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Abstract: Compilers are used to translate between languages or 

representations. In neural networks, the input is usually in the 

form of a compute graph with tensor computations associated with 

nodes which needs to be translated into executable. The compiler 

plays an important role in this conversion, performing 

optimizations and lowering. It can be used as a bridge to target 

multiple hardware architectures from multiple frontends and 

hence is a major component for scalability of neural network 

frameworks. Also, the optimizations and conversions done by a 

compiler lead to reduction in time taken to train a particular 

network and its implementation.  

 

Keywords: compiler, neural network, scalability, frameworks, 

hardware architecture 

1. Introduction 

Code readability, ease of construction, time and space 

complexity and size of the code are some of the important 

features of a program code. The simpler a code is for humans 

to read, the more difficult it is for the computer to know what it 

is supposed to do. Compilers translate a high-level 

programming code to low-level machine understandable 

language. 

This translation is time consuming and hence needs to be 

optimized. Code optimization is one technique in which a code 

is enhanced to decrease the time and space consumption, 

resulting in efficiency and lower resource utilization. It is an 

important phase in engineering design and improves the quality 

of the designed product elevating the value of the product.  

Optimization of code can be done in the coder or by the 

compiler (compiler optimization). Optimization by compiler 

might involve several methods and techniques like machine-

independent optimization, machine-dependent optimization, 

basic-block, loop optimization, dead-code elimination and 

partial redundancy. This paper analyses the application of code 

optimization capability of compilers into neural networks and 

deep learning concepts. 

Neural networks are computing systems made up of layers of 

simple, interconnected processing elements having the 

capability to process information dynamical through response 

to external inputs. The layers of a neural network can be broadly 

classified into input layer, output layer and central hidden layer 

which in turn can have many layers. All the computational 

complexity comes from the advancements in the hidden layer  

 

which is the heart of the network. The hidden layers perform 

computations on the weighted inputs and produce net input 

which is then applied with activation functions to produce the 

actual output. Compiler optimization techniques are applied to 

enhance the working of the hidden layer to make the network 

time and resource efficient. The faster a machine is, the better, 

hence one would want to speeden the process a neural network 

would process data and optimization is exactly what is to be 

done. For example, development of new layers and architecture 

is time consuming and optimizing these developments would 

result in a huge cut down of processing time. Neural networks 

also termed as artificial neural networks (ANN) are of many 

types - convolution neural networks(CNN), feed-forward 

neural networks(FNN), recurrent neural networks(RNN), 

multi-layered perceptron, etc. 

Deep learning is a machine learning technique that teaches 

the machine what to do and the machine is trained to devise a 

method on how to do it. Deep learning is a Neural Network 

consisting of a hierarchy of layers, whereby each layer 

transforms the input data into more abstract representations.  

Deep learning software demands reliability and performance. 

Deep neural networks are a class of models that use a system of 

interconnected neurons to estimate or approximate functions. 

The performance and integration with existing systems of a 

deep learning network can be boosted up by the application of 

compiler designer techniques on it. 

2. Literature survey 

A key difference between compilers for languages like C++ 

and compilers for deep learning frameworks is that with deep 

learning, the data being operated on is large and variable-sized, 

but highly amenable to parallelization. 

In [1] Leonard Truong et al., introduce a domain specific 

language (DSL) called Latte which allows the user to define the 

deep neural network in a highly abstract form without 

sacrificing the efficiency and performance. Latte acts as an 

extension to the Julia language. In Latte, a neural network is 

defined as an ensemble of neurons with connections (signifying 

data dependencies) between them. All neurons in an ensemble 

are of the same type and thus use the same activation function. 

The Latte compiler has four phases: analysis of shared variables 

is done so that shared data is loaded together into a single shared 
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buffer for inputs which reduces memory consumption, 

synthesis which has three parts, dataflow, compute and 

distributed memory communications, optimizations are done in 

two phases, intra layer optimizations include library kernel 

pattern matching and loop tiling, and cross layer fusion after 

which parallelization is performed using Parallel Accelerator.jl 

package and the last phase of the compiler is code generation. 

The runtime using uses a two level hierarchical design for 

training to employ data parallelism called intra node level data 

parallelism and cluster level data parallelism. Single node 

evaluation and cluster evaluation was performed to demonstrate 

Latte’s ability to outperform standard approaches in micro-

benchmarks as well as on popular neural network models which 

can be majorly be attributed to parallelism and cross layer 

optimizations. 

Deep learning virtual machine (DLVM) [2] is a compiler 

infrastructure which aims to simplify development of neural 

network DSLs. The basic procedure is to convert the DSL into 

the DLVM IR and then pass it to the DLVM which uses a 

mature compiler infrastructure (currently LLVM) for code 

generation. The DLVM IR has a virtual instruction set, control 

flow graph and data flow representation. The virtual instruction 

set includes domain specific primitive math operations and 

general purpose instructions. A multi stage compiler 

optimization strategy is employed which addressee’s 

algorithmic differentiation, domain and general purpose 

optimizations and static code generation in order to target a 

variety of computer architectures. The reason for converting 

DLVM IR to LLVM IR is that being a mature compiler 

infrastructure, it can support multiple backends. DLVM also 

provides a command line interface as any industry standard 

compiler. 

Field programmable gate arrays (FPGA) are integrated 

circuits which are customizable by the consumers and hence 

can be used to implement convolutional neural networks. 

Customizing FPGA design for a specific application is time 

consuming.  

[3] presents a software programmable hardware overlay 

called Deep Learning Accelerator(DLA). Their design uses 

lightweight very long instruction word(VLIW) instructions to 

reprogram the overlay to support various CNN models. The 

VLIW network consists of kernels connected to a ring network 

via which the instructions are distributed to them by the VLIW 

reader that continuously fetches instructions from external 

memory. The graph compiler used first slices the neural 

network graph into subgraphs (list of functions that do not 

require writing to the buffer except at the end) which is 

enhanced by slicing multiple sequential slices together to 

reduce number of external memory spill points. The stream 

buffer is used as a double buffer in order to reduce 

fragmentation and allocation pass is done to calculate the read 

and write addresses for each slice. Next subgraph scheduling is 

done using priority queue approach where cost of execution of 

a node is the ratio of its output size to effective input size. 

A library based CNN RTL compiler is used in [4] to reduce 

the effort required to design a custom FPGA. the input to the 

compiler are the dimensions and connections of CNN layers 

and pertained weights which are then transformed into a layer 

by layer schedule. The schedule also determines the read and 

write orders of kernel weights stored in memory which are then 

sorted to control access of external memory. The RTL library 

consists of modules designed for different types of layers which 

can be configured with CNN parameters. These modules are 

hand coded Verilog templates built on optimized CNN 

acceleration strategy. Thus, the layer by layer execution, 

hardware computing architecture and memory transactions can 

be customized for different CNN algorithms. 

Due to the emergence of many novel topologies, frameworks 

require a lot of changes to be compatible with the new 

backends. [5] introduces the open source nGraph library which 

acts as a middle layer between the frameworks and backends. 

The nGraph IR is a DAG with each node capable of having 

multiple inputs and outputs. these nodes operate on tensors and 

can have additional attributes which can alter their behaviour. 

It includes framework bridges which convert the graph used by 

the specific frameworks into the nGraph IR which is then 

transformed into code which can be run on a specific backend 

using the corresponding transformer. 

Another compiler technique which performs a similar 

functionality of targeting various back ends from various 

frontends is Glow (Graph-lowering) [6]. The aim is to 

encourage research on efficient hardware accelerators and using 

Glow for automation of compilation tasks. Glow uses multiple 

IRs for graph lowering. The high level IR is optimized using 

domain independent optimizations, then differentiated and 

lowered to allow additional optimizations. IRGen then converts 

it into instructions on which low level IR optimizations are 

performed using LLVM, utilizing its existing capability to 

target various hardware architectures, similar to [2]. To 

decrease memory usage, Glow performs quantization by using 

tensors like Int8. Also, profile guided quantizations are applied 

in two phases: first is attaching special profiling nodes to record 

activation ranges in the network, optimize the network and then 

run interference, second is to obtain quantized form by 

recompiling the network which allows static optimizations. 

All of these different frameworks are primarily based on 

compilers which can provide the abstraction required for 

different languages and the compatibility to specific hardware. 

Compiler optimization is altering features of executable code 

while considering the output of the compiler. Ballal et at in [7] 

discuss a genetic algorithm approach to determine the 

combination of compiler(GNU) flags, to control optimization, 

which could be used to increase time efficiency of the 

executable. The compiler flags are considered as genes and a 

combination of these is a chromosome. An inverse function of 

sum of execution time and compilation time is taken as the 

fitness function and is different for every chromosome. 

Selection, crossover and mutation over generations on this 
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initial population of chromosomes would result in a set of flags 

that are optimum in terms of time. At each generation, the 

chromosomes corresponding to a maximum fitness are selected 

for cross-over for the next generation. The procedure repeats 

until the best set of genes i.e., an nearly optimal set of flags that 

boost the time efficiency of compilation is achieved. This 

approach of genetic algorithm turns out to be helpful in case of 

a large solution space. Also, the larger the gene pool, higher are 

the chances of achieving the optimal/idle fitness for the 

program.  

James et al in [8] describes Theano, a mathematical 

expression in Python which combines NumPy syntax with the 

speed of an optimized machine language. In the first phase, 

Theano optimizes the choice of expressions which is then 

translated to C++ (or CUDA for GPU), later it compiles them 

into dynamically loaded Python modules. It is applied to multi-

layer perceptron (MLP) and a convolutional network. 

Compilation function of Theano involves several stages like 

canonicalization, stabilization, specialization, optional GPU 

transfer and code generation.  It was found to be 1.6x to 7.5x 

faster than C/C++, NumPy/SciPy and MATLAB when 

compiled for the CPU and 6.5x to 44x faster when compiled for 

the GPU when implemented to machine learning algorithms. 

Though it is much faster it is not optimal. It can handle graphs 

with only thousand nodes and does not cover all functionalities 

of NumPy and few features of SciPy.  [9] shows how theano 

can be used by taking the example of logistic regression and 

describes the content and scope of the deep Learning Tutorials, 

showing how Theano can be used for deep learning by making 

them fast, elegant and compact. 

Rudy et al in [10] have formulated a framework which 

considers only the correctness of targeted input distributions 

and adapts programs to increase its efficiency. The model being 

specified includes a controller and a machine. The controller 

takes charge of what should be executed and machine follows 

the commands of the controller. The models aims at finding the 

best set of weights in order to perform a correct input to output 

mapping. Metrics considered are correctness, halting, 

confidence and efficiency. The model uses addition of softmax 

layer for reformulation of a constrained problem to an 

unconstrained one. The input program is being converted to an 

intermediate representation and then to a weight matrix which 

is used to do the mapping. The model turned out to be good in 

finding efficient solutions for simple programs, but found only 

close to optimal solutions for complex programs. The model 

also carries forward the drawbacks of gradient descent method 

(which it uses for optimisation) i.e., it performs only local 

transformations. 

While handling advanced software and hardware an 

automatic and accurate optimization heuristics are highly 

required. These heuristics can be learnt by the model by 

machine learning technique by training it with the help of 

features/parameters that are hard coded by experts by their 

knowledge, trial and error methods. Thus the accuracy of the 

model depends on the features that are chosen for optimisation. 

In [11] the authors proposed an advanced method for 

formulating the optimised heuristics over raw data, without 

using features. Neural networks are used for analysis the code 

and to find the optimal heuristics where there is no human 

intervention. During compilation/execution of code, decisions 

are made based on hand coded heuristics thus the performance 

and accuracy of the output depends on the heuristic that are hard 

coded. 

Deep tune is an end to end machine learning approach for 

optimising the heuristics with deep neural networks. It has 

following phases, 

Source Rewriter: Source normalizing transformations are 

applied on the raw code to generate a consistent code structure. 

Sequence Encoder: Source code is encoded with integers 

which is an index of predetermined hybrid vocabulary 

(character and token)  

Embedding: From sequence encoding the relation between 

tokens cannot be interpreted so we translate the semantically 

related tokens into a lower dimensional vector space.  

Sequence Characterization: This phase is equivalent to 

manual feature extraction. Long Short Term Memory (LSTM) 

is a two-layer network, inputs the embedded vectors and 

outputs a single output vector characterizing the given 

sequence.  

Heuristic model: The former layer has 32 neurons and the 

latter one has a single neuron for each heuristic decision. 

Finally, whichever neuron has the more activation is considered 

to the optimal heuristic. 

3. Conclusion 

Deep learning implementations require a high level of 

abstraction to separate developers from low level design. This 

abstraction is provided by highly efficient compilers which 

either work with specific DSLs or can be customized for any 

DSL. Since the structure of neural networks can be represented 

by graphs, compilers need to translate these graphs representing 

tensor computations into executable which is usually done by 

generating multiple IR, where on each IR optimizations and 

lowering can be done. This paper explored various ways in 

which compilers are used in the deep learning community from 

implementing specific DSLs to use in frameworks to 

simplifying the implementation by mapping onto FPGA. For 

the former it resolves scalability issues by acting as an 

intermediate between frontends and backends and for the latter, 

it aids in faster training and implementation of neural networks 

to make use of the efficiency and reprogrammability of field 

programmable gate arrays. Certain compiler optimizations and 

neural network frameworks were also reviewed to understand 

the current approaches used. 
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