
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

438

Abstract: This paper presents a study on DSR in MANETs using

NS2 Simulator.

Keywords: MANET

1. Introduction of MANET

The advancement in establishing a network which is self-

configuring and infrastructure less has led to development of

MANET Mobile AD-Hoc Network. But limitation of range and

unavailability of protocols for highly synchronized working

also with limitation of power supply has always been a problem.

The project aims to simulate a network for military operation in

scenario where a team of members required communicating and

topology changes are dynamic. The DSR Dynamic Source

Routing protocol which is area of research is used, for its feature

that is fast updating topologies. The MANET is one of the

widely used networks for communication where there are the

movement or mobile sources. The sources itself act as router

independently and forms a connection to all available devices

in its range. In case of natural calamity like earthquake, flood,

cyclone infrastructure based communication is bound to suffer

disturbance or lack of operability. Rescue or relief teams

generally have to be well equipped with expensive equipments

to enable communication between individuals. Introduction of

ad-hoc network based voice communication can serve well in

this purpose. Also people suffering such disaster can have a way

to communicate with each other and the rescue team. Since this

network doesn’t require any predefined setup or any non-

regular device, connectivity is instant and useful. Like any other

infrastructure less network, ad-hoc network suffers from lot of

complexities due to its dynamic nature and it fails to provide

the reliability of a structured network.

There are lots of things to be done in this field. The primary

goal of this research work is to go in deep of this field and to

make ad-hoc voice communication as close as possible to voice

communication systems available to general users in terms of

both performance and usability. A wireless ad-hoc network is a

collection of mobile/semi-mobile nodes with no pre-established

infrastructure, forming a temporary network. Each of the nodes

has a wireless interface and communicates with each other over

either radio or infrared. Laptop computers and personal digital

assistants that communicate directly with each other are some

examples of nodes in an ad-hoc network. Nodes in the ad-hoc

network are often mobile, but can also consist of stationary

nodes, such as access points to the Internet. Semi mobile nodes

can be used to deploy relay points in areas where relay points

might be needed temporarily. The outermost nodes are not

within transmitter range of each other. However, the middle

node can be used to forward packets between the outermost

nodes. The middle node is acting as a router and the three nodes

have formed an ad-hoc network. An ad-hoc network uses no

centralized administration. This is to be sure that the network

won’t collapse just because one of the mobile nodes moves out

of transmitter range of the others. Nodes should be able to

enter/leave the network as they wish. Because of the limited

transmitter range of the nodes, multiple hops may be needed to

reach other nodes. Every node wishing to participate in an

adhoc network must be willing to forward packets for other

nodes. Thus every node acts both as a host and as a router. A

node can be viewed as an abstract entity consisting of a router

and a set of affiliated mobile hosts.

A router is an entity, which, among other things runs a

routing protocol. A mobile host is simply an IP-addressable

host/entity in the traditional sense. Ad-hoc networks are also

capable of handling topology changes and malfunctions in

nodes. It is fixed through network reconfiguration. For instance,

if a node leaves the network and causes link breakages, affected

nodes can easily request new routes and the problem will be

solved. This will slightly increase the delay, but the network

will still be operational. Wireless ad-hoc networks take

advantage of the nature of the wireless communication medium.

In other words, in a wired network the physical cabling is done

a priori restricting the connection topology of the nodes. This

restriction is not present in the wireless domain and, provided

that two nodes are within transmitter range of each other, an

instantaneous link between them.

There is no clear picture of what these kinds of networks will

be used for. The suggestions vary from document sharing at

conferences to infrastructure enhancements and military

applications. In areas where no infrastructure such as the

Background Study of DSR in MANETs using

NS2 Simulator

Himanshi Tyagi1, Umer Bashir2, Ranjan Kumar Singh3

1,2M.Tech. Student, Department of Electronics and Communication Engineering, Shri Ram College of

Engineering & Management, Palwal, India
3Professor, Department of Electronics and Communication Engineering, Shri Ram College of Engineering &

Management, Palwal, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

439

Internet is available an ad-hoc network could be used by a group

of wireless mobile hosts. This can be the case in areas where a

network infrastructure may be undesirable due to reasons such

as cost or convenience. Examples of such situations include

disaster recovery personnel or military troops in cases where

the normal infrastructure is either unavailable or destroyed.

Other examples include business associates wishing to share

files in an airport terminal, or a class of students needing to

interact during a lecture. If each mobile host wishing to

communicate is equipped with a wireless local area network

interface, the group of mobile hosts may form an ad-hoc

network. Access to the 12 Internet and access to resources in

networks such as printers are features that probably also will be

supported. With more and more portable devices with Wi-Fi

radio pre-built coming into market soon it might be get some

real acceptance in the field of insecure but free voice

communication over short rage in case of campus talk or

disaster scenarios where no infrastructure might be up and

running.

2. Characteristics

Ad-hoc networks are often characterized by a dynamic

topology due to the fact that nodes change their physical

location by moving around. This favours routing protocols that

dynamically discover routes over conventional routing

algorithms like distant vector and link state. Another

characteristic is that a host/node has very limited CPU capacity,

storage capacity, battery power and bandwidth, also referred to

as a “thin client”. This means that the power usage must be

limited thus leading to a limited transmitter range. The access

media, the radio environment, also has special characteristics

that must be considered when designing protocols for ad-hoc

networks. One example of this may be unidirectional links.

These links arise when for example two nodes have different

strength on their transmitters, allowing only one of the hosts to

hear the other, but can also arise from disturbances from the

surroundings. Multi hop in a radio environment may result in

an overall transmit capacity gain and power gain, due to the

squared relation between coverage and required output power.

By using multi hop, nodes can transmit the packets with a much

lower output power.

3. Routing

Because of the fact that it may be necessary to hop several

hops multi-hop before a packet reaches the destination, a

routing protocol is needed. The routing protocol has two main

functions, selection of routes for various source destination

pairs and the delivery of messages to their correct destination.

The second function is conceptually straightforward using a

variety of protocols and data structures routing tables. Routing

protocols use metrics to evaluate what path will be the best for

a packet to travel. A metric is a standard of measurement; such

as path bandwidth, reliability, delay, current load on that path

etc; that is used by routing algorithms to determine the optimal

path to a destination. To aid the process of path determination,

routing algorithms initialize and maintain routing tables, which

contain route information.

4. Conventional protocols

The main problem with link-state and distance vector is that

they are designed for a static topology, which means that they

would have problems to converge to a steady state in an ad-hoc

network with a very frequently changing topology. Link state

and distance vector would probably work very well in an ad-

hoc network with low mobility, i.e. a network where the

topology is not changing very often. The problem that still

remains is that link-state and distance-vector are highly

dependent on periodic control messages. As the number of

network nodes can be large, the potential number of

destinations is also large. This requires large and frequent

exchange of data among the network nodes. This is in

contradiction with the fact that all updates in a wireless

interconnected ad hoc network are transmitted over the air and

thus are costly in resources such as bandwidth, battery power

and CPU. Because both link-state and distance vector tries to

maintain routes to all reachable destinations, it is necessary to

maintain these routes and this also wastes resources for the

same reason as above.

Another characteristic for conventional protocols are that

they assume bidirectional links, e.g. that the transmission

between two hosts works equally well in both directions. In the

wireless radio environment this is not always the case. Because

many of the proposed ad-hoc routing protocols have a

traditional routing protocol as underlying algorithm, it is

necessary to understand the basic operation for conventional

protocols like distance vector, link state and source routing.

A. Link state

In link-state routing, each node maintains a view of the

complete topology with a cost for each link. To keep these costs

consistent; each node periodically broadcasts the link costs of

its outgoing links to all other nodes using flooding. As each

node receives this information, it updates its view of the

network and applies a shortest path algorithm to choose the

next-hop for each destination. Some link costs in a node view

can be incorrect because of long propagation delays, partitioned

networks, etc. Such inconsistent network topology views can

lead to formation of routing-loops. These loops are however

short-lived, because they disappear in the time it takes a

message to traverse the diameter of the network.

Link state routing protocols maintain complete road map of

the network in each router running a link state routing protocol.

Each router running a link state routing protocol originates

information about the router, its directly connected links, and

the state of those links. This information is sent to all the routers

in the network as multicast messages. Link-state routing always

tries to maintain full networks topology by updating itself

incrementally whenever a change happen in network.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

440

B. Distance vector

In distance vector each node only monitors the cost of its

outgoing links, but instead of broadcasting this information to

all nodes; it periodically broadcasts to each of its neighbours an

estimate of the shortest distance to every other node in the

network. The receiving nodes then use this information to

recalculate the routing tables, by using a shortest path

algorithm. Compared to link-state, distance vector is more

computation efficient, easier to implement and requires much

less storage space. However, it is well known that distance

vector can cause the formation of both short-lived and long-

lived routing loops. The primary cause for this is that the nodes

choose their next-hops in a completely distributed manner

based on information that can be stale.

C. Source routing

Source routing means that each packet must carry the

complete path that the packet should take through the network.

The routing decision is therefore made at the source. The

advantage with this approach is that it is very easy to avoid

routing loops. The disadvantage is that each packet requires a

slight overhead.

D. Flooding

Many routing protocols uses broadcast to distribute control

information, that is, send the control information from an origin

node to all other nodes. A widely used form of broadcasting is

flooding and operates as follows. The origin node sends its

information to its neighbours in the wireless case; this means

all nodes that are within transmitter range. The neighbours relay

it to their neighbours and so on, until the packet has reached all

nodes in the network. A node will only relay a packet once and

to ensure this some sort of sequence number can be used. This

sequence number is increased for each new packet a node sends.

5. Classification

Routing protocols can be classified into different categories

depending on their properties.

 Centralized vs. Distributed

 Static vs. Adaptive

 Reactive vs. Proactive

One way to categorize the routing protocols is to divide them

into centralized and distributed algorithms. In centralized

algorithms, all route choices are made at a central node, while

in distributed algorithms, the computation of routes is shared

among the network nodes. Another classification of routing

protocols relates to whether they change routes in response to

the traffic input patterns. In static algorithms, the route used by

source-destination pairs is fixed regardless of traffic conditions.

It can only change in response to a node or link failure. This

type of algorithm cannot achieve high throughput under a broad

variety of traffic input patterns. Most major packet networks

use some form of adaptive routing where the routes used to

route between source-destination pairs may change in response

to congestion A third classification that is more related to ad-

hoc networks is to classify the routing algorithms as either

proactive or reactive. Proactive protocols attempt to

continuously evaluate the routes within the network, so that

when a packet needs to be forwarded, the route is already

known and can be immediately used. The family of Distance-

Vector protocols is an example of a proactive scheme. Reactive

protocols, on the other hand, invoke a route determination

procedure on demand only. Thus, when a route is needed, some

sort of global search procedure is employed. The family of

classical flooding algorithms belongs to the reactive group.

Proactive schemes have the advantage that when a route is

needed, the delay before actual packets can be sent is very

small. On the other side proactive schemes needs time to

converge to a steady state. This can cause problems if the

topology is changing frequently. The tools used for simulation

provides all facilities for standard comparisons by visual as well

as graph generation for simulation with event driven

programming.

6. DSR protocol description

A. Overview and important properties of the protocol

The DSR protocol is composed of two mechanisms that work

together to allow the discovery and maintenance of source

routes in the ad hoc network: Route Discovery is the

mechanism by which a node S wishing to send a packet to a

destination node D obtains a source route to D. Route Discovery

is used only when S attempts to send a packet to D and does not

already know a route to D.

Route Maintenance is the mechanism by which node S is able

to detect, while using a source route to D, if the network

topology has changed such that it can no longer use its route to

D because a link along the route no longer works. When Route

Maintenance indicates a source route is broken, S can attempt

to use any other route it happens to know to D, or can invoke

Route Discovery again to find a new route. Route Maintenance

is used only when S is actually sending packets to D. Route

Discovery and Route Maintenance each operate entirely on

demand. In particular, unlike other protocols, DSR requires no

periodic packets of any kind at any level within the network.

For example, DSR does not use any periodic routing

advertisement, link status sensing, or neighbour detection

packets, and does not rely on these functions from any

underlying protocols in the network. This entirely on-demand

behaviour and lack of periodic activity allows the number of

overhead packets caused by DSR to scale all the way down to

zero, when all nodes are approximately stationary with respect

to each other and all routes needed for current communication

have already been discovered. As nodes begin to move more or

as communication patterns change, the routing packet overhead

of DSR automatically scales to only that needed to track the

routes currently in use. In response to a single Route Discovery

(as well as through routing information from other packets

overheard), a node may learn and cache multiple routes to any

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

441

destination. This allows the reaction to routing changes to be

much more rapid, since a node with multiple routes to a

destination can try another cached route if the one it has been

using should fail. This caching of multiple routes also avoids

the overhead of needing to perform a new Route Discovery each

time a route in use breaks. The operation of Route Discovery

and Route Maintenance in DSR are designed to allow uni-

directional links and asymmetric routes to be easily supported.

In particular, as noted, it is possible that a link between two

nodes may not work equally well in both directions, due to

differing antenna or propagation patterns or sources of

interference. DSR allows such uni-directional links to be used

when necessary, improving overall performance and network

connectivity in the system. DSR also supports internetworking

between different types of wireless networks, allowing a source

route to be composed of hops over a combination of any types

of networks available. For example, some nodes in the ad hoc

network may have only short-range radios, while other nodes

have both short-range and long-range radios; the combination

of these nodes together can be considered by DSR as a single

ad hoc network. In addition, the routing of DSR has been

integrated into standard Internet routing, where a “gateway”

node connected to the Internet also participates in the ad hoc

network routing protocols; and has been integrated into Mobile

IP routing, where such a gateway node also serves the role of a

Mobile IP foreign agent.

Fig. 1. Route discovery example: node A is the initiator, and node E is the

target

B. Basic DSR route discovery

When some node S originates a new packet destined to some

other node D, it places in the header of the packet a source route

giving the sequence of hops that the packet should follow on its

way to D. Normally, S will obtain a suitable source route by

searching its Route Cache of routes previously learned, but if

no route is found in its cache, it will initiate the Route Discovery

protocol to dynamically find a new route to D. In this case, we

call S the initiator and D the target of the Route Discovery. For

example, Figure 1, illustrates an example Route Discovery, in

which a node A is attempting to discover a route to node E. To

initiate the Route Discovery, A transmits a ROUTE REQUEST

message as a single local broadcast packet, which is received

by (approximately) all nodes currently within wireless

transmission range of A. Each ROUTE REQUEST message

identifies the initiator and target of the Route Discovery, and

also contains a unique request id, determined by the initiator of

the REQUEST. Each ROUTE REQUEST also contains a

record listing the address of each intermediate node through

which this particular copy of the ROUTE REQUEST message

has been forwarded. This route record is initialized to an empty

list by the initiator of the Route Discovery.

When another node receives a ROUTE REQUEST, if it is the

target of the Route Discovery, it returns a ROUTE REPLY

message to the initiator of the Route Discovery, giving a copy

of the accumulated route record from the ROUTE REQUEST;

when the initiator receives this ROUTE REPLY, it caches this

route in its Route Cache for use in sending subsequent packets

to this destination. Otherwise, if this node receiving the ROUTE

REQUEST has recently seen another ROUTE REQUEST

message from this initiator bearing this same request id, or if it

finds that its own address is already listed in the route record in

the ROUTE REQUEST message, it discards the REQUEST.

Otherwise, this node appends its own address to the route record

in the

ROUTE REQUEST message and propagates it by

transmitting it as a local broadcast packet (with the same request

id). In returning the ROUTE REPLY to the initiator of the

Route Discovery, such as node E replying back to A in Figure

1.1, node E will typically examine its own Route Cache for a

route back to A, and if found, will use it for the source route for

delivery of the packet containing the ROUTE REPLY.

Otherwise, E may perform its own Route Discovery for target

node A, but to avoid possible infinite recursion of Route

Discoveries, it must piggyback this ROUTE REPLY on its own

ROUTE REQUEST message for A. It is also possible to

piggyback other small data packets, such as a TCP SYN packet,

on a ROUTE REQUEST using this same mechanism. Node E

could also simply reverse the sequence of hops in the route

record that it trying to send in the ROUTE REPLY, and use this

as the source route on the packet carrying the ROUTE REPLY

itself. For MAC protocols such as IEEE 802.11 that require a

bi-directional frame exchange as part of the MAC protocol, this

route reversal is preferred as it avoids the overhead of a possible

second Route Discovery, and it tests the discovered route to

ensure it is bi-directional before the Route Discovery initiator

begins using the route. However, this technique will prevent the

discovery of routes using uni-directional links. In wireless

environments where the use of uni-directional links is

permitted, such routes may in some cases be more efficient than

those with only bi-directional links, or they may be the only

way to achieve connectivity to the target node. When initiating

a Route Discovery, the sending node saves a copy of the

original packet in a local buffer called the Send Buffer. The

Send Buffer contains a copy of each packet that cannot be

transmitted by this node because it does not yet have a source

route to the packet’s destination. Each packet in the Send Buffer

is stamped with the time that it was placed into the Buffer and

is discarded after residing in the Send Buffer for some timeout

period; if necessary for preventing the Send Buffer from

overflowing, a FIFO or other replacement strategy can also be

used to evict packets before they expire. While a packet remains

in the Send Buffer, the node should occasionally initiate a new

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

442

Route Discovery for the packet’s destination address. However,

the node must limit the rate at which such new Route

Discoveries for the same address are initiated, since it is

possible that the destination node is not currently reachable. In

particular, due to the limited wireless transmission range and

the movement of the nodes in the network, the network may at

times become partitioned, meaning that there is currently no

sequence of nodes through which a packet could be forwarded

to reach the destination. Depending on the movement pattern

and the density of nodes in the network, such network partitions

may be rare or may be common.

If a new Route Discovery was initiated for each packet sent

by a node in such a situation, a large number of unproductive

ROUTE REQUEST packets would be propagated throughout

the subset of the ad hoc network reachable from this node. In

order to reduce the overhead from such Route Discoveries, we

use exponential back-off to limit the rate at which new Route

Discoveries may be initiated by any node for the same target. If

the node attempts to send additional data packets to this same

node more frequently than this limit, the subsequent packets

should be buffered in the Send Buffer until a ROUTE REPLY

is received, but the node must not initiate a new Route

Discovery until the minimum allowable interval between new

Route Discoveries for this target has been reached. This

limitation on the maximum rate of Route Discoveries for the

same target is similar to the mechanism required by Internet

nodes to limit the rate at which ARP REQUESTs are sent for

any single target IP address.

Fig. 2. Route Maintenance example: Node C is unable to forward a packet

from A to E over its link to next hop D.

C. Basic DSR route maintenance

When originating or forwarding a packet using a source

route, each node transmitting the packet is responsible for

confirming that the packet has been received by the next hop

along the source route; the packet is retransmitted (up to a

maximum number of attempts) until this confirmation of receipt

is received. For example, in the situation illustrated in Figure 2,

node A has originated a packet for E using a source route

through intermediate nodes B, C, and D. In this case, node A is

responsible for receipt of the packet at B, node B is responsible

for receipt at C, node C is responsible for receipt at D, and node

D is responsible for receipt finally at the destination E. This

confirmation of receipt in many cases may be provided at no

cost to DSR, either as an existing standard part of the MAC

protocol in use (such as the link-level acknowledgement frame

defined by IEEE 802.11, or by a passive acknowledgement (in

which, for example, B confirms receipt at C by overhearing C

transmit the packet to forward it on to D). If neither of these

confirmation mechanisms are available, the node transmitting

the packet may set a bit in the packet’s header to request a DSR-

specific software acknowledgement be returned by the next

hop; this software acknowledgement will normally be

transmitted directly to the sending node, but if the link between

these two nodes is uni-directional, this software

acknowledgement may travel over a different, multi-hop path.

If the packet is retransmitted by some hop the maximum

number of times and no receipt confirmation is received, this

node returns a ROUTE ERROR message to the original sender

of the packet, identifying the link over which the packet could

not be forwarded. For example, in Figure 2, if C is unable to

deliver the packet to the next hop D, then C returns a ROUTE

ERROR to A, stating that the link from C to D is currently

“broken.” Node A then removes this broken link from its cache;

any retransmission of the original packet is a function for upper

layer protocols such as TCP. For sending such a retransmission

or other packets to this same destination E, if A has in its Route

Cache another route to E (for example, from additional ROUTE

REPLYs from its earlier Route Discovery, or from having

overheard sufficient routing information from other packets), it

can send the packet using the new route immediately.

Otherwise, it may perform a new Route Discovery for this

target.

Fig. 3. Limitations on caching overheard routing information: Node C is

forwarding packets to E and overhears packets from X

7. Additional route discovery features

A. Caching overheard routing information

A node forwarding or otherwise overhearing any packet may

add the routing information from that packet to its own Route

Cache. In particular, the source route used in a data packet, the

accumulated route record in a ROUTE REQUEST, or the route

being returned in a ROUTE REPLY may all be cache by any

node. Routing information from any of these packets received

may be cached, whether the packet was addressed to this node,

sent to a broadcast (or multicast) MAC address, or received

while the node’s network interface is in promiscuous mode.

One limitation, however, on caching of such overheard routing

information is the possible presence of uni-directional links in

the ad hoc network. For example, Figure 4 illustrates a situation

in which node A is using a source route to communicate with

node E. As node C forwards a data packet along the route from

A to E, it can always add to its cache the presence of the

“forward” direction links that it learns from the headers of these

packets, from itself to D and from D to E. However, the

“reverse” direction of the links identified in the packet headers,

from itself back to B and from B to A, may not work for it since

these links might be uni-directional. If C knows that the links

are in fact bi-directional, for example due to the MAC protocol

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

443

in use, it could cache them but otherwise should not. Likewise,

node V in Figure 1.3 is using a different source route to

communicate with node Z. If node C overhears node X

transmitting a data packet to forward it to Y (from V), node C

should consider whether the links involved can be known to be

bi-directional or not before caching them. If the link from X to

C (over which this data packet was received) can be known to

be bi-directional, then C could cache the link from itself to X,

the link from X to Y, and the link from Y to Z. If all links can

be assumed to be bi-directional, C could also cache the links

from X to W and from W to V. Similar considerations apply to

the routing information that might be learned from forwarded

or otherwise overheard ROUTE REQUEST or ROUTE REPLY

packets.

Fig. 4. A possible duplication of route hops avoided by the Route

Discovery limitation on replying to ROUTE REQUESTs from the Route

Cache

B. Reply to ROUTE REQUESTs using Cached Routes

A node receiving a ROUTE REQUEST for which it is not

the target, searches its own Route Cache for a route to the target

of the REQUEST. If found, the node generally returns a

ROUTE REPLY to the initiator itself rather than forwarding the

ROUTE REQUEST. In the ROUTE REPLY, it sets the route

record to list the sequence of hops over which this copy of the

ROUTE REQUEST was forwarded to it, concatenated with its

own idea of the route from itself to the target from its Route

Cache. However, before transmitting a ROUTE REPLY packet

that was generated using information from its Route Cache in

this way, a node must verify that the resulting route being

returned in the ROUTE REPLY, after this concatenation,

contains no duplicate nodes listed in the route record. For

example, Figure 4 illustrates a case in which a ROUTE

REQUEST for target E has been received by node F, and node

F already has in its Route Cache a route from itself to E. The

concatenation of the accumulated route from the ROUTE

REQUEST and the cached route from F’s Route Cache would

include a duplicate node in passing from C to F and back to C.

Node F in this case could attempt to edit the route to eliminate

the duplication, resulting in a route from A to B to C to D and

on to E, but in this case, node F would not be on the route that

it returned in its own ROUTE REPLY. DSR Route Discovery

prohibits node F from returning such a ROUTE REPLY from

its cache for two reasons. First, this limitation increases the

probability that the resulting route is valid, since F in this case

should have received a ROUTE ERROR if the route had

previously stopped working. Second, this limitation means that

a ROUTE ERROR traversing the route is very likely to pass

through any node that sent the ROUTE REPLY for the route

(including F), which helps to ensure that stale data is removed

from caches (such as at F) in a timely manner. Otherwise, the

next Route Discovery initiated by A might also be contaminated

by a ROUTE REPLY from F containing the same stale route. If

the ROUTE REQUEST does not meet these restrictions, the

node (node F in this example) discards the ROUTE REQUEST

rather than replying to it or propagating it.

Fig. 5. A route reply storm could result if many nodes all reply to the same

ROUTE REQUEST from their own Route Caches. The route listed next to

each node shows the route to destination G currently listed in that node’s

Route Cache

C. Preventing route reply storms

The ability for nodes to reply to a ROUTE REQUEST based

on information in their Route Caches, could result in a possible

ROUTE REPLY “storm” in some cases. In particular, if a node

broadcasts a ROUTE REQUEST for a target node for which the

node’s neighbours have a route in their Route Caches, each

neighbour may attempt to send a ROUTE REPLY, thereby

wasting bandwidth and possibly increasing the number of

network collisions in the area. For example, in the situation

shown in Figure 5, nodes B, C, D, E, and F all receive A’s

ROUTE REQUEST for target G, and each have the indicated

route cached for this target. Normally, they would all attempt to

reply from their own Route Caches, and would all send their

REPLYs at about the same time since they all received the

broadcast ROUTE REQUEST at about the same time. Such

simultaneous replies from different nodes all receiving the

ROUTE REQUEST may create packet collisions among some

or all of these REPLIES and may cause local congestion in the

wireless network. In addition, it will often be the case that the

different replies will indicate routes of different lengths, as

shown in this example. If a node can put its network interface

into promiscuous receive mode, it should delay sending its own

ROUTE REPLY for a short period, while listening to see if the

initiating node begins using a shorter route first. That is, this

node should delay sending its own ROUTE REPLY for a

random period where h is the length in number of network hops

for the route to be returned in this node’s ROUTE REPLY, r is

a random number between 0 and 1, and H is a small constant

delay (at least twice the maximum wireless link propagation

delay) to be introduced per hop. This delay effectively

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

444

randomizes the time at which each. The route listed next to each

node shows the route to destination G currently listed in that

node’s Route Cache node sends its ROUTE REPLY, with all

nodes sending ROUTE REPLYs giving routes of length less

than H sending their REPLYs before this node, and all nodes

sending ROUTE REPLYs giving routes of length greater than

h sending their REPLYs after this node. Within the delay

period, this node promiscuously receives all packets, looking

for data packets from the initiator of this Route Discovery

destined for the target of the Discovery. If such a data packet

received by this node during the delay period uses a source

route of length less than or equal to h, this node may infer that

the initiator of the Route Discovery has already received a

ROUTE REPLY giving an equally good or better route. In this

case, this node cancels its delay timer and does not send its

ROUTE REPLY for this Route Discovery.

D. Route request hop limits

Each ROUTE REQUEST message contains a “hop limit”

that may be used to limit the number of intermediate nodes

allowed to forward that copy of the ROUTE REQUEST. As the

REQUEST is forwarded, this limit is decremented, and the

REQUEST packet is discarded if the limit reaches zero before

finding the target. We currently use this mechanism to send a

non-propagating ROUTE REQUEST (i.e., with hop limit 0) as

an inexpensive method of determining if the target is currently

a neighbour of the initiator or if a neighbour node has a route to

the target cached (effectively using the neighbours’ caches as

an extension of the initiator’s own cache). If no ROUTE

REPLY is received after a short timeout, then a propagating

ROUTE REQUEST (i.e., with no hop limit) is sent. We have

also considered using this mechanism to implement an

expanding ring search for the target [Johnson 1996a]. For

example, a node could send an initial non-propagating ROUTE

REQUEST as described above; if no ROUTE REPLY is

received for it, the node could initiate another ROUTE

REQUEST with a hop limit of 1. For each ROUTE REQUEST

initiated, if no ROUTE REPLY is received for it, the node could

double the hop limit used on the previous attempt, to

progressively explore for the target node without allowing the

ROUTE REQUEST to propagate over the entire network.

However, this expanding ring search approach could have the

effect of increasing the average latency of Route Discovery,

since multiple Discovery attempts and timeouts may be needed

before discovering a route to the target node.

8. Additional route maintenance features

1) Packet salvaging

After sending a ROUTE ERROR message as part of Route

Maintenance as described, a node may attempt to salvage the

data packet that caused the ROUTE ERROR rather than

discarding it. To attempt to salvage a packet, the node sending

a ROUTE ERROR searches its own Route Cache for a route

from itself to the destination of the packet causing the ERROR.

If such a route is found, the node may salvage the packet after

returning the ROUTE ERROR by replacing the original source

route on the packet with the route from its Route Cache. The

node then forwards the packet to the next node indicated along

this source route. For example, in Figure 6, if node C has

another route cached to node E, it can salvage the packet by

applying this route to the packet rather than discarding the

packet. When salvaging a packet in this way, the packet is also

marked as having been salvaged, to prevent a single packet

being salvaged multiple times. Otherwise, it could be possible

for the packet to enter a routing loop, as different nodes

repeatedly salvage the packet and replace the source route on

the packet with routes to each other. An alternative mechanism

of salvaging that we have considered would be to replace only

the unused suffix of the original route with the new route from

this node’s Route Cache, forming a new route whose prefix is

the original route and whose suffix is the route from the Cache.

In this case, the normal rules for avoiding duplicated nodes

being listed in a source route are sufficient to avoid routing

loops. However, this mechanism of salvaging would prevent

the new route from “backtracking” from this node to an earlier

node already traversed by this packet, to then be forwarded

along a different remaining sequence of hops to the destination.

Our current salvaging mechanism allows backtracking but

prevents a packet from being salvaged more than once.

Fig. 6. Node C notices that the source route to D can be shortened, since it

overheard a packet from A intended first for B

2) Automatic route shortening

Source routes in use may be automatically shortened if one

or more intermediate hops in the route become no longer

necessary. This mechanism of automatically shortening routes

in use is somewhat similar to the use of passive

acknowledgements. In particular, if a node is able to overhear a

packet carrying a source route (e.g., by operating its network

interface in promiscuous receive mode), then this node

examines the unused portion of that source route. If this node is

not the intended next hop for the packet but is named in the later

unused portion of the packet’s source route, then it can infer

that the intermediate nodes before itself in the source route are

no longer needed in the route. For example, Figure 1.6

illustrates an example in which node C has overheard a data

packet being transmitted from A to B, for later forwarding to C;

the arrow pointing to one node in the source route in each packet

indicates the intended next receiver of the packet along the

route.

In this case, this node (node C) returns a gratuitous ROUTE

REPLY message to the original sender of the packet (node A).

The ROUTE REPLY gives the shorter route as the

concatenation of the portion of the original source route up

through the node that transmitted the overheard packet, plus the

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

445

suffix of the original source route beginning with the node

returning the gratuitous ROUTE REPLY. In this example, the

Route returned in10 the gratuitous ROUTE REPLY message

sent from C to A.

3) Increased spreading of route error messages

When a source node receives a ROUTE ERROR for a data

packet that it originated, this source node propagates this

ROUTE ERROR to its neighbours by piggybacking it on its

next ROUTE REQUEST. In this way, stale information in the

caches of nodes around this source node will not generate

ROUTE REPLYs that contain the same invalid link for which

this source node received the ROUTE ERROR. For example,

in the situation shown in Figure 1.5.b, node A learns from the

ROUTE ERROR message from C, that the link from C to D is

currently broken. It thus removes this link from its own Route

Cache and initiates a new Route Discovery (if it doesn’t have

another route to E in its Route Cache). On the ROUTE

REQUEST packet initiating this Route Discovery, node A

piggybacks a copy of this ROUTE ERROR message, ensuring

that the ROUTE ERROR message spreads well to other nodes,

and guaranteeing that any ROUTE REPLY that it receives

(including those from other node’s Route Caches) in response

to this ROUTE REQUEST does not contain a route that

assumes the existence of this broken link. We have also

considered, but not simulated, a further improvement to Route

Maintenance in which a node, such as A in Figure 1.4, that

receives a ROUTE ERROR will forward the ERROR along the

same source route that resulted in the ERROR. This will almost

guarantee that the ROUTE ERROR reaches the node that

generated the ROUTE REPLY containing the broken link,

which will prevent that node from contaminating a future Route

Discovery with the same broken link.

In some cases, DSR could potentially benefit from nodes

caching “negative” information in their Route Caches. For

example, in Figure 7, if node A caches the fact that the link from

C to D is currently broken (rather than simply removing this

hop from its Route Cache), it can guarantee that no ROUTE

REPLY that it receives in response to its new Route Discovery

will be accepted that utilizes this broken link. A short expiration

period must be placed on this negative cached information,

since while this entry is in its Route Cache, A will otherwise

refuse to allow this link in its cache, even if this link begins

working again. Another case in which caching negative

information in a node’s Route Cache might be useful is the case

in which a link is providing highly variable service, sometimes

working correctly but often not working. This situation could

occur, for example, in the case in which the link is near the limit

of the sending node’s wireless transmission range and there are

significant sources of interference (e.g., multipath) near the

receiving node on this link. In this case, by caching the negative

information that this link is broken, a node could avoid adding

this problematic link back to its Route Cache during the brief

periods in which it is working correctly.

We have not currently included this caching of negative

information in our simulations or implementation of DSR,

although we have found situations in our DSR test bed

implementation where it could potentially improve the

performance of Route Discovery. A challenge in implementing

the caching of negative information that we are currently

researching is the difficulty of picking a suitable expiration

period for such cache entries.

Fig. 7. An ad hoc network consisting of nodes communicating via short

range radios, with nodes A, B, and C also having long-range radios.

Communication between other nodes such as X and Y may involve multiple

short-range hops, followed by a long-range hop, followed by additional short-

range hops

4) Support for heterogeneous networks and mobile IP

In configuring and deploying an ad hoc network, in many

cases, all nodes will be equipped with the same type of wireless

network interfaces, allowing simple routing between nodes

over arbitrary sequences of network hops. However, a more

flexible configuration might be to also equip a subset of the

nodes with a second and C also having long-range radios.

Communication between other nodes such as X and Y may

involve multiple short-range hops, followed by a long-range

hop, followed by additional short-range hops network interface

consisting of a longer-range (and thus generally lower speed)

wireless network interface. For example, in a military setting, a

group of soldiers might all use short-range radios to

communicate among themselves, while relaying through truck-

mounted higher power radios to communicate with other

groups. This general type of network configuration is the ad hoc

networking equivalent of wireless overlay networks. Due to the

high degree of locality likely to be present among directly

cooperating nodes communicating with each other, such a

network configuration would allow high speed communication

among such cooperating nodes, while at the same time allowing

communication with other nodes further away without

requiring very large numbers of network hops. The longer-

range radios might also allow gaps between different groups of

nodes to be spanned, reducing the probability of network

partition. A simple example of such an ad hoc network

configuration is shown in Figure 8. Nodes A, B, and C, here,

each have both short-range and long-range radio interfaces, all

other nodes in the ad hoc network have only short-range radio

network interfaces. Node X is using a source route to node Y

that uses a sequence of both short-range and long-range hops.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

446

Fig. 8. An ad hoc network consisting of nodes with heterogeneous

network interfaces

9. Use of interface indices in DSR

DSR supports automatic, seamless routing in these and other

heterogeneous configurations, through its logical addressing

model. Using conventional IP addressing, each ad hoc network

node would configure a different IP address for each of its

possibly many network interfaces, but as noted, each node using

DSR chooses one of these as its home address to use for all

communication while in the ad hoc network. This use of a single

IP address per node gives DSR the ability to treat the overall

network as single routing domain. To then distinguish between

the different network interfaces on a node, each node

independently assigns a locally unique interface index to each

of its own network interfaces. The interface index for any

network interface on a node is an opaque value assigned by the

node itself. The particular value chosen must be unique among

the network interfaces on that individual node but need have no

other significance and need not be coordinated with any other

nodes in choosing their own interface indices. On many

operating systems, a unique value to identify each network

interface is already available and can be used for this purpose;

for example, the if index field in the if net structure for a

network interface in BSD Unix-based networking stacks can be

used directly by a node for the interface index for that network

interface. For example, Figure 8 illustrates a simple ad hoc

network of four nodes, in which node A is using one type of

network interface (represented by the triangles), node C and

node D are using an different type of physical network interface

(represented by the circles), and node B is configured with both

types of network interfaces and can forward packets between

the two different types of radio technologies. The number

labeling each network interface indicates the interface index

chosen by the corresponding node for that interface. Since the

interface indices are chosen independently by each node, it is

possible, for example, that nodes B and D each chose index 1

for their circle network interfaces, but node C chooses index 4.

The interface index is used as part of each hop in each source

route discovered and used by DSR. Specifically, a path through

the ad hoc network from a source node N0 to a destination node

Nm is fully represented as a series of hops, where the notation

Nk/ik is used to indicate that node Nk must transmit the packet

using its network interface ik in order to deliver the packet over

the next hop to node. In forwarding a ROUTE REQUEST, a

node adds to the route record in the REQUEST, not only its own

address (Section 3.2), but also the interface index of its own

network interface on which it forwards the packet. To allow the

reversing of a sequence of hops for a reverse route back to the

originating node (when, for example, the existence of bi-

directional links can by assumed based on the underlying MAC

protocol), the node forwarding the ROUTE REQUEST may

also add to the route record in the REQUEST, the interface

index of its own network interface on which it received the

ROUTE REQUEST packet. The interface indices to represent

a route are carried in the ROUTE REQUEST, the ROUTE

REPLY, and the source route in the header of data packets.

1) Internet interconnection and mobile IP

DSR supports the seamless interoperation between an ad hoc

network and the Internet, allowing packets to transparently be

routed from the ad hoc network to nodes in the Internet and

from the Internet to nodes in the ad hoc network. To enable this

interoperation, one (or more) nodes in the ad hoc network must

be connected to the Internet, such that it participates in the ad

hoc network through DSR, and also participates in the Internet

through standard IP routing. We call such a node a gateway

between the ad hoc network and the Internet. In this way, DSR

allows the coverage range around a wireless Internet base

station, for example, to be dynamically enlarged through

multiple “hops” between nodes through the ad hoc network. It

is also possible for such a gateway node to operate as a Mobile

IP home agent or foreign agent, allowing nodes to visit the ad

hoc network as a Mobile IP foreign network, and allowing

nodes whose home network is the ad hoc network to visit other

networks using Mobile IP.

This functionality of interconnection with the Internet is

implemented through two special reserved interface index

values, used by gateway nodes to identify their interconnection

to the Internet. If the node has a separate physical network

interface by which it connects to the Internet, other than the

network interface(s) that it uses for participation in the ad hoc

network, the reserved interface index is used to identify that

interface. However, it is also possible for a node to use a single

network interface both for participation in the ad hoc network

and also for connection to the Internet through standard IP

routing; in this case, the reserved interface index identifies the

logically separate functionality of this interface for its Internet

connection, and the node uses another (locally assigned)

interface index value to identify this interface in its separate

logical function of participation in the ad hoc network. If the

gateway node is acting as a Mobile IP home agent or foreign

agent (termed a mobility agent) on this network interface, it

uses the reserved interface index value IF_INDEX_MA.

Otherwise, the gateway node uses the reserved value

IF_INDEX_ROUTER. The distinction between the reserved

index values for mobility agents and for routers allows mobility

agents to advertise their existence (as needed for Mobile IP) at

no cost. A node in the ad hoc network that processes a routing

header listing the interface index IF_INDEX_MA can then send

a unicast Mobile IPAGENT to the corresponding address in

the routing header to obtain complete information about the

Mobile IP services being provided. In processing a received

ROUTE REQUEST, a gateway node generates a ROUTE

REPLY, giving its reserved interface index value, if it believes

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

447

it may be able to reach the target node through its Internet

connection. Thus, the originator of the Route Discovery may

receive REPLYs both from the gateway and from the node

itself, if the node is really present in the ad hoc network. When

later sending packets to this destination, the sender should

prefer cached routes that do not traverse a hop with an interface

index of IF_INDEX_MA or IF_INDEX_ROUTER, since this

will prefer Routes that lead directly to the destination node

within the ad hoc network.

2) Multicast routing with DSR

DSR does not currently support true multicast routing, but

does support an approximation of this that is sufficient in many

network contexts. Through an extension of the Route Discovery

mechanism, DSR supports the controlled flooding of a data

packet to all nodes in the ad hoc network that are within some

specified number of hops of the originator; these nodes may

then apply destination address filtering (e.g., in software) to

limit the packet to those nodes subscribed to the packet’s

indicated multicast destination address. While this mechanism

does not support pruning of the broadcast tree to conserve

network resources, it can be used to distribute information to all

nodes in the ad hoc network subscribed to the destination

multicast address. This mechanism may also be useful for

sending application level packets to all nodes in a limited range

around the sender.

To utilize this form of multicasting, when an application on

a DSR node sends a packet to a multicast destination address,

DSR piggybacks the data from the packet inside a ROUTE

REQUEST targeted at the multicast address. The normal

ROUTE REQUEST propagation scheme described in Section

3.2 will result in this packet being efficiently distributed to all

nodes in the network within the specified hop count (TTL) of

the originator. After forwarding the packet as defined for Route

Discovery, each receiving node then individually examines the

destination address of the packet and discards the packet if it is

destined to a multicast address to which this node is not

subscribed.

3) Location of DSR functions

When designing DSR, we had to determine at what layer

within the protocol hierarchy to implement ad hoc network

routing. We considered two different options: routing at the link

layer and routing at the network layer. Originally, we opted to

route at the link layer for several reasons:

Pragmatically, running the DSR protocol at the link layer

maximizes the number of mobile nodes that can participate in

ad hoc networks. For example, the protocol can route equally

well between IPv4, IPv6 and IPX nodes.

 Historically, as described more fully in Section 5, DSR

grew from our contemplation of a multi-hop propagating

version of the Internet’s Address Resolution Protocol (ARP), as

well as from the routing mechanism used in IEEE 802 source

routing bridges. These are layer 2 protocols.

Technically, we designed DSR to be simple enough that that

it could be implemented directly in the firmware inside wireless

network interface cards, well below the layer 3 software within

a mobile node. We see great potential in this for DSR running

inside a cloud of mobile nodes around a fixed base station,

where DSR would act to transparently extend the coverage

range to these nodes. Mobile nodes that would otherwise be

unable to communicate with the base station due to factors such

as distance, fading, or local interference sources could then

reach the base station through their peers.

4) NS2 (network simulator)

Network Simulator (Version 2), widely known as NS2, is

simply an event driven simulation tool that has proved useful in

studying the dynamic nature of communication networks.

Simulation of wired as well as wireless network functions and

protocols (e.g., routing algorithms, TCP, UDP) can be done

using NS2. In general, NS2 provides users with a way of

specifying such network protocols and simulating their

corresponding behaviours. Due to its flexibility and modular

nature, NS2 has gained constant popularity in the networking

research community since its birth in 1989. Ever since, several

revolutions and revisions have marked the growing maturity of

the tool, thanks to substantial contributions from the players in

the field. Among these are the University of California and

Cornell University who developed the REAL network

simulator,1 the foundation which NS is based on. Since 1995

the Defence Advanced Research Projects Agency (DARPA)

supported development of NS through the Virtual Inter-

Network Test-bed (VINT) project, Currently the National

Science Foundation (NSF) has joined the ride in development.

Last but not the least, the group of researchers and developers

in the community are constantly working to keep NS2 strong

and versatile. Again, the main objective of this book is to

provide the readers with insights into the NS2 architecture.

Researchers of IEEE Institute of Electrical and Electronics

Engineering has described problem over simulation and no

proper working for DSR has been implemented on NS2.

NS2 consists of two key languages: C++ and Object-oriented

Tool Command Language. While the C++ defines the internal

mechanism (i.e., a backend) of the simulation objects, the OTcl

sets up simulation by assembling and configuring the objects as

well as scheduling discrete events. The C++ and the OTcl are

linked together using TclCL. Mapped to a C++ object, variables

in the OTcl domains are sometimes referred to as handles.

Conceptually, a handle (e.g., n as a Node handle) is just a string

in the OTcl domain, and does not contain any functionality.

Instead, the functionality (e.g., receiving a packet) is defined in

the mapped C++ object (e.g., of class Connector). In the OTcl

domain, a handle acts as a frontend which interacts with users

and other OTcl objects. It may define its own procedures and

variables to facilitate the interaction. Note that the member

procedures and variables in the OTcl domain are called instance

procedures (instprocs) and instance variables (instvars),

respectively. Before proceeding further, the readers are

encouraged to learn C++ and OTcl languages. NS2 provides a

large number of built-in C++ objects. It is advisable to use these

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-7, July-2019

www.ijresm.com | ISSN (Online): 2581-5792

448

C++ objects to set up a simulation using a Tcl simulation script.

However, advance users may find these objects insufficient.

They need to develop their own C++ objects, and use a OTcl

configuration interface to put together these objects. After

simulation, NS2 outputs either text-based or animation-based

simulation results. To interpret these results graphically and

interactively, tools such as NAM and XGraph are used. To

analyze a particular behaviour of the network, users can extract

a relevant subset of text-based data and transform it to a more

conceivable presentation.

The project stands for the simulating purpose with research

purpose its only field of design. Many researchers have given

DSR and MANET related projects but no such implementation

which supports both consecutively is done with real case

scenarios. Till now only Routing protocols are compared or

implemented solemnly on pseudo networks. But this project

deals with real cases and each constraint are taken in account to

verify its correctness by graph and visualizing each packet of

information. Some salient features of the project are:

 Real Time Scenario for implementation.

 Constraints are taken in best of knowledge of area.

 Graph and visual description of project.

 Bandwidth for Voice Communication is taken in

consideration.

10. Conclusion

This implementation of DSR source routing protocol

includes most of the basic facilities described in DSR–MANET

IEEE draft, but some optimization measures like cached route

request, and flow control are not implemented in this

implementation. Packet salvaging, automatic route shortening

(gratuitous route reply), caching negative information, caching

overhead routing information and increased spreading of route

error packets are the other options available in draft which can

be implemented in this implementation the DSR protocol

allows multiple routes to any destination and allows each sender

to select and control the routes used in routing it’s for example

for use in load balancing or for increased robustness. Other

advantages of the DSR protocol include easily guaranteed loop-

free routing, support for use in networks containing

unidirectional links, use of only "soft state" in routing, and very

rapid recovery when routes in the network change. The DSR

protocol is designed mainly for mobile ad hoc networks of up

to about two hundred nodes, and is designed to work well with

even very high rates of mobility.

References

[1] A Jean Marie and L Gun Parallel queues with resequencing Journal of

ACM, Vol. 40, Nov. 1993, 1188-1208.

[2] M. Aissani, M. R. Senouci, W. Demigna and A. Mellouk, "Optimizations

and Performance Study of the Dynamic Source Routing

Protocol," International Conference on Networking and Services (ICNS

'07), Athens, 2007, pp. 107-107.
[3] Z. G. Al-Mekhlafi and R. Hassan, "Evaluation study on routing

information protocol and dynamic source routing in Ad-Hoc

network," 2011 7th International Conference on Information Technology
in Asia, Kuching, Sarawak, 2011, pp. 1-4.

[4] K. A. Anang, L. Bello, T. I. Eneh, P. Bakalis and P. B. Rpajic, "The

performance of dynamic source routing protocol to path loss models at
carrier frequencies above 2 GHz," 2011 IEEE 13th International

Conference on Communication Technology, Jinan, 2011, pp. 151-155.
[5] Ali Norouzi IJCSNS International Journal of Computer Science and

Network Security, vol. 10, no. 6, June 2010

[6] Braden, R., "Requirements for Internet Hosts - Communication Layers"
RFC Editor, United States, October 1989.

[7] Boon-Chong Seet, Bu-Sung Lee, Chiew-Tong Lau, Optimisation of Route

Discovery for dynamic source routing in ad hoc networks, IET Journals
& Magzines, October 2003.

[8] Borrong Chen and C. Hwa Chang, “Mobility Impact on Energy

Conservation of Ad-hoc Routing Protocols”, SSGRR 2003, Italy, July–
August 2003.

[9] Baisakh International Journal of Computer Applications (0975 – 8887)

Volume 68, No.20, April 2013
[10] Chris Karlof and David Wagner, Secure routing in wireless sensor

networks: attacks and countermeasures, 2003

[11] C Hedrick Routing information protocol Internet Request for Comments
RFC 1058, June 1998.

[12] C. Siva Ram Murthy, B. S. Manoj, “Ad Hoc Wireless Networks

Architecture and Protocols”, 2nd ed, Pearson Education, 2005.
[13] C. Yu, B. Lee, H. Youn, “Energy Efficient Routing Protocols for Mobile

Ad Hoc Networks”, Wireless Communication and Mobile Computing,

Wireless Com. Mob. Computing (2003).

