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Abstract: Number theory, branch of mathematics concerned 

with properties of the positive integers (1, 2, 3 …). Sometimes 

called “higher arithmetic,” it is among the oldest and most natural 

of mathematical pursuits. Number theory has always fascinated 

amateurs as well as professional mathematicians. In contrast to 

other branches of mathematics, many of the problems and 

theorems of number theory can be understood by laypersons, 

although solutions to the problems and proofs of the theorems 

often require a sophisticated mathematical background. Until the 

mid-20th century, number theory was considered the purest 

branch of mathematics, with no direct applications to the real 

world. The advent of digital computers and digital 

communications revealed that number theory could provide 

unexpected answers to real-world problems. At the same time, 

improvements in computer technology enabled number theorists 

to make remarkable advances in factoring large numbers, 

determining primes, testing conjectures, and solving numerical 

problems once considered out of reach. Modern number theory is 

a broad subject that is classified into subheadings such as 

elementary number theory, algebraic number theory, analytic 

number theory, geometric number theory, and probabilistic 

number theory. These categories reflect the methods used to 

address problems concerning the integers. 

 
Keywords: Enter key words or phrases in alphabetical order, 

separated by commas.  

1. Introduction 

Number theory (or arithmetic or higher arithmetic in older 

usage) is a branch of pure mathematics devoted primarily to the 

study of the integers. German mathematician Carl Friedrich 

Gauss (1777–1855) said, "Mathematics is the queen of the 

sciences—and number theory is the queen of 

mathematics." Number theorists study prime numbers as well 

as the properties of objects made out of integers (for 

example, rational numbers) or defined as generalizations of the 

integers (for example, algebraic integers). Integers can be 

considered either in themselves or as solutions to equations 

(Diophantine geometry). Questions in number theory are often 

best understood through the study of analytical objects (for 

example, the Riemann zeta function) that encode properties of 

the integers, primes or other number-theoretic objects in some 

fashion (analytic number theory). One may also study real 

numbers in relation to rational numbers, for example, as 

approximated by the latter (Diophantine approximation). 

 

The older term for number theory is arithmetic. By the early 

twentieth century, it had been superseded by "number 

theory". (The word "arithmetic" is used by the general public to 

mean "elementary calculations"; it has also acquired other 

meanings in mathematical logic, as in Peano arithmetic, 

and computer science, as in floating point arithmetic.) The use 

of the term arithmetic for number theory regained some ground 

in the second half of the 20th century, arguably in part due to 

French influence. In particular, arithmetical is preferred as an 

adjective to number-theoretic. 

2. Dawn of arithmetic 

The first historical find of an arithmetical nature is a fragment 

of a table: the broken clay tablet Plimpton 322 ( Larsa , 

Mesopotamia, ca. 1800 BCE) contains a list of "Pythagorean 

triples", that is, integers  such that . The triples are too many and 

too large to have been obtained by brute force. The heading 

over the first column reads: "The takiltum of the diagonal which 

has been subtracted such that the width..."  

A. The Plimpton 322 tablet 

The table's layout suggests that it was constructed by means 

of what amounts, in modern language, to the identity which is 

implicit in routine Old Babylonian exercises. If some other 

methodwas used, the triples were first constructed and then 

reordered by , presumably for actual use as a "table", for 

example, with a view to applications. It is not known what these 

applications may have been, or whether there could have been 

any; Babylonian astronomy, for example, truly came into its 

own only later. It has been suggested instead that the table was 

a source of numerical examples for school problems.  

While Babylonian number theory—or what survives 

of Babylonian mathematics that can be called thus—consists of 

this single, striking fragment, Babylonian algebra (in the 

secondary-school sense of "algebra") was exceptionally well 

developed. Late Neoplatonic sources state 

that Pythagoras learned mathematics from the Babylonians. 

Much earlier sources state that Thales and Pythagoras traveled 

and studied in Egypt. 

Euclid IX 21–34 is very probably Pythagorean;  it is very 

simple material ("odd times even is even", "if an odd number 

measures [= divides] an even number, then it also measures [= 
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divides] half of it"), but it is all that is needed to prove 

that  is irrational. Pythagorean mystics gave great importance 

to the odd and the even. The discovery that  is irrational is 

credited to the early Pythagoreans (pre-Theodorus). By 

revealing (in modern terms) that numbers could be irrational, 

this discovery seems to have provoked the first foundational 

crisis in mathematical history; its proof or its divulgation are 

sometimes credited to Hippasus, who was expelled or split from 

the Pythagorean sect. This forced a distinction 

between numbers (integers and the rationals—the subjects of 

arithmetic), on the one hand, 

and lengths and proportions (which we would identify with 

real numbers, whether rational or not), on the other hand. 

The Pythagorean tradition spoke also of so-

called polygonal or figurate numbers. While square numbers, 

cubic numbers, etc., are seen now as more natural than 

triangular numbers, pentagonal numbers, etc., the study of the 

sums of triangular and pentagonal numbers would prove fruitful 

in the early modern period (17th to early 19th century). 

We know of no clearly arithmetical material in ancient 

Egyptian or Vedic sources, though there is some algebra in 

both. The Chinese remainder theorem appears as an 

exercise in Sunzi Suanjing (3rd, 4th or 5th century CE.)  

There is also some numerical mysticism in Chinese 

mathematics, but, unlike that of the Pythagoreans, it seems to 

have led nowhere. Like the Pythagoreans' perfect 

numbers, magic squares have passed from superstition into 

recreation. 

B. Classical greece and the early hellenistic period 

Aside from a few fragments, the mathematics of Classical 

Greece is known to us either through the reports of 

contemporary non-mathematicians or through mathematical 

works from the early Hellenistic period. In the case of number 

theory, this means, by and large, Plato and Euclid, respectively. 

While Asian mathematics influenced Greek and Hellenistic 

learning, it seems to be the case that Greek mathematics is also 

an indigenous tradition. 

Eusebius, PE X, chapter 4 mentions of Pythagoras: 

"In fact they said Pythagoras, while busily studying the 

wisdom of each nation, visited Babylon, and Egypt, and all 

Persia, being instructed by the Magi and the priests: and in 

addition to these he is related to have studied under the 

Brahmans (these are Indian philosophers); and from some he 

gathered astrology, from others geometry, and arithmetic and 

music from others, and different things from different nations, 

and only from the wise men of Greece did he get nothing, 

wedded as they were to a poverty and dearth of wisdom: so on 

the contrary he himself became the author of instruction to the 

Greeks in the learning which he had procured from abroad."  

Aristotle claimed that the philosophy of Plato closely 

followed the teachings of the Pythagoreans, and Cicero repeats 

this claim: Platonem ferunt didicisse Pythagorea omnia ("They 

say Plato learned all things Pythagorean"). Plato had a keen 

interest in mathematics, and distinguished clearly between 

arithmetic and calculation. (By arithmetic he meant, in part, 

theorising on number, rather than what arithmetic or number 

theory have come to mean.) It is through one of Plato's 

dialogues—namely, Theaetetus—that we know 

that Theodorus had proven that  are irrational. Theaetetus was, 

like Plato, a disciple of Theodorus's; he worked on 

distinguishing different kinds of incommensurables, and was 

thus arguably a pioneer in the study of number systems. (Book 

X of Euclid's Elements is described by Pappus as being largely 

based on Theaetetus's work.) 

Euclid devoted part of his Elements to prime numbers and 

divisibility, topics that belong unambiguously to number theory 

and are basic to it (Books VII to IX of Euclid's Elements). In 

particular, he gave an algorithm for computing the greatest 

common divisor of two numbers (the Euclidean 

algorithm; Elements, Prop. VII.2) and the first known proof of 

the infinitude of primes (Elements, Prop. IX.20). 

In 1773, Lessing published an epigram he had found in a 

manuscript during his work as a librarian; it claimed to be a 

letter sent by Archimedes to Eratosthenes. The epigram 

proposed what has become known as Archimedes's cattle 

problem; its solution (absent from the manuscript) requires 

solving an indeterminate quadratic equation (which reduces to 

what would later be misnamed Pell's equation). As far as we 

know, such equations were first successfully treated by 

the Indian school. It is not known whether Archimedes himself 

had a method of solution. 

C. Diophantus 

Very little is known about Diophantus of Alexandria; he 

probably lived in the third century CE, that is, about five 

hundred years after Euclid. Six out of the thirteen books of 

Diophantus's Arithmetica survive in the original Greek; four 

more books survive in an Arabic translation. The Arithmetica is 

a collection of worked-out problems where the task is 

invariably to find rational solutions to a system of polynomial 

equations, usually of the form  or . Thus, nowadays, we speak 

of Diophantine equations when we speak of polynomial 

equations to which rational or integer solutions must be found. 

Diophantus also studied the equations of some non-rational 

curves, for which no rational parametrisation is possible. He 

managed to find some rational points on these curves (elliptic 

curves, as it happens, in what seems to be their first known 

occurrence) by means of what amounts to a tangent 

construction: translated into coordinate geometry (which did 

not exist in Diophantus's time), his method would be visualised 

as drawing a tangent to a curve at a known rational point, and 

then finding the other point of intersection of the tangent with 

the curve; that other point is a new rational point. (Diophantus 

also resorted to what could be called a special case of a secant 

construction.) 

While Diophantus was concerned largely with rational 

solutions, he assumed some results on integer numbers, in 

particular that every integer is the sum of four squares (though 

he never stated as much explicitly). 
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D. Āryabhaṭa, Brahmagupta, Bhāskara 

While Greek astronomy probably influenced Indian learning, 

to the point of introducing trigonometry, it seems to be the case 

that Indian mathematics is otherwise an indigenous tradition; in 

particular, there is no evidence that Euclid's Elements reached 

India before the 18th century.  

Āryabhaṭa (476–550 CE) showed that pairs of simultaneous 

congruences , could be solved by a method he called kuṭṭaka, 

or pulveriser; this is a procedure close to (a generalisation of) 

the Euclidean algorithm, which was probably discovered 

independently in India. Āryabhaṭa seems to have had in mind 

applications to astronomical calculations.  

Brahmagupta (628 CE) started the systematic study of 

indefinite quadratic equations—in particular, the 

misnamed Pell equation, in which Archimedes may have first 

been interested, and which did not start to be solved in the West 

until the time of Fermat and Euler. Later Sanskrit authors would 

follow, using Brahmagupta's technical terminology. A general 

procedure (the chakravala, or "cyclic method") for solving 

Pell's equation was finally found by Jayadeva (cited in the 

eleventh century; his work is otherwise lost); the earliest 

surviving exposition appears in Bhāskara II's Bīja-gaṇita 

(twelfth century).  

Indian mathematics remained largely unknown in Europe 

until the late eighteenth century; Brahmagupta and Bhāskara's 

work was translated into English in 1817 by Henry Colebrooke. 

E. Arithmetic in the islamic golden age 

Al-Haytham seen by the West: frontispice of Selenographia, 

showing Alhasen representing knowledge through reason, and 

Galileo representing knowledge through the senses. 

In the early ninth century, the caliph Al-Ma'mun ordered 

translations of many Greek mathematical works and at least one 

Sanskrit work. Diophantus's main work, the Arithmetica, was 

translated into Arabic by Qusta ibn Luqa (820–912). Part of the 

treatise al-Fakhri (by al-Karajī, 953 – ca. 1029) builds on it to 

some extent. According to Rashed Roshdi, Al-Karajī's 

contemporary Ibn al-Haytham knew what would later be 

called Wilson's theorem. 

 Main subdivisions 

 Elementary tools 

The term elementary generally denotes a method that does 

not use complex analysis. For example, the prime number 

theorem was first proven using complex analysis in 1896, but 

an elementary proof was found only in 1949 

by Erdős and Selberg. The term is somewhat ambiguous: for 

example, proofs based on complex Tauberian theorems (for 

example, Wiener–Ikehara) are often seen as quite enlightening 

but not elementary, in spite of using Fourier analysis, rather 

than complex analysis as such. Here as elsewhere, 

an elementary proof may be longer and more difficult for most 

readers than a non-elementary one. 

Number theory has the reputation of being a field many of 

whose results can be stated to the layperson. At the same time, 

the proofs of these results are not particularly accessible, in part 

because the range of tools they use is, if anything, unusually 

broad within mathematics.  

1) Analytic number theory 

Riemann zeta function ζ(s) in the complex plane. The color 

of a point sgives the value of ζ(s): dark colors denote values 

close to zero and hue gives the value's argument. The action of 

the modular group on the upper half plane. The region in grey 

is the standard fundamental domain. 

Analytic number theory may be defined 

 In terms of its tools, as the study of the integers by 

means of tools from real and complex analysis; or 

 In terms of its concerns, as the study within number 

theory of estimates on size and density, as opposed to 

identities.  

Some subjects generally considered to be part of analytic 

number theory, for example, sieve theory, are better covered by 

the second rather than the first definition: some of sieve theory, 

for instance, uses little analysis, yet it does belong to analytic 

number theory. 

The following are examples of problems in analytic number 

theory: the prime number theorem, the Goldbach conjecture (or 

the twin prime conjecture, or the Hardy–Littlewood 

conjectures), the Waring problem and the Riemann hypothesis. 

Some of the most important tools of analytic number theory are 

the circle method, sieve methods and L-functions (or, rather, 

the study of their properties). The theory of modular 

forms (and, more generally, automorphic forms) also occupies 

an increasingly central place in the toolbox of analytic number 

theory.  

One may ask analytic questions about algebraic numbers, 

and use analytic means to answer such questions; it is thus that 

algebraic and analytic number theory intersect. For example, 

one may define prime ideals (generalizations of prime 

numbers in the field of algebraic numbers) and ask how many 

prime ideals there are up to a certain size. This question can be 

answered by means of an examination of Dedekind zeta 

functions, which are generalizations of the Riemann zeta 

function, a key analytic object at the roots of the subject. This 

is an example of a general procedure in analytic number theory: 

deriving information about the distribution of a sequence (here, 

prime ideals or prime numbers) from the analytic behavior of 

an appropriately constructed complex-valued function.  

2) Algebraic number theory 

An algebraic number is any complex number that is a 

solution to some polynomial equation  with rational 

coefficients; for example, every solution  of  (say) is an 

algebraic number. Fields of algebraic numbers are also 

called algebraic number fields, or shortly number fields. 

Algebraic number theory studies algebraic number 

fields.[81] Thus, analytic and algebraic number theory can and 

do overlap: the former is defined by its methods, the latter by 

its objects of study. It could be argued that the simplest kind of 

number fields (viz., quadratic fields) were already studied by 
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Gauss, as the discussion of quadratic forms in Disquisitiones 

arithmeticae can be restated in terms of ideals and norms in 

quadratic fields. (A quadratic field consists of all numbers of 

the form , where  and are rational numbers and  is a fixed 

rational number whose square root is not rational.) For that 

matter, the 11th-century chakravala method amounts—in 

modern terms—to an algorithm for finding the units of a real 

quadratic number field. However, neither Bhāskara nor Gauss 

knew of number fields as such. 

3) Diophantine geometry 

The central problem of Diophantine geometry is to 

determine when a Diophantine equation has solutions, and if it 

does, how many. The approach taken is to think of the solutions 

of an equation as a geometric object. 

For example, an equation in two variables defines a curve in 

the plane. More generally, an equation, or system of equations, 

in two or more variables defines a curve, a surface or some 

other such object in n-dimensional space. In Diophantine 

geometry, one asks whether there are any rational 

points (points all of whose coordinates are rationals) or integral 

points (points all of whose coordinates are integers) on the 

curve or surface. If there are any such points, the next step is to 

ask how many there are and how they are distributed. A basic 

question in this direction is: are there finitely or infinitely many 

rational points on a given curve (or surface)? What about 

integer points? 

4) Other subfields 

The areas below date from no earlier than the mid-twentieth 

century, even if they are based on older material. For example, 

as is explained below, the matter of algorithms in number 

theory is very old, in some sense older than the concept of 

proof; at the same time, the modern study 

of computability dates only from the 1930s and 1940s, 

and computational complexity theory from the 1970s. 

5) Probabilistic number theory 

Take a number at random between one and a million. How 

likely is it to be prime? This is just another way of asking how 

many primes there are between one and a million. Further: how 

many prime divisors will it have, on average? How many 

divisors will it have altogether, and with what likelihood? What 

is the probability that it will have many more or many fewer 

divisors or prime divisors than the average? 

Much of probabilistic number theory can be seen as an 

important special case of the study of variables that are almost, 

but not quite, mutually independent. For example, the event that 

a random integer between one and a million be divisible by two 

and the event that it be divisible by three are almost 

independent, but not quite. 

It is sometimes said that probabilistic combinatorics uses the 

fact that whatever happens with probability greater than  must 

happen sometimes; one may say with equal justice that many 

applications of probabilistic number theory hinge on the fact 

that whatever is unusual must be rare. If certain algebraic 

objects (say, rational or integer solutions to certain equations) 

can be shown to be in the tail of certain sensibly defined 

distributions, it follows that there must be few of them; this is a 

very concrete non-probabilistic statement following from a 

probabilistic one. 

At times, a non-rigorous, probabilistic approach leads to a 

number of heuristic algorithms and open problems, 

notably Cramér's conjecture. 

6) Arithmetic combinatoZ-rics 

Let A be a set of N integers. Consider the set A + A = 

{ m + n | m, n ∈ A } consisting of all sums of two elements of A. 

Is A + A much larger than A? Barely larger? If A + A is barely 

larger than A, must A have plenty of arithmetic structure, for 

example, does A resemble an arithmetic progression? 

7) Computations in number theory 

While the word algorithm goes back only to certain readers 

of al-Khwārizmī, careful descriptions of methods of solution 

are older than proofs: such methods (that is, algorithms) are as 

old as any recognisable mathematics—ancient Egyptian, 

Babylonian, Vedic, Chinese—whereas proofs appeared only 

with the Greeks of the classical period. An interesting early case 

is that of what we now call the Euclidean algorithm. In its basic 

form (namely, as an algorithm for computing the greatest 

common divisor) it appears as Proposition 2 of Book VII 

in Elements, together with a proof of correctness. However, in 

the form that is often used in number theory (namely, as an 

algorithm for finding integer solutions to an equation , or, what 

is the same, for finding the quantities whose existence is assured 

by the Chinese remainder theorem) it first appears in the works 

of Āryabhaṭa (5th–6th century CE) as an algorithm 

called kuṭṭaka ("pulveriser"), without a proof of correctness. 

There are two main questions: "can we compute this?" and 

"can we compute it rapidly?". Anyone can test whether a 

number is prime or, if it is not, split it into prime factors; doing 

so rapidly is another matter. We now know fast algorithms 

for testing primality, but, in spite of much work (both 

theoretical and practical), no truly fast algorithm for factoring. 
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