
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

355

Abstract: This paper describes different compiler optimization

techniques. It elaborates the comparison of those different

approaches of compiler optimization. There are basically two

types machine learning approaches and non-machine learning

approaches. The non-machine learning part contains an algorithm

for shared-memory multiprocessors. The algorithm considers data

locality and parallelism. It also incorporates cache model for

optimization. Comparison is done by putting the algorithm into

sequential form parallelism. On the other hand, machine learning

in compiler optimization has reached new heights. Over a decade

from now it has fallen into one of the main stream activity. This

paper also incites the relationship of machine learning and

compiler optimization by briefing the terms features, models,

training etc. It also provides a survey for the variety of research

areas.

Keywords: optimization, parallelism, machine learning

1. Introduction

Compiler optimization is a great field to work on. In a

modern day compiler a parameter that is being looked upon a

great scale is optimization. Different sorts of compiler are being

used for performance check and many of them were successful

in comping up with profitable results. One of the method was

feedback mechanism that is being used in vectorizing

compilers. It was basically used in case of dusty desk programs.

Parallelism is great tool and if used properly can fetch us

satisfying results. Even compiler optimization can be divided

into separate modules and independent modules can be

incorporated with parallelism. By using several array references

techniques we can also improve space complexity and a step

forward towards optimization. The algorithm that has been

discussed in this paper is a shared-memory multiprocessor

algorithm [1]. It incorporates vectorization and does the

performance analysis based on parallelism. In this paper we try

to understand how different approaches of compiler

optimization works and how will it react with ML incorporated

in it.

Machine learning is a 21st century term which is building its

market rapidly. It is always easier if we allow the machines to

get the higher order computations. It is known that compiler

optimization depends on various features. And whenever an

algorithm is being designed all the factors effecting the

optimization is kept in consideration. In case of ML we let the

machine decide the best features responsible for compiler

optimization and then design the algorithm. It is quite a

sequential form of execution with a low factor of parallelism.

In this type of approach the machine tries to improve the

optimization based on previous datasets. We leave the analysis

part to machines that which factor to be altered to get the best

output.

2. Literature Survey

In the present world there are different types of work done in

the field of compiler optimization. Compiler optimization still

consists of vast scope of work to be done. People in market

always try to stand profitable due to which much methodologies

are yet not being made available publicly. Shared memory

parallelization is mostly considered for dusty desk programs.

Parallelism is considered via grid method, analysis and

performance of the working algorithm doesn’t just depend on

just parallelism but also on data locality and granularity. Caches

are being preferred in performance analysis. As locality plays a

vital role on system caches help a lot. It also improves the time

complexity. The recent work that has being done by Polaris was

also kept unpublished. But the algorithm that is being used, they

have not used caches. The no of loops working parallelly is

considered as a performance measure. The algorithm can use

the predefined loop bounds and find granularity and locality.

Wolf and Lang’s algorithm has certain expenses due to

exponential behavior in depth n. The discussed algorithm has a

complexity of O(n log(n)) but in worst case scenario it can go

up to O(n*n) [1]. Finding the reuse is the expensive part. The

proposed algorithm iterates through several steps and then

finally finds an optimization to get the reuse. It evaluates the

reuse for every permutation. This includes various other

methodologies but none of them have fusion, distribution or

interprocedural analysis.

3. Technical definitions

In case of shared microprocessor optimization algorithm

some terms we need are:

A. Data dependence

When parallelism comes into picture the data dependency

must be kept under watch. It is necessary to restrict that two

different parallel functions mustn’t deal with one parameter

simultaneously. On the other hand the process is quite smooth

A Review on Different Approaches of Compiler

Optimization

Adarsh Anand1, Abhinandan Jha2, Kanwaldeep Singh3

1,2,3Student, Dept. of Computer Science and Engg., M. S. Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

356

if the functions are independent on dealing with parameters. If

we see in comparison with sequential model of programming

the dependency is quite less after including parallelism [1].

B. Sources of Data Reuse

Data is power and why not make an optimum use if possible.

Sometimes multiple arrays refer the same memory unit. If a

particular set of data has to be considered for several different

modules then instead of including it all of them and increasing

the space-complexity we can have single array reference and

multi array reference. Sometimes same array access different

locality it comes under spatial locality while temporal locality

means accessing the same memory unit with same or different

arrays [1].

C. Feature Engineering

In a ML model the output is predicted based on the previous

input. So, it is very important to select the feature carefully. The

better the feature selection the better is the final prediction. The

feature can be of different data types but while it is fed into a

ML model it must be compatible. Generally standard models

use numerical or boolean values, as it is proper for evaluation.

Sometimes even after selecting the features they are not

scalable together. A term feature scaling helps us to handle that

situation. The process of feature selection and tuning is referred

to as feature engineering. This process may need to iteratively

perform multiple times to find a set of high-quality features [2].

D. Training a Model (Learning)

In this stage the ML model is trained with the training

dataset. It plays a vital role in getting a better prediction. A good

diverse dataset is the main component to complete this

procedure [2].

4. Discussion

The parallelization algorithm is one of the non-machine

learning approaches used for compiler optimization. It basically

exploits both data locality and granularity of parallelism. The

main component is driver which works in a top-down approach

recursively. It means if any node has to be visited it’s

predecessor has to be visited first. Initially all the nodes are

marked unvisited and then procedures are being called

incorporated with parallelism. Parallelizer introduces

parallelism, by using various transformations. If that doesn’t

happen further steps are taken. Driver handles interprocedural

loop transformations.

Loop permutation is applied for locality and optimization.

Target to use the inner loops more effectively. The algorithm

performs the following four steps:

 It introduces both the two different types of localization

based on space and temporal use which is being exhibited

by array references.

 Whenever there is algorithm there must be cost

optimization. In this algorithm the parameter taken for

measurement is the magnitude of no of lines of cache.

 It finds all the combinations by which the cost complexity

can be reduced i.e. no of lines of cache accessed can be

reduced.

 It also incorporates parallelism as a functionality of the

outer loop. It maintains locality in every processor. The

total overhead is divided among all the components.

Reference Group algorithm tries to reduce the overhead due

to the no of lines of cache. It finds reference with group related

spatial and temporal locality. If the subscript is independent of

the variable, then only one cache line is enough for all

iterations. If the subscript depends on the variable then for every

iteration, we need a new cache line which increases overheads.

This is quite the roll if we look at non-ML techniques. We

should change the paradigm.

If we change our lens for ML techniques, then there are

several other ways in which we will achieve the optimization.

The two basic approaches of learning are supervised and

unsupervised.

In supervised we have certain parameters and the domain

very specific. The iterations and transformations are

deterministic. It is generally under fully-observable

environment. In case of unsupervised learning the transitions

are not deterministic. The machine explores different states on

its own.

Fig. 1. Driver for parallelization algorithm

Some of the basic techniques of supervised learning are

regression and classification are given in Table 1. There are

several types of regression such as linear, logistic etc.

Even Classification is helpful if there is binary or boolean

output. If the dataset is very large then random forest

classification perhaps.

A. Linear Regression applied on a dataset

Regression is actually curve fitting and it is necessary to keep

in check that the curve doesn’t overfit in case of logistic

regression and polynomial regression [3].

In classification [4] K-means classification is the most

famous method, but it covers only a range of problems. It may

be fast and effective but it actually doesn’t get trained. It just

finds the K nearest neighbors by using Euclidean Distance as

parameter. There can be other parameters which can be helpful

in some problems but it only takes the distance. This means that

the algorithm is not robust to noisy training data and could

choose an ill-suited training program as the prediction.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

357

As an alternative, the decision tree has been used in prior

works for a range of optimization problems. These include

choosing the parallel strategy for loop parallelization,

determining the loop unroll factor, deciding the profitability of

using GPU acceleration, and selecting the optimal algorithm

implementation [2]. The advantage of a decision tree is that the

learned model is interpretable and can be easily visualized. This

enables users to understand why a particular decision is made

by following the path from the root node to a leaf decision node.

Decision trees mainly cover the major part sometimes, in

decision trees the main part is again feature engineering.

Initially we try to get the best feature for classification. After

classifying with help of that feature we for the next best, in this

way the decision tree is formed.

Table 1

Basic Techniques [2]

Fig. 2. Linear regression

5. Results

Table 2

Speed-ups over sequential program versions [1]

Table 3

Program execution times [1]

6. Conclusion

Seeing the vast domain of problems, we can conclude that all

the different form of approaches are important but under

different circumstances. The first method that has been

explained in this paper that has used parallelism can be helpful

if the optimization has been done independent modules with

very less interconnection. The modules are developed

independently and then combined together for testing. In this

case separate teams can work in parallel but if there is some sort

of sequential execution then ML incorporation will be a great

tool.

References

[1] K. S. McKinley, "A compiler optimization algorithm for shared-memory

multiprocessors," in IEEE Transactions on Parallel and Distributed

Systems, vol. 9, no. 8, pp. 769-787, Aug. 1998.

[2] Z. Wang and M. O’Boyle, "Machine Learning in Compiler Optimization,"

in Proceedings of the IEEE, vol. 106, no. 11, pp. 1879-1901, Nov. 2018.

[3] C. Luk, S. Hong and H. Kim, "Qilin: Exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping," 2009 42nd

Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), New York, NY, 2009, pp. 45-55.

[4] M. Stephenson and S. Amarasinghe, "Predicting unroll factors using

supervised classification," International Symposium on Code Generation

and Optimization, New York, NY, 2005, pp. 123-134.

