

way to D. Normally, S will obtain a suitable source route by 

searching its Route Cache of routes previously learned, but if 

no route is found in its cache, it will initiate the Route Discovery 

protocol to dynamically find a new route to D. In this case, we 

call S the initiator and D the target of the Route Discovery. For 

example, Figure 1, illustrates an example Route Discovery, in 

which a node A is attempting to discover a route to node E. To 

initiate the Route Discovery, A transmits a ROUTE REQUEST 

message as a single local broadcast packet, which is received 

by (approximately) all nodes currently within wireless 

transmission range of A. Each ROUTE REQUEST message 

identifies the initiator and target of the Route Discovery, and 

also contains a unique request id, determined by the initiator of 

the REQUEST. Each ROUTE REQUEST also contains a 

record listing the address of each intermediate node through 

which this particular copy of the ROUTE REQUEST message 

has been forwarded. This route record is initialized to an empty 

list by the initiator of the Route Discovery. 

When another node receives a ROUTE REQUEST, if it is the 

target of the Route Discovery, it returns a ROUTE REPLY 

message to the initiator of the Route Discovery, giving a copy 

of the accumulated route record from the ROUTE REQUEST; 

when the initiator receives this ROUTE REPLY, it caches this 

route in its Route Cache for use in sending subsequent packets 

to this destination. Otherwise, if this node receiving the ROUTE 

REQUEST has recently seen another ROUTE REQUEST 

message from this initiator bearing this same request id, or if it 

finds that its own address is already listed in the route record in 

the ROUTE REQUEST message, it discards the REQUEST. 

Otherwise, this node appends its own address to the route record 

in the 

ROUTE REQUEST message and propagates it by 

transmitting it as a local broadcast packet (with the same request 

id). In returning the ROUTE REPLY to the initiator of the 

Route Discovery, such as node E replying back to A in Figure 

1.1, node E will typically examine its own Route Cache for a 

route back to A, and if found, will use it for the source route for 

delivery of the packet containing the ROUTE REPLY. 

Otherwise, E may perform its own Route Discovery for target 

node A, but to avoid possible infinite recursion of Route 

Discoveries, it must piggyback this ROUTE REPLY on its own 

ROUTE REQUEST message for A. It is also possible to 

piggyback other small data packets, such as a TCP SYN packet, 

on a ROUTE REQUEST using this same mechanism. Node E 

could also simply reverse the sequence of hops in the route 

record that it trying to send in the ROUTE REPLY, and use this 

as the source route on the packet carrying the ROUTE REPLY 

itself. For MAC protocols such as IEEE 802.11 that require a 

bi-directional frame exchange as part of the MAC protocol, this 

route reversal is preferred as it avoids the overhead of a possible 

second Route Discovery, and it tests the discovered route to 

ensure it is bi-directional before the Route Discovery initiator 

begins using the route. However, this technique will prevent the 

discovery of routes using uni-directional links. In wireless 

environments where the use of uni-directional links is 

permitted, such routes may in some cases be more efficient than 

those with only bi-directional links, or they may be the only 

way to achieve connectivity to the target node. When initiating 

a Route Discovery, the sending node saves a copy of the 

original packet in a local buffer called the Send Buffer. The 

Send Buffer contains a copy of each packet that cannot be 

transmitted by this node because it does not yet have a source 

route to the packet’s destination. Each packet in the Send Buffer 

is stamped with the time that it was placed into the Buffer and 

is discarded after residing in the Send Buffer for some timeout 

period; if necessary for preventing the Send Buffer from 

overflowing, a FIFO or other replacement strategy can also be 

used to evict packets before they expire. While a packet remains 

in the Send Buffer, the node should occasionally initiate a new 
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Route Discovery for the packet’s destination address. However, 

the node must limit the rate at which such new Route 

Discoveries for the same address are initiated, since it is 

possible that the destination node is not currently reachable. In 

particular, due to the limited wireless transmission range and 

the movement of the nodes in the network, the network may at 

times become partitioned, meaning that there is currently no 

sequence of nodes through which a packet could be forwarded 

to reach the destination. Depending on the movement pattern 

and the density of nodes in the network, such network partitions 

may be rare or may be common.  

If a new Route Discovery was initiated for each packet sent 

by a node in such a situation, a large number of unproductive 

ROUTE REQUEST packets would be propagated throughout 

the subset of the ad hoc network reachable from this node. In 

order to reduce the overhead from such Route Discoveries, we 

use exponential back-off to limit the rate at which new Route 

Discoveries may be initiated by any node for the same target. If 

the node attempts to send additional data packets to this same 

node more frequently than this limit, the subsequent packets 

should be buffered in the Send Buffer until a ROUTE REPLY 

is received, but the node must not initiate a new Route 

Discovery until the minimum allowable interval between new 

Route Discoveries for this target has been reached. This 

limitation on the maximum rate of Route Discoveries for the 

same target is similar to the mechanism required by Internet 

nodes to limit the rate at which ARP REQUESTs are sent for 

any single target IP address. 

 
Fig. 2.  Route Maintenance example: Node C is unable to forward a packet 

from A to E over its link to next hop D. 

C. Basic DSR route maintenance 

When originating or forwarding a packet using a source 

route, each node transmitting the packet is responsible for 

confirming that the packet has been received by the next hop 

along the source route; the packet is retransmitted (up to a 

maximum number of attempts) until this confirmation of receipt 

is received. For example, in the situation illustrated in Figure 2, 

node A has originated a packet for E using a source route 

through intermediate nodes B, C, and D. In this case, node A is 

responsible for receipt of the packet at B, node B is responsible 

for receipt at C, node C is responsible for receipt at D, and node 

D is responsible for receipt finally at the destination E. This 

confirmation of receipt in many cases may be provided at no 

cost to DSR, either as an existing standard part of the MAC 

protocol in use (such as the link-level acknowledgement frame 

defined by IEEE 802.11, or by a passive acknowledgement (in 

which, for example, B confirms receipt at C by overhearing C 

transmit the packet to forward it on to D). If neither of these 

confirmation mechanisms are available, the node transmitting 

the packet may set a bit in the packet’s header to request a DSR-

specific software acknowledgement be returned by the next 

hop; this software acknowledgement will normally be 

transmitted directly to the sending node, but if the link between 

these two nodes is uni-directional, this software 

acknowledgement may travel over a different, multi-hop path. 

If the packet is retransmitted by some hop the maximum 

number of times and no receipt confirmation is received, this 

node returns a ROUTE ERROR message to the original sender 

of the packet, identifying the link over which the packet could 

not be forwarded. For example, in Figure 2, if C is unable to 

deliver the packet to the next hop D, then C returns a ROUTE 

ERROR to A, stating that the link from C to D is currently 

“broken.” Node A then removes this broken link from its cache; 

any retransmission of the original packet is a function for upper 

layer protocols such as TCP. For sending such a retransmission 

or other packets to this same destination E, if A has in its Route 

Cache another route to E (for example, from additional ROUTE 

REPLYs from its earlier Route Discovery, or from having 

overheard sufficient routing information from other packets), it 

can send the packet using the new route immediately. 

Otherwise, it may perform a new Route Discovery for this 

target. 

 
Fig. 3.  Limitations on caching overheard routing information: Node C is 

forwarding packets to E and overhears packets from X 

7. Additional route discovery features 

A. Caching overheard routing information 

A node forwarding or otherwise overhearing any packet may 

add the routing information from that packet to its own Route 

Cache. In particular, the source route used in a data packet, the 

accumulated route record in a ROUTE REQUEST, or the route 

being returned in a ROUTE REPLY may all be cache by any 

node. Routing information from any of these packets received 

may be cached, whether the packet was addressed to this node, 

sent to a broadcast (or multicast) MAC address, or received 

while the node’s network interface is in promiscuous mode. 

One limitation, however, on caching of such overheard routing 

information is the possible presence of uni-directional links in 

the ad hoc network. For example, Figure 4 illustrates a situation 

in which node A is using a source route to communicate with 

node E. As node C forwards a data packet along the route from 

A to E, it can always add to its cache the presence of the 

“forward” direction links that it learns from the headers of these 

packets, from itself to D and from D to E. However, the 

“reverse” direction of the links identified in the packet headers, 

from itself back to B and from B to A, may not work for it since 

these links might be uni-directional. If C knows that the links 

are in fact bi-directional, for example due to the MAC protocol 
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in use, it could cache them but otherwise should not. Likewise, 

node V in Figure 1.3 is using a different source route to 

communicate with node Z. If node C overhears node X 

transmitting a data packet to forward it to Y (from V), node C 

should consider whether the links involved can be known to be 

bi-directional or not before caching them. If the link from X to 

C (over which this data packet was received) can be known to 

be bi-directional, then C could cache the link from itself to X, 

the link from X to Y, and the link from Y to Z. If all links can 

be assumed to be bi-directional, C could also cache the links 

from X to W and from W to V. Similar considerations apply to 

the routing information that might be learned from forwarded 

or otherwise overheard ROUTE REQUEST or ROUTE REPLY 

packets. 

 
Fig. 4.  A possible duplication of route hops avoided by the Route 

Discovery limitation on replying to ROUTE REQUESTs from the Route 

Cache 

B. Reply to ROUTE REQUESTs using Cached Routes 

A node receiving a ROUTE REQUEST for which it is not 

the target, searches its own Route Cache for a route to the target 

of the REQUEST. If found, the node generally returns a 

ROUTE REPLY to the initiator itself rather than forwarding the 

ROUTE REQUEST. In the ROUTE REPLY, it sets the route 

record to list the sequence of hops over which this copy of the 

ROUTE REQUEST was forwarded to it, concatenated with its 

own idea of the route from itself to the target from its Route 

Cache. However, before transmitting a ROUTE REPLY packet 

that was generated using information from its Route Cache in 

this way, a node must verify that the resulting route being 

returned in the ROUTE REPLY, after this concatenation, 

contains no duplicate nodes listed in the route record. For 

example, Figure 4 illustrates a case in which a ROUTE 

REQUEST for target E has been received by node F, and node 

F already has in its Route Cache a route from itself to E. The 

concatenation of the accumulated route from the ROUTE 

REQUEST and the cached route from F’s Route Cache would 

include a duplicate node in passing from C to F and back to C. 

Node F in this case could attempt to edit the route to eliminate 

the duplication, resulting in a route from A to B to C to D and 

on to E, but in this case, node F would not be on the route that 

it returned in its own ROUTE REPLY. DSR Route Discovery 

prohibits node F from returning such a ROUTE REPLY from 

its cache for two reasons. First, this limitation increases the 

probability that the resulting route is valid, since F in this case 

should have received a ROUTE ERROR if the route had 

previously stopped working. Second, this limitation means that 

a ROUTE ERROR traversing the route is very likely to pass 

through any node that sent the ROUTE REPLY for the route 

(including F), which helps to ensure that stale data is removed 

from caches (such as at F) in a timely manner. Otherwise, the 

next Route Discovery initiated by A might also be contaminated 

by a ROUTE REPLY from F containing the same stale route. If 

the ROUTE REQUEST does not meet these restrictions, the 

node (node F in this example) discards the ROUTE REQUEST 

rather than replying to it or propagating it. 

 
Fig. 5.  A route reply storm could result if many nodes all reply to the same 

ROUTE REQUEST from their own Route Caches. The route listed next to 

each node shows the route to destination G currently listed in that node’s 

Route Cache 

C. Preventing route reply storms 

The ability for nodes to reply to a ROUTE REQUEST based 

on information in their Route Caches, could result in a possible 

ROUTE REPLY “storm” in some cases. In particular, if a node 

broadcasts a ROUTE REQUEST for a target node for which the 

node’s neighbours have a route in their Route Caches, each 

neighbour may attempt to send a ROUTE REPLY, thereby 

wasting bandwidth and possibly increasing the number of 

network collisions in the area. For example, in the situation 

shown in Figure 5, nodes B, C, D, E, and F all receive A’s 

ROUTE REQUEST for target G, and each have the indicated 

route cached for this target. Normally, they would all attempt to 

reply from their own Route Caches, and would all send their 

REPLYs at about the same time since they all received the 

broadcast ROUTE REQUEST at about the same time. Such 

simultaneous replies from different nodes all receiving the 

ROUTE REQUEST may create packet collisions among some 

or all of these REPLIES and may cause local congestion in the 

wireless network. In addition, it will often be the case that the 

different replies will indicate routes of different lengths, as 

shown in this example. If a node can put its network interface 

into promiscuous receive mode, it should delay sending its own 

ROUTE REPLY for a short period, while listening to see if the 

initiating node begins using a shorter route first. That is, this 

node should delay sending its own ROUTE REPLY for a 

random period where h is the length in number of network hops 

for the route to be returned in this node’s ROUTE REPLY, r is 

a random number between 0 and 1, and H is a small constant 

delay (at least twice the maximum wireless link propagation 

delay) to be introduced per hop. This delay effectively 
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randomizes the time at which each. The route listed next to each 

node shows the route to destination G currently listed in that 

node’s Route Cache node sends its ROUTE REPLY, with all 

nodes sending ROUTE REPLYs giving routes of length less 

than H sending their REPLYs before this node, and all nodes 

sending ROUTE REPLYs giving routes of length greater than 

h sending their REPLYs after this node. Within the delay 

period, this node promiscuously receives all packets, looking 

for data packets from the initiator of this Route Discovery 

destined for the target of the Discovery. If such a data packet 

received by this node during the delay period uses a source 

route of length less than or equal to h, this node may infer that 

the initiator of the Route Discovery has already received a 

ROUTE REPLY giving an equally good or better route. In this 

case, this node cancels its delay timer and does not send its 

ROUTE REPLY for this Route Discovery. 

D. Route request hop limits 

Each ROUTE REQUEST message contains a “hop limit” 

that may be used to limit the number of intermediate nodes 

allowed to forward that copy of the ROUTE REQUEST. As the 

REQUEST is forwarded, this limit is decremented, and the 

REQUEST packet is discarded if the limit reaches zero before 

finding the target. We currently use this mechanism to send a 

non-propagating ROUTE REQUEST (i.e., with hop limit 0) as 

an inexpensive method of determining if the target is currently 

a neighbour of the initiator or if a neighbour node has a route to 

the target cached (effectively using the neighbours’ caches as 

an extension of the initiator’s own cache). If no ROUTE 

REPLY is received after a short timeout, then a propagating 

ROUTE REQUEST (i.e., with no hop limit) is sent. We have 

also considered using this mechanism to implement an 

expanding ring search for the target [Johnson 1996a]. For 

example, a node could send an initial non-propagating ROUTE 

REQUEST as described above; if no ROUTE REPLY is 

received for it, the node could initiate another ROUTE 

REQUEST with a hop limit of 1. For each ROUTE REQUEST 

initiated, if no ROUTE REPLY is received for it, the node could 

double the hop limit used on the previous attempt, to 

progressively explore for the target node without allowing the 

ROUTE REQUEST to propagate over the entire network. 

However, this expanding ring search approach could have the 

effect of increasing the average latency of Route Discovery, 

since multiple Discovery attempts and timeouts may be needed 

before discovering a route to the target node. 

8. Additional route maintenance features 

1) Packet salvaging 

After sending a ROUTE ERROR message as part of Route 

Maintenance as described, a node may attempt to salvage the 

data packet that caused the ROUTE ERROR rather than 

discarding it. To attempt to salvage a packet, the node sending 

a ROUTE ERROR searches its own Route Cache for a route 

from itself to the destination of the packet causing the ERROR. 

If such a route is found, the node may salvage the packet after 

returning the ROUTE ERROR by replacing the original source 

route on the packet with the route from its Route Cache. The 

node then forwards the packet to the next node indicated along 

this source route. For example, in Figure 6, if node C has 

another route cached to node E, it can salvage the packet by 

applying this route to the packet rather than discarding the 

packet. When salvaging a packet in this way, the packet is also 

marked as having been salvaged, to prevent a single packet 

being salvaged multiple times. Otherwise, it could be possible 

for the packet to enter a routing loop, as different nodes 

repeatedly salvage the packet and replace the source route on 

the packet with routes to each other. An alternative mechanism 

of salvaging that we have considered would be to replace only 

the unused suffix of the original route with the new route from 

this node’s Route Cache, forming a new route whose prefix is 

the original route and whose suffix is the route from the Cache. 

In this case, the normal rules for avoiding duplicated nodes 

being listed in a source route are sufficient to avoid routing 

loops. However, this mechanism of salvaging would prevent 

the new route from “backtracking” from this node to an earlier 

node already traversed by this packet, to then be forwarded 

along a different remaining sequence of hops to the destination. 

Our current salvaging mechanism allows backtracking but 

prevents a packet from being salvaged more than once. 

 
Fig. 6.  Node C notices that the source route to D can be shortened, since it 

overheard a packet from A intended first for B 

2) Automatic route shortening 

Source routes in use may be automatically shortened if one 

or more intermediate hops in the route become no longer 

necessary. This mechanism of automatically shortening routes 

in use is somewhat similar to the use of passive 

acknowledgements. In particular, if a node is able to overhear a 

packet carrying a source route (e.g., by operating its network 

interface in promiscuous receive mode), then this node 

examines the unused portion of that source route. If this node is 

not the intended next hop for the packet but is named in the later 

unused portion of the packet’s source route, then it can infer 

that the intermediate nodes before itself in the source route are 

no longer needed in the route. For example, Figure 1.6 

illustrates an example in which node C has overheard a data 

packet being transmitted from A to B, for later forwarding to C; 

the arrow pointing to one node in the source route in each packet 

indicates the intended next receiver of the packet along the 

route. 

In this case, this node (node C) returns a gratuitous ROUTE 

REPLY message to the original sender of the packet (node A). 

The ROUTE REPLY gives the shorter route as the 

concatenation of the portion of the original source route up 

through the node that transmitted the overheard packet, plus the 



International Journal of Research in Engineering, Science and Management  

Volume-2, Issue-7, July-2019 

www.ijresm.com | ISSN (Online): 2581-5792     

 

445 

suffix of the original source route beginning with the node 

returning the gratuitous ROUTE REPLY. In this example, the 

Route returned in10 the gratuitous ROUTE REPLY message 

sent from C to A. 

3) Increased spreading of route error messages 

When a source node receives a ROUTE ERROR for a data 

packet that it originated, this source node propagates this 

ROUTE ERROR to its neighbours by piggybacking it on its 

next ROUTE REQUEST. In this way, stale information in the 

caches of nodes around this source node will not generate 

ROUTE REPLYs that contain the same invalid link for which 

this source node received the ROUTE ERROR. For example, 

in the situation shown in Figure 1.5.b, node A learns from the 

ROUTE ERROR message from C, that the link from C to D is 

currently broken. It thus removes this link from its own Route 

Cache and initiates a new Route Discovery (if it doesn’t have 

another route to E in its Route Cache). On the ROUTE 

REQUEST packet initiating this Route Discovery, node A 

piggybacks a copy of this ROUTE ERROR message, ensuring 

that the ROUTE ERROR message spreads well to other nodes, 

and guaranteeing that any ROUTE REPLY that it receives 

(including those from other node’s Route Caches) in response 

to this ROUTE REQUEST does not contain a route that 

assumes the existence of this broken link. We have also 

considered, but not simulated, a further improvement to Route 

Maintenance in which a node, such as A in Figure 1.4, that 

receives a ROUTE ERROR will forward the ERROR along the 

same source route that resulted in the ERROR. This will almost 

guarantee that the ROUTE ERROR reaches the node that 

generated the ROUTE REPLY containing the broken link, 

which will prevent that node from contaminating a future Route 

Discovery with the same broken link. 

In some cases, DSR could potentially benefit from nodes 

caching “negative” information in their Route Caches. For 

example, in Figure 7, if node A caches the fact that the link from 

C to D is currently broken (rather than simply removing this 

hop from its Route Cache), it can guarantee that no ROUTE 

REPLY that it receives in response to its new Route Discovery 

will be accepted that utilizes this broken link. A short expiration 

period must be placed on this negative cached information, 

since while this entry is in its Route Cache, A will otherwise 

refuse to allow this link in its cache, even if this link begins 

working again. Another case in which caching negative 

information in a node’s Route Cache might be useful is the case 

in which a link is providing highly variable service, sometimes 

working correctly but often not working. This situation could 

occur, for example, in the case in which the link is near the limit 

of the sending node’s wireless transmission range and there are 

significant sources of interference (e.g., multipath) near the 

receiving node on this link. In this case, by caching the negative 

information that this link is broken, a node could avoid adding 

this problematic link back to its Route Cache during the brief 

periods in which it is working correctly. 

We have not currently included this caching of negative 

information in our simulations or implementation of DSR, 

although we have found situations in our DSR test bed 

implementation where it could potentially improve the 

performance of Route Discovery. A challenge in implementing 

the caching of negative information that we are currently 

researching is the difficulty of picking a suitable expiration 

period for such cache entries. 

 
Fig. 7.  An ad hoc network consisting of nodes communicating via short 

range radios, with nodes A, B, and C also having long-range radios. 

Communication between other nodes such as X and Y may involve multiple 

short-range hops, followed by a long-range hop, followed by additional short-

range hops 

 

4) Support for heterogeneous networks and mobile IP 

In configuring and deploying an ad hoc network, in many 

cases, all nodes will be equipped with the same type of wireless 

network interfaces, allowing simple routing between nodes 

over arbitrary sequences of network hops. However, a more 

flexible configuration might be to also equip a subset of the 

nodes with a second and C also having long-range radios. 

Communication between other nodes such as X and Y may 

involve multiple short-range hops, followed by a long-range 

hop, followed by additional short-range hops network interface 

consisting of a longer-range (and thus generally lower speed) 

wireless network interface. For example, in a military setting, a 

group of soldiers might all use short-range radios to 

communicate among themselves, while relaying through truck-

mounted higher power radios to communicate with other 

groups. This general type of network configuration is the ad hoc 

networking equivalent of wireless overlay networks. Due to the 

high degree of locality likely to be present among directly 

cooperating nodes communicating with each other, such a 

network configuration would allow high speed communication 

among such cooperating nodes, while at the same time allowing 

communication with other nodes further away without 

requiring very large numbers of network hops. The longer-

range radios might also allow gaps between different groups of 

nodes to be spanned, reducing the probability of network 

partition. A simple example of such an ad hoc network 

configuration is shown in Figure 8. Nodes A, B, and C, here, 

each have both short-range and long-range radio interfaces, all 

other nodes in the ad hoc network have only short-range radio 

network interfaces. Node X is using a source route to node Y 

that uses a sequence of both short-range and long-range hops. 
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Fig. 8.  An ad hoc network consisting of nodes with heterogeneous 

network interfaces 

9. Use of interface indices in DSR 

DSR supports automatic, seamless routing in these and other 

heterogeneous configurations, through its logical addressing 

model. Using conventional IP addressing, each ad hoc network 

node would configure a different IP address for each of its 

possibly many network interfaces, but as noted, each node using 

DSR chooses one of these as its home address to use for all 

communication while in the ad hoc network. This use of a single 

IP address per node gives DSR the ability to treat the overall 

network as single routing domain. To then distinguish between 

the different network interfaces on a node, each node 

independently assigns a locally unique interface index to each 

of its own network interfaces. The interface index for any 

network interface on a node is an opaque value assigned by the 

node itself. The particular value chosen must be unique among 

the network interfaces on that individual node but need have no 

other significance and need not be coordinated with any other 

nodes in choosing their own interface indices. On many 

operating systems, a unique value to identify each network 

interface is already available and can be used for this purpose; 

for example, the if index field in the if net structure for a 

network interface in BSD Unix-based networking stacks can be 

used directly by a node for the interface index for that network 

interface. For example, Figure 8 illustrates a simple ad hoc 

network of four nodes, in which node A is using one type of 

network interface (represented by the triangles), node C and 

node D are using an different type of physical network interface 

(represented by the circles), and node B is configured with both 

types of network interfaces and can forward packets between 

the two different types of radio technologies. The number 

labeling each network interface indicates the interface index 

chosen by the corresponding node for that interface. Since the 

interface indices are chosen independently by each node, it is 

possible, for example, that nodes B and D each chose index 1 

for their circle network interfaces, but node C chooses index 4. 

The interface index is used as part of each hop in each source 

route discovered and used by DSR. Specifically, a path through 

the ad hoc network from a source node N0 to a destination node 

Nm is fully represented as a series of hops, where the notation 

Nk/ik is used to indicate that node Nk must transmit the packet 

using its network interface ik in order to deliver the packet over 

the next hop to node. In forwarding a ROUTE REQUEST, a 

node adds to the route record in the REQUEST, not only its own 

address (Section 3.2), but also the interface index of its own 

network interface on which it forwards the packet. To allow the 

reversing of a sequence of hops for a reverse route back to the 

originating node (when, for example, the existence of bi-

directional links can by assumed based on the underlying MAC 

protocol), the node forwarding the ROUTE REQUEST may 

also add to the route record in the REQUEST, the interface 

index of its own network interface on which it received the 

ROUTE REQUEST packet. The interface indices to represent 

a route are carried in the ROUTE REQUEST, the ROUTE 

REPLY, and the source route in the header of data packets. 

1) Internet interconnection and mobile IP 

DSR supports the seamless interoperation between an ad hoc 

network and the Internet, allowing packets to transparently be 

routed from the ad hoc network to nodes in the Internet and 

from the Internet to nodes in the ad hoc network. To enable this 

interoperation, one (or more) nodes in the ad hoc network must 

be connected to the Internet, such that it participates in the ad 

hoc network through DSR, and also participates in the Internet 

through standard IP routing. We call such a node a gateway 

between the ad hoc network and the Internet. In this way, DSR 

allows the coverage range around a wireless Internet base 

station, for example, to be dynamically enlarged through 

multiple “hops” between nodes through the ad hoc network. It 

is also possible for such a gateway node to operate as a Mobile 

IP home agent or foreign agent, allowing nodes to visit the ad 

hoc network as a Mobile IP foreign network, and allowing 

nodes whose home network is the ad hoc network to visit other 

networks using Mobile IP. 

This functionality of interconnection with the Internet is 

implemented through two special reserved interface index 

values, used by gateway nodes to identify their interconnection 

to the Internet. If the node has a separate physical network 

interface by which it connects to the Internet, other than the 

network interface(s) that it uses for participation in the ad hoc 

network, the reserved interface index is used to identify that 

interface. However, it is also possible for a node to use a single 

network interface both for participation in the ad hoc network 

and also for connection to the Internet through standard IP 

routing; in this case, the reserved interface index identifies the 

logically separate functionality of this interface for its Internet 

connection, and the node uses another (locally assigned) 

interface index value to identify this interface in its separate 

logical function of participation in the ad hoc network. If the 

gateway node is acting as a Mobile IP home agent or foreign 

agent (termed a mobility agent) on this network interface, it 

uses the reserved interface index value IF_INDEX_MA. 

Otherwise, the gateway node uses the reserved value 

IF_INDEX_ROUTER. The distinction between the reserved 

index values for mobility agents and for routers allows mobility 

agents to advertise their existence (as needed for Mobile IP) at 

no cost. A node in the ad hoc network that processes a routing 

header listing the interface index IF_INDEX_MA can then send 

a unicast Mobile IPAGENT   to the corresponding address in 

the routing header to obtain complete information about the 

Mobile IP services being provided. In processing a received 

ROUTE REQUEST, a gateway node generates a ROUTE 

REPLY, giving its reserved interface index value, if it believes 
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it may be able to reach the target node through its Internet 

connection. Thus, the originator of the Route Discovery may 

receive REPLYs both from the gateway and from the node 

itself, if the node is really present in the ad hoc network. When 

later sending packets to this destination, the sender should 

prefer cached routes that do not traverse a hop with an interface 

index of IF_INDEX_MA or IF_INDEX_ROUTER, since this 

will prefer Routes that lead directly to the destination node 

within the ad hoc network. 

2) Multicast routing with DSR 

DSR does not currently support true multicast routing, but 

does support an approximation of this that is sufficient in many 

network contexts. Through an extension of the Route Discovery 

mechanism, DSR supports the controlled flooding of a data 

packet to all nodes in the ad hoc network that are within some 

specified number of hops of the originator; these nodes may 

then apply destination address filtering (e.g., in software) to 

limit the packet to those nodes subscribed to the packet’s 

indicated multicast destination address. While this mechanism 

does not support pruning of the broadcast tree to conserve 

network resources, it can be used to distribute information to all 

nodes in the ad hoc network subscribed to the destination 

multicast address. This mechanism may also be useful for 

sending application level packets to all nodes in a limited range 

around the sender. 

To utilize this form of multicasting, when an application on 

a DSR node sends a packet to a multicast destination address, 

DSR piggybacks the data from the packet inside a ROUTE 

REQUEST targeted at the multicast address. The normal 

ROUTE REQUEST propagation scheme described in Section 

3.2 will result in this packet being efficiently distributed to all 

nodes in the network within the specified hop count (TTL) of 

the originator. After forwarding the packet as defined for Route 

Discovery, each receiving node then individually examines the 

destination address of the packet and discards the packet if it is 

destined to a multicast address to which this node is not 

subscribed. 

3) Location of DSR functions  

When designing DSR, we had to determine at what layer 

within the protocol hierarchy to implement ad hoc network 

routing. We considered two different options: routing at the link 

layer   and routing at the network layer. Originally, we opted to 

route at the link layer for several reasons: 

Pragmatically, running the DSR protocol at the link layer 

maximizes the number of mobile nodes that can participate in 

ad hoc networks. For example, the protocol can route equally 

well between IPv4, IPv6 and IPX nodes. 

  Historically, as described more fully in Section 5, DSR 

grew from our contemplation of a multi-hop propagating 

version of the Internet’s Address Resolution Protocol (ARP), as 

well as from the routing mechanism used in IEEE 802 source 

routing bridges. These are layer 2 protocols. 

Technically, we designed DSR to be simple enough that that 

it could be implemented directly in the firmware inside wireless 

network interface cards, well below the layer 3 software within 

a mobile node. We see great potential in this for DSR running 

inside a cloud of mobile nodes around a fixed base station, 

where DSR would act to transparently extend the coverage 

range to these nodes. Mobile nodes that would otherwise be 

unable to communicate with the base station due to factors such 

as distance, fading, or local interference sources could then 

reach the base station through their peers. 

4) NS2 (network simulator) 

Network Simulator (Version 2), widely known as NS2, is 

simply an event driven simulation tool that has proved useful in 

studying the dynamic nature of communication networks. 

Simulation of wired as well as wireless network functions and 

protocols (e.g., routing algorithms, TCP, UDP) can be done 

using NS2. In general, NS2 provides users with a way of 

specifying such network protocols and simulating their 

corresponding behaviours. Due to its flexibility and modular 

nature, NS2 has gained constant popularity in the networking 

research community since its birth in 1989. Ever since, several 

revolutions and revisions have marked the growing maturity of 

the tool, thanks to substantial contributions from the players in 

the field. Among these are the University of California and 

Cornell University who developed the REAL network 

simulator,1 the foundation which NS is based on. Since 1995 

the Defence Advanced Research Projects Agency (DARPA) 

supported development of NS through the Virtual Inter-

Network Test-bed (VINT) project, Currently the National 

Science Foundation (NSF) has joined the ride in development. 

Last but not the least, the group of researchers and developers 

in the community are constantly working to keep NS2 strong 

and versatile. Again, the main objective of this book is to 

provide the readers with insights into the NS2 architecture. 

Researchers of IEEE Institute of Electrical and Electronics 

Engineering has described problem over simulation and no 

proper working for DSR has been implemented on NS2.  

NS2 consists of two key languages: C++ and Object-oriented 

Tool Command Language. While the C++ defines the internal 

mechanism (i.e., a backend) of the simulation objects, the OTcl 

sets up simulation by assembling and configuring the objects as 

well as scheduling discrete events. The C++ and the OTcl are 

linked together using TclCL. Mapped to a C++ object, variables 

in the OTcl domains are sometimes referred to as handles. 

Conceptually, a handle (e.g., n as a Node handle) is just a string 

in the OTcl domain, and does not contain any functionality. 

Instead, the functionality (e.g., receiving a packet) is defined in 

the mapped C++ object (e.g., of class Connector). In the OTcl 

domain, a handle acts as a frontend which interacts with users 

and other OTcl objects. It may define its own procedures and 

variables to facilitate the interaction. Note that the member 

procedures and variables in the OTcl domain are called instance 

procedures (instprocs) and instance variables (instvars), 

respectively. Before proceeding further, the readers are 

encouraged to learn C++ and OTcl languages. NS2 provides a 

large number of built-in C++ objects. It is advisable to use these 
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C++ objects to set up a simulation using a Tcl simulation script. 

However, advance users may find these objects insufficient. 

They need to develop their own C++ objects, and use a OTcl 

configuration interface to put together these objects. After 

simulation, NS2 outputs either text-based or animation-based 

simulation results. To interpret these results graphically and 

interactively, tools such as NAM and XGraph are used. To 

analyze a particular behaviour of the network, users can extract 

a relevant subset of text-based data and transform it to a more 

conceivable presentation. 

The project stands for the simulating purpose with research 

purpose its only field of design. Many researchers have given 

DSR and MANET related projects but no such implementation 

which supports both consecutively is done with real case 

scenarios. Till now only Routing protocols are compared or 

implemented solemnly on pseudo networks. But this project 

deals with real cases and each constraint are taken in account to 

verify its correctness by graph and visualizing each packet of 

information. Some salient features of the project are: 

 Real Time Scenario for implementation. 

 Constraints are taken in best of knowledge of area. 

 Graph and visual description of project. 

 Bandwidth for Voice Communication is taken in 

consideration. 

10. Conclusion 

This implementation of DSR source routing protocol 

includes most of the basic facilities described in DSR–MANET 

IEEE draft, but some optimization measures like cached route 

request, and flow control are not implemented in this 

implementation. Packet salvaging, automatic route shortening 

(gratuitous route reply), caching negative information, caching 

overhead routing information and increased spreading of route 

error packets are the other options available in draft which can 

be implemented in this implementation the DSR protocol 

allows multiple routes to any destination and allows each sender 

to select and control the routes used in routing it’s  for example 

for use in load balancing or for increased robustness. Other 

advantages of the DSR protocol include easily guaranteed loop-

free routing, support for use in networks containing 

unidirectional links, use of only "soft state" in routing, and very 

rapid recovery when routes in the network change. The DSR 

protocol is designed mainly for mobile ad hoc networks of up 

to about two hundred nodes, and is designed to work well with 

even very high rates of mobility.  
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