
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

347

Abstract: Present day compilers have profusion of code

modification. But all most all compiler follow same old method to

optimize code and they apply predetermined sequence like

scanning, lexing, analyzing syntax and analyzing semantics

followed by generating intermediary code and finally generating

target code. Thus optimizing functions without interpreting

whether code is getting modified or not we can’t assure that after

compilation it uses less resources and faster execution. In order to

overcome this problem, techniques like Reverse-Inlining

(Procedural Abstraction), Cross Linking optimization, trace

inlining, Optimizing Leaf Function, Combined code motion and

allocation of registers etc are used which are more efficient and

generated better machine codes. As trace inlining technique helps

in analyzing enforcement and size of low level code generated.

Various inlining rules on the benchmark suites DaCapo 9.12 Bach,

SPECjbb2005, and SPECjvm2008 are assessed, proved that

compilers based on tracing attains nearly 51% better enforcement

than method-based Java HotSpot client compiler. Moreover, the

positive effect of the large compiler scope on other optimizations

of compiler is conveyed. One of the techniques used to deicide good

optimizing sequence for programs is artificial neural network.

Keywords: Compiler Analysis

1. Introduction

Process of transforming a program where it considers

resultant of foregoing step as input to next step and modifies

code in such manner that it absorbs minimum expedients like

CPU, memory etc. with superior accomplishment is called

optimizing code. Machine dependent and machine independent

are kinds of code optimizations. Transforming given code as

stated in target device architecture, modifying induced code is

called as Machine dependent optimization. It uses CPU and

registers, instead of using corresponding memory label it uses

established memory label. Machine independent optimization

[1] method optimizes transitional code for better final code.

This paper focuses on new techniques which supports for the

emerging computer architectural designs. Very large instruction

word (VLIW) Architecture, allows exploiting instruction level

parallelism, meaning execution of more than one instruction

simultaneously which are not inter dependent. In Parallel

execution code execution doesn’t consume more time and

hence code will be more efficient. So in this paper we will also

discuss about the trending techniques of compilation.

Traditional compilers have been in use for generating

machine codes until the emerging architectural changes, since

these were hardware dependent thus there was a necessity to

build compilers that are not hardware dependent and use to

compile source codes for type of microprocessor designed to

control functionality of devices has accentuated coders to need

for controlled potency consumption, real-time execution and

agility of code.

In static compilation, compiler processes the program code

method after method, a control-flow graph (CFG) is constructed

for each method, the graph is optimized and the native code gets

generated based on CFG traversal. Suganuma et al, proposed a

just-in-time dynamic compiler(JIT), where it accesses the

runtime profile information, selects code only if it influences

the overall runtime and inline those parts of method bodies only

[2]. Gal proposed trace-based compilation approach to building

dynamic compilers, wherein cyclic code paths that are

frequently executed are identified and recorded. These traces

are assembled dynamically into a tree-like data-structure. The

major advantage is that the trace tree only consists of code areas

that are relevant. Edges which appear in static CFG but that are

not executed at runtime, are not considered in the trace

representation, and are assigned to an interpreter in case of

execution. The control flow merge point in the trace tree being

absent greatly simplifies optimization algorithms which

increases performance and reduces the machine code that gets

generated.

We will see the difference between the traditional compilers

and modern compilers in their way of optimizations and

compiler analysis, also the modifications done to the

conventional compilers in order to meet the emerging changes.

2. Literature survey

 Phase Ordering optimization techniques: Here instead of

following fixed sequence for modifying whole program,

apply it to discrete portion by this it selects superior

sequence for modification automatically.

 Phase ordering with genetic algorithm [3]: It is used in

A Review of Conventional and Upcoming

Approaches for Compiler Analysis and Code

Optimization

M. Shobha1, Soumyashree Dhabade2, C. Sowmya3, Sini Anna Alex4

1,2,3Student, Dept. of Computer Science and Engineering, Ramaiah Institute of Technology, Bengaluru, India
4Assistant Professor, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

348

two experiments. First experiment involves process of

finding better optimization sequence. To do this evaluate

optimization sequence (chromosome) through compiling

available benchmarks with sequence, recording their time

taken for execution, calculating their fastness by

normalizing time taken for running with running time

observed by compiling benchmarks at O3 level. This

corresponds to “best overall sequence”. Second

experiment involves finding superior optimization

ordering refers to “best sequence per benchmark”

 Automatic Feature generation [4]: Components of system

are training data generation, attribute generation and

machine learning. Extracting intermediate codes of

compiler and optimal values for heuristic is task of data

generation. This does process iteratively to obtain best

heuristic value for each program. The extracted codes will

be passed to feature search which explores characteristics

of intermediate codes and generates vector by considering

evaluated values of all programs, pass generated vector to

machine learning tool. Job of tool is to fetch

characteristics from base attribute list and calculate value

for that characteristic and add characteristic with best

heuristic value to list, if two characteristics have same

quality or value then add short characteristic to the list.

And this process will be repeated iteratively. List gets

generated in final is called as latest attribute list.

 Trace Inlining: In previous work, found on Oracle's

JavaTMHotSpot client compiler a trace-based JIT

compiler [5] was implemented. It focused on how trace

inlining is performed and its advantages. Application of

several trace inlining rules was presented for trace-based

JIT compiler. Influence of rules on peak enforcement, size

of generated low level code and compilation time for

DaCapo 9.12 Bach benchmark suite was evaluated.

3. Discussions

Traditional compilers aim to remove redundancies,

inefficiency and reordering the data and operations. It uses a

number of techniques for this purpose like data flow analysis

where we try to understand the flow of the data. If a variable is

defined we try finding out the way it‘s used. It can be either

forward analysis or backward analysis, in forward analysis we

supply the value of variable to succeeding code whereas, in

backward analysis we can supply information about some

succeeding properties "back in time", like in case of dead code

elimination we can withdraw variables if they are never read in

future.

 Local optimization is used to improve the code and done

with the following methods.,

 Local constant folding where Expressions with operands

holding fixed values can be evaluated at time of

compilation and this causes faster execution, reduction in

size of code.

 Local constant circulation, fixed values allocated to a

variable can be circulated through the flow graph and

replaced at use of the variable.

 Local sub-expression elimination, while executing the

expressions present in the program variable being

accessed in current step whose value is being computed in

previous step and if it’s not modified in such scenarios

compiler can skip process of recounting value for the

same variable.

 Local strength reduction is frequently applied in

customary compiler optimization to allow replacement of

an expression by its meaning. That is, it replaces more

resource consuming operations (multiplication) by less

resource consuming operation (addition).

Global optimization, different from local optimization is

applied on global parameters. Data flow analysis is used for

code optimization during this step. The various methods

followed are:

 Redundant (common) Sub-expression elimination, in this

kind of elimination redundant expressions is identified

globally and are calculated once and replaced by the result

everywhere else.

 Dead Code Elimination: After all the steps are performed

as mentioned so far, the optimized code consists of some

used lines of instructions which are eliminated in this step.

Loop Optimization [6], if each time the result computed

within a loop is same then computing it in each iteration is not

required. If an induction variable is found within a loop that is

a variable whose value on each loop iteration is proportional to

the calculation of the iteration index. When such variables and

the value they compute are found, often high cost operations are

replaced by low cost operations or the variable itself can be

deleted.

Reverse-Inlining (Procedural Abstraction) is used to achieve

code size reduction. This method replaces the function call with

function definition, thus increasing the speed of execution.

Some of the modern compiler optimization and compiler

analysis are discussed below. It also uses data flow analysis but

with alias analysis that is it is used to find if data storage can be

retrieved in many other ways. If two pointers are pointing to the

same memory location they are said to aliased. Advanced

compiler analysis applies the above mentioned aliasing in

determining the existence of the references at the exit of the

block.

 Combined code motion [7] and register allocation, Code

motion tries in placing the such instruction together than

are independent of each other and can be ran

simultaneously, thus implementing parallel execution.

The Register Allocation and Code Motion

(RACM)minimizes register pressure by implementing

code motion as explained above, followed by duplicating

the code and finally storing the value of variables from

register to memory.

 Cross linking optimization, this optimization can be

applied globally or locally. This is used where functions

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

349

consist of switch statements with same tail codes, which

is replaced after the switch block.

 Address Code Optimization, speeds up instructions and

execution time by reordering data in memory to minimize

and simplify computation of address.

 Type Conversion Optimization, involving the physical

size of the data known as data processing, and semantics

of data processing operations. Substructure for a different

of data types is the main goal of most compilers; as such

compilers insert many implicit data type conversions,

such as zero extension.

 Multiple Memory Allocation(MMA) is one of the

technique used in trending compilers as in this technique

instructions are saved and uploaded in many registers

simultaneously.

 Upcoming compilers are also expected to minimize code

length, increase programs speed to run by accurate usage

of memory which is appreciably seen in the techniques

they adopt.

Artificial neural networks [8] used to find out superior

sequence modification, represented as reticular nervous. Kinds

of feed forward network are one layer with one insert and one

resultant layer. Multilayer with one insert and one resultant

layer and includes multiple underlying layers. Recurrent layer

is like multilayer but includes minimum one feedback loop. As

mentioned before resultant of each layer becomes input to next

layer, link across neurons represented by weighted vectors.

ANN works in iterative manner where for each iteration it takes

characteristic of code of present state and does evaluation to

determine superior optimization.

Enactment of model is done by using a dynamic compiler

4cast-xl that builds ANN, integrates it to Jikes RVM’s

optimization driver and performs phase ordering optimizations.

And this dynamic compilation has to be done repeatedly by

ensuring the steps given below:

1. Generating attribute vector of current method’s state.

2. Initiating outline of code.

3. Determine superior sequence to modify by using ANN.

Following is an overview on brief description of VM’s

structure. Class loader does following functions of parsing,

loading and verifying class files and run-time data structures are

also provided to different parts of VM. Then during bytecode

pre-processing step, loops are detected and tracing-specific data

structures are created. To implement trace recording quite a few

steps are followed by Java HotSpot VM template interpreter

that is key is duplicated (a copy made) and instrumented which

results in a usual and a trace recording interpreter. With respect

to the initial executions, normal interpreter is used. Counter of

invocation of that trace anchor increments each time basic

interpreter comes across a trace anchor. Execution switches to

trace recording interpreter, when counter exceeds specified

threshold. Trace-based JIT (just in time) compiler is based on

HotSpot client compiler. Compiler records traces into a trace

graph when traces have been recorded often enough. The

interpreters and other compiled traces then directly invoke

generated machine code. If a prerequisite condition for

optimization is violated, System reverses optimizations to trace

recording interpreter. During reversing the optimizations all

values that are still in current compiled frame are saved first and

then one or more interpreter frames replaces that compiled

frame and then execution is continued in trace recording

interpreter. The trace recording interpreter takes charge here

after as, a partial trace that starts at the point of reverse

optimization, instead of from where the trace anchor is

recorded.

In trace recording approach, every individual thread

maintains tracing stack for traces that gets recorded.

Instructions that can alter control flow is recorded always at

stack’s top. Method invocation also gets notified in caller’s

trace. Receiver’s class also gets stored if it is a virtual method.

A new trace for caller function is recorded onto stack and

recording of the caller is resumed. On completion of caller’s

execution, trace of called function gets popped and stored in a

trace repository. A pointer to caller’s function trace is used to

link caller and called function by recording in caller's trace and

then the recording of called function is continued. Information

which is context dependent over the methods gets preserved by

this linkage. Trace doesn’t get stored but counter gets

incremented in the previously recorded trace, when a trace that

is saved is again recorded. Traces are considered to be different

depending upon the execution flow or the caller function traces.

Hence, accurate information of call regarding every executed

path is recorded using trace-linking. Loop and recursive

modules are not linked to their parent trace to reduce the

number of traces that gets recorded. Assuming that all the traces

for a particular anchor has been recorded after recording is done

a specific count of times for that anchor, machine

understandable instructions which is optimized is generated

from those compiled traces. Commonly executed operations are

executed straightly by the interpreter’s assembler and complex

operations are executed in C language-based runtime

environment. Efficient operations done by many threads

simultaneously enables Java thread structure to jump between

two interpreters independently. A local buffer is maintained by

each thread to achieve the best performance. The data structure

used to store recorded traces allows data to be read and denies

locks and atomic instructions during the reading process. But

locks data structure during writing threads only when a new

trace is found.

In trace inlining, static and dynamic inlining methods [9] are

supported by trace-based JIT compilers with the help of the

recorded trace information. Trace inlining replaces function

calls with its code itself but traces that are commonly executed

are only inlined instead of entire methods. Unlike method-based

compilers, context dependent information is contained in the

recorded traces which helps to avoid inlining of function

definition parts that are unnecessary for the current caller but

are executed frequently overall. Aggressive inlining of virtual

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

350

methods takes place since methods of only a specific type of

receiver gets invoked at a call site.

First of all, the maximum size of the trace, which is

dependent on the relevance of the call site, that has to be placed

in inline at the current call site is computed. Then, the invoked

traces at the current call site areinlined based on certain

heuristics. So, the method invocation is replaced with the trace

graph that is built from the traces that should be inlined. Then,

return instructions are replaced with jumps to the next line of

command after the call and exception-throwing instructions

will be attached tohandlers of exception. Usually, it’s only the

traces that get invoked by the current caller that are inlined.

However, in certain cases, all caller function traces are

considered as candidates for inlining, if the callee traces were

compiled before the caller’s trace recording had even begun.

Based on dead code elimination technique [10], certain

candidates for inlining can be rejected based on specific

parameters that is passed to the callee by the caller.

By taking into consideration CHA [11] and context

dependent trace information, in case of virtual calls, the actual

receiver class for the calling site can be determined. As

recorded receiver classes are used if multiple target methods are

found by CHA along with an additional run-time check such

that the trace deoptimizes to the interpreter in case of type

mismatch. In a similar manner, since no context-specific

information is available for the loop traces, all recorded traces

are considered as candidates for inlining. However, elimination

of few traces is possible based on parameters and locals. Traces

with no further lead existence in the caller functions trace graph

for the inlined loop is also eliminated.

A special kind of inlining guarded by method guard was

implemented to overcome the issue that a method could not be

inlined if the same method was always invoked by the call site

but by different receiver types. In the above process the invoked

method is compared with the expected method by accessing the

virtual table of the receiver. Multiple receiver types can be

checked for by extending the type guard to a switch structure if

the same method was always invoked by the call site but by

receiver of type interface. The stated process is definitely

cheaper when compared to the interface lookup. The switch like

structure can also be extended to efficient inlining of

polymorphic calls. Platform specific methods are inlined by

the JIT compiler using heuristics of the compiler. The same

method based inlining is conducted yet the trace-based

compiler performs aggressive inlining of java traces and traces

are also smaller than methods.

Further departing edges of similar part of the code is

compared with the repeatedly implemented departing edge

determined. Edges to unreachable parts of code and with

hundred times the minimal frequency are removed from the

trace graph. The process has many downfalls and must be taken

care of, the tracing information is based on the program

behavior that may change over time, removing major execution

paths might proceed to repeated deoptimizations. In the case of

loops, the exit will have to be filtered out since in spite of loop

body, occurrences of loop entry are compared with occurrences

of loop exits, which would restrict the scope of compilation and

again rise the occurrences of deoptimization.

In order to discuss about trace inlining heuristics, execution

frequency of each block of trace graph, using recorded traces,

is evaluated. Then, estimated frequency is then divided with a

reference value to estimate relevance of each block which in

turn will be used to compute the call site’s relevance. So, that

reference value is chosen utilizing one of the algorithms

mentioned below.

 Simple: Estimated execution frequency of each block of

trace graph is divided by completeimplementation

occurrences of complete merged execution paths of graph.

Value lies in domain 0 to 1, excluding 0.

 Most frequent trace: Execution frequency of each block is

divided by execution frequency of merged trace that gets

executed most number of times. So, call sites residing in

blocks shared among multiple traces would have a greater

relevance due to higher execution frequency, while values

in range]0,1] would be the relevance of a call site residing

only in individual traces.

 Path-based: In this approach, firstly successor block, with

respect to root block, that is executed most number of

times is determined. Then, marking block as visited

process is performed over and over until either a loop

header orleaf nodes is reached. Then, leastimplemented

node of all visited nodes will be used to determine the

other blocks aptness that are present in trace graph.

Hence, values would be in range of [1,∞], for call sites

deemed to be important, while [0, 1] would be range of

values for calls that are less important.

Following are the configurations of the dynamic inlining

heuristics that generated least size of machine code and

increased performance.

 Minimum code: Depending on relevance of call site,

inlining size of 35 bytecodes is modified by this heuristic.

Inlining size is decreased for relevance less than 1 and

increased for relevance greater than 1. This heuristic

results insmall size of machine code and increased

performance on combination with path based algorithm.

 Balanced: Inlining size remains unchanged for blocks

with relevance value less than 1 which conceivably are

important calls that are inlined, while inlining size is

increased by 40 bytes of code by this heuristic for blocks

having relevance greater than 1. This heuristic results in

stability between size of code and performance on

combination with path based algorithm.

 Performance: Depending on the relevance of call site,

substantial size of 150 bytecodes is used for inlining by

this heuristic. The inlining size is not increased beyond

the increased value. Inlining size is decreased for

relevance less than 1. This heuristic optimises the

performance on combination with path based algorithm.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

351

 Greedy: Similarly, large inlining size of 250 bytecodes is

used by this heuristic. This heuristic prevents inlining of

traces beyond maximum value. The inlining size is

decreased if relevance is less than 1. This heuristic results

optimizes the performance on combination with path

based algorithm. This heuristic on combination with

algorithm that computes the frequent executed paths

provided better results.

Amount of machine code generated is more on invoking

small traces in comparison to inlining them hence the above

heuristics make sure that the assessors are always inlined. If

compilation of calleee merged to substantial size of machine

code then inlining is avoided by the heuristics since after a

certain point increasing scope of compilation is discouraged.

Inheriting of relevance of the parent block by the callee is used

by our heuristics to minimize size of machine code and inlining

of traces in a nested manner.

To evaluate JIT compiler deployed from traces, it is enforced

for Java VM of A-32 design from Oracle [20]. Benchmark

suites DaCapo 9.12 Bach, SPECjvm2008, andSPECjbb2005

were chosen for evaluating the above discussed heuristics.

Results evaluated is with respective to results for client

compiler based upon the methods.

 Server/client approach is simulated by this SPECjbb2005

benchmark where functions are implemented in database

of memory that is subdivided into warehouses. Relative to

peak performance, client compiler gets outperformed by

trace-based configurations because of greater

aggressiveness of inlining of traces. Configuration greedy

slightly causes an increase in performance but at same

time size of machine code is more. Configuration,

minimum code, is well organized with respect to machine

code and time utilized for compilation and also

performance is decent. Irrespective of number of

warehouses used client compiler is outperformed by trace

configurations. Performance is utmost when there are 4

warehouses since benchmarking system has 4 cores and

each thread processes one warehouse respectively.

 Nine benchmark categories are included in

SPECjvm2008 benchmark to measure peak performance.

Client compiler gets outperformed by tracing

configurations. Highest speed-ups is witnessed on derby

and serial benchmarks by tracing configurations. Due to

small size, benchmarks scimark, mpeg audio and crypto

indicate nearly no increase in performance and is similar

to client compiler. However, it’s only traces that gets

inlined and not whole methods which decreases

compilation time and machine code that gets generated.

 Fourteen Java applications is included in DaCapo 9.12

Bach benchmark suite. On the whole, less machine code

gets generated with respect to all inlining heuristics except

greedy configuration, yet overall performance increases.

Greedy configuration profits benchmarks luindex, pmd,

and sunflow, due to its large inlining size. Highest speed

up is achieved by tracing configurations for jython

benchmark, which is responsible for execution of virtual

calls, since compiler makes use of recorded trace

configurations. In terms of compilation time,

configuration based on traces is well organised that even

aggressive configuration greedy takes similar amount of

time as client compiler.

Optimization is positively affected by inlining of traces due

to increase inscope of compilation. For SPECjbb2005

benchmark, canonicalization [12] is increased because of trace

inlining. For SPECjvm2008 benchmark suite, optimizations is

hardly affected due to unavailability of larger compilation

scope. Increased performance is equally spread over all

optimizations listed on benchmark DaCapo 9.12 Bach.

Code with effective performance and optimizations are

produced by server compiler but involve 13times extended

compilation on benchmark suites DaCapo 9.12 Bach,

SPECjbb2005 and SPECjvm2008. Trace-based compiler only

attains up to 67% of performance of server compiler in

SPECjbb2005 benchmark but benefits largely from server

compiler optimizations. 85% of performance of server compiler

is attained for SPECjvm2008 benchmark suite by configuration

greedy. Server compiler exhibits higher performance on crypto,

mpeg audio, and scimark benchmarks that are loop exhaustive,

due to advanced optimizations. However, server based compiler

gets outperformed by trace based compiler on compress and

sunflow benchmarks, by aggressive trace inlining. In DaCapo

9.12 Bach benchmark suite, on an average 93% of performance

of server compiler is attained by trace based compiler due to

presence of benchmarks that are more complex and less loop

exhaustive. However, irrespective of basic optimisations

performed by trace based compiler, server compiler's

performance gets outperformed in sunflow, pmd and lu index

benchmarks due to context-sensitive and aggressive inlining of

traces.

4. Conclusion

This paper discusses difference between the traditional

compilers and modern compilers in their way of optimizations

and compiler analysis, also the modifications done to the

conventional compilers in order to meet the emerging changes.

It also discusses the java compiler based on traces that manages

inlining of traces during compilation of JIT instead of at times

of trace recording, which enforces trace inlining to be more

selective because of the extra information available. Besides,

variant components of the method can be inlined based upon

the site of call because of context-sensitive nature of traces.

Moreover, its proposed that it’s only the traces that are

implemented often that gets compiled to machine code by

eliminating infrequently executed traces. Evaluation with

benchmark DaCapo 9.12 Bach, SPECjvm2008 and

SPECjbb200proved that effective performance along with the

generation of decent amount of machine code can be attained

by proper trace inlining. Furthermore, larger compilation

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

352

scopes attained by trace compiler increases efficacy of compiler

optimizations and effective performance.

References

[1] David Padua,“Compilers and the Furture of High Performance

Computing” , IEEE 22nd International Conference on High Performance

Computing (HiPC), 2015.

[2] M. Bebenit, Jikes RVM, “Trace Based Compilation in Interpreter-less ...”,

Semantic Scholar, 2008.

[3] Michael R. Jantz; Prasad A. Kulkarni, “Exploiting phase inter-

dependencies for faster iterative compiler optimization phase order

searches”, 2013.

[4] Edwin Bonilla; Michael O'Boyle, “Automatic Feature Generation for

Machine Learning Based Optimizing Compilation Hugh Leather”,

International Symposium on Code Generation and Optimization,2009.

[5] Hiroshi Inoue; Hiroshige Hayashizaki; Peng Wu; Toshio Nakatani, “A

trace based Java JIT compiler fitted from a method-based compiler,”

International Symposium on Code Generation and Optimization, 2011.

[6] Grigoris Dimitroulakos; Christakis Lezos; Konstantinos Masselos,”

MEMSCOPT: A source-to-source compiler for dynamic code analysis

and loop transformations,” Conference on Design and Architectures for

Signal and Image Processing [LOOP], 2012.

[7] Slavko Radonić; MiodragĐukić; NenadČetić, “One solution of loop

invariant code motion compiler optimization,” 22nd Telecommunications

Forum Telfor (TELFOR),2012.

[8] L. Prechelt, “Exploiting domain-specific properties: compiling parallel

dynamic neural network algorithms into efficient code,” IEEE

Transactions on Parallel and Distributed Systems, 2010.

[9] J. Cavazos; M. F. P. O'Boyle, “Automatic Tuning of Inlining Heuristics”,

ACM/IEEE Conference on Supercomputing “, 2005.

[10] Hiral H. Karer; Purvi B. Soni, “Dead code Elimination Technique in

eclipse compiler for Java”, International Conference on Control,

Instrumentation, Communication and Computational Technologies

(ICCICCT), 2015.

[11] Jason Sawin; Atanas Rountev, “Assumption Hierarchy for a CHA Call

Graph Construction Algorithm”, IEEE 11th International Working

Conference on Source Code Analysis and Manipulation, 2011.

[12] Shin-Ming Liu; R. Lo; F. Chow, “Loop induction variable

canonicalization in parallelizing compilers,” Conference on Parallel

Architectures and Compilation Technique, 1996.

