
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

312

Abstract: Compilers are used to translate between languages or

representations. In neural networks, the input is usually in the

form of a compute graph with tensor computations associated with

nodes which needs to be translated into executable. The compiler

plays an important role in this conversion, performing

optimizations and lowering. It can be used as a bridge to target

multiple hardware architectures from multiple frontends and

hence is a major component for scalability of neural network

frameworks. Also, the optimizations and conversions done by a

compiler lead to reduction in time taken to train a particular

network and its implementation.

Keywords: compiler, neural network, scalability, frameworks,

hardware architecture

1. Introduction

Code readability, ease of construction, time and space

complexity and size of the code are some of the important

features of a program code. The simpler a code is for humans

to read, the more difficult it is for the computer to know what it

is supposed to do. Compilers translate a high-level

programming code to low-level machine understandable

language.

This translation is time consuming and hence needs to be

optimized. Code optimization is one technique in which a code

is enhanced to decrease the time and space consumption,

resulting in efficiency and lower resource utilization. It is an

important phase in engineering design and improves the quality

of the designed product elevating the value of the product.

Optimization of code can be done in the coder or by the

compiler (compiler optimization). Optimization by compiler

might involve several methods and techniques like machine-

independent optimization, machine-dependent optimization,

basic-block, loop optimization, dead-code elimination and

partial redundancy. This paper analyses the application of code

optimization capability of compilers into neural networks and

deep learning concepts.

Neural networks are computing systems made up of layers of

simple, interconnected processing elements having the

capability to process information dynamical through response

to external inputs. The layers of a neural network can be broadly

classified into input layer, output layer and central hidden layer

which in turn can have many layers. All the computational

complexity comes from the advancements in the hidden layer

which is the heart of the network. The hidden layers perform

computations on the weighted inputs and produce net input

which is then applied with activation functions to produce the

actual output. Compiler optimization techniques are applied to

enhance the working of the hidden layer to make the network

time and resource efficient. The faster a machine is, the better,

hence one would want to speeden the process a neural network

would process data and optimization is exactly what is to be

done. For example, development of new layers and architecture

is time consuming and optimizing these developments would

result in a huge cut down of processing time. Neural networks

also termed as artificial neural networks (ANN) are of many

types - convolution neural networks(CNN), feed-forward

neural networks(FNN), recurrent neural networks(RNN),

multi-layered perceptron, etc.

Deep learning is a machine learning technique that teaches

the machine what to do and the machine is trained to devise a

method on how to do it. Deep learning is a Neural Network

consisting of a hierarchy of layers, whereby each layer

transforms the input data into more abstract representations.

Deep learning software demands reliability and performance.

Deep neural networks are a class of models that use a system of

interconnected neurons to estimate or approximate functions.

The performance and integration with existing systems of a

deep learning network can be boosted up by the application of

compiler designer techniques on it.

2. Literature survey

A key difference between compilers for languages like C++

and compilers for deep learning frameworks is that with deep

learning, the data being operated on is large and variable-sized,

but highly amenable to parallelization.

In [1] Leonard Truong et al., introduce a domain specific

language (DSL) called Latte which allows the user to define the

deep neural network in a highly abstract form without

sacrificing the efficiency and performance. Latte acts as an

extension to the Julia language. In Latte, a neural network is

defined as an ensemble of neurons with connections (signifying

data dependencies) between them. All neurons in an ensemble

are of the same type and thus use the same activation function.

The Latte compiler has four phases: analysis of shared variables

is done so that shared data is loaded together into a single shared

A Study on Compiler Applications in Neural

Networks

Riya R. Ganiga1, Shaguftha Zuveria Kottur2, Tallapalli Surabhi3, A. Parkavi4, Sini Anna Alex5

1,2,3Student, Department of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India
4,5Professor, Department of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

313

buffer for inputs which reduces memory consumption,

synthesis which has three parts, dataflow, compute and

distributed memory communications, optimizations are done in

two phases, intra layer optimizations include library kernel

pattern matching and loop tiling, and cross layer fusion after

which parallelization is performed using Parallel Accelerator.jl

package and the last phase of the compiler is code generation.

The runtime using uses a two level hierarchical design for

training to employ data parallelism called intra node level data

parallelism and cluster level data parallelism. Single node

evaluation and cluster evaluation was performed to demonstrate

Latte’s ability to outperform standard approaches in micro-

benchmarks as well as on popular neural network models which

can be majorly be attributed to parallelism and cross layer

optimizations.

Deep learning virtual machine (DLVM) [2] is a compiler

infrastructure which aims to simplify development of neural

network DSLs. The basic procedure is to convert the DSL into

the DLVM IR and then pass it to the DLVM which uses a

mature compiler infrastructure (currently LLVM) for code

generation. The DLVM IR has a virtual instruction set, control

flow graph and data flow representation. The virtual instruction

set includes domain specific primitive math operations and

general purpose instructions. A multi stage compiler

optimization strategy is employed which addressee’s

algorithmic differentiation, domain and general purpose

optimizations and static code generation in order to target a

variety of computer architectures. The reason for converting

DLVM IR to LLVM IR is that being a mature compiler

infrastructure, it can support multiple backends. DLVM also

provides a command line interface as any industry standard

compiler.

Field programmable gate arrays (FPGA) are integrated

circuits which are customizable by the consumers and hence

can be used to implement convolutional neural networks.

Customizing FPGA design for a specific application is time

consuming.

[3] presents a software programmable hardware overlay

called Deep Learning Accelerator(DLA). Their design uses

lightweight very long instruction word(VLIW) instructions to

reprogram the overlay to support various CNN models. The

VLIW network consists of kernels connected to a ring network

via which the instructions are distributed to them by the VLIW

reader that continuously fetches instructions from external

memory. The graph compiler used first slices the neural

network graph into subgraphs (list of functions that do not

require writing to the buffer except at the end) which is

enhanced by slicing multiple sequential slices together to

reduce number of external memory spill points. The stream

buffer is used as a double buffer in order to reduce

fragmentation and allocation pass is done to calculate the read

and write addresses for each slice. Next subgraph scheduling is

done using priority queue approach where cost of execution of

a node is the ratio of its output size to effective input size.

A library based CNN RTL compiler is used in [4] to reduce

the effort required to design a custom FPGA. the input to the

compiler are the dimensions and connections of CNN layers

and pertained weights which are then transformed into a layer

by layer schedule. The schedule also determines the read and

write orders of kernel weights stored in memory which are then

sorted to control access of external memory. The RTL library

consists of modules designed for different types of layers which

can be configured with CNN parameters. These modules are

hand coded Verilog templates built on optimized CNN

acceleration strategy. Thus, the layer by layer execution,

hardware computing architecture and memory transactions can

be customized for different CNN algorithms.

Due to the emergence of many novel topologies, frameworks

require a lot of changes to be compatible with the new

backends. [5] introduces the open source nGraph library which

acts as a middle layer between the frameworks and backends.

The nGraph IR is a DAG with each node capable of having

multiple inputs and outputs. these nodes operate on tensors and

can have additional attributes which can alter their behaviour.

It includes framework bridges which convert the graph used by

the specific frameworks into the nGraph IR which is then

transformed into code which can be run on a specific backend

using the corresponding transformer.

Another compiler technique which performs a similar

functionality of targeting various back ends from various

frontends is Glow (Graph-lowering) [6]. The aim is to

encourage research on efficient hardware accelerators and using

Glow for automation of compilation tasks. Glow uses multiple

IRs for graph lowering. The high level IR is optimized using

domain independent optimizations, then differentiated and

lowered to allow additional optimizations. IRGen then converts

it into instructions on which low level IR optimizations are

performed using LLVM, utilizing its existing capability to

target various hardware architectures, similar to [2]. To

decrease memory usage, Glow performs quantization by using

tensors like Int8. Also, profile guided quantizations are applied

in two phases: first is attaching special profiling nodes to record

activation ranges in the network, optimize the network and then

run interference, second is to obtain quantized form by

recompiling the network which allows static optimizations.

All of these different frameworks are primarily based on

compilers which can provide the abstraction required for

different languages and the compatibility to specific hardware.

Compiler optimization is altering features of executable code

while considering the output of the compiler. Ballal et at in [7]

discuss a genetic algorithm approach to determine the

combination of compiler(GNU) flags, to control optimization,

which could be used to increase time efficiency of the

executable. The compiler flags are considered as genes and a

combination of these is a chromosome. An inverse function of

sum of execution time and compilation time is taken as the

fitness function and is different for every chromosome.

Selection, crossover and mutation over generations on this

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

314

initial population of chromosomes would result in a set of flags

that are optimum in terms of time. At each generation, the

chromosomes corresponding to a maximum fitness are selected

for cross-over for the next generation. The procedure repeats

until the best set of genes i.e., an nearly optimal set of flags that

boost the time efficiency of compilation is achieved. This

approach of genetic algorithm turns out to be helpful in case of

a large solution space. Also, the larger the gene pool, higher are

the chances of achieving the optimal/idle fitness for the

program.

James et al in [8] describes Theano, a mathematical

expression in Python which combines NumPy syntax with the

speed of an optimized machine language. In the first phase,

Theano optimizes the choice of expressions which is then

translated to C++ (or CUDA for GPU), later it compiles them

into dynamically loaded Python modules. It is applied to multi-

layer perceptron (MLP) and a convolutional network.

Compilation function of Theano involves several stages like

canonicalization, stabilization, specialization, optional GPU

transfer and code generation. It was found to be 1.6x to 7.5x

faster than C/C++, NumPy/SciPy and MATLAB when

compiled for the CPU and 6.5x to 44x faster when compiled for

the GPU when implemented to machine learning algorithms.

Though it is much faster it is not optimal. It can handle graphs

with only thousand nodes and does not cover all functionalities

of NumPy and few features of SciPy. [9] shows how theano

can be used by taking the example of logistic regression and

describes the content and scope of the deep Learning Tutorials,

showing how Theano can be used for deep learning by making

them fast, elegant and compact.

Rudy et al in [10] have formulated a framework which

considers only the correctness of targeted input distributions

and adapts programs to increase its efficiency. The model being

specified includes a controller and a machine. The controller

takes charge of what should be executed and machine follows

the commands of the controller. The models aims at finding the

best set of weights in order to perform a correct input to output

mapping. Metrics considered are correctness, halting,

confidence and efficiency. The model uses addition of softmax

layer for reformulation of a constrained problem to an

unconstrained one. The input program is being converted to an

intermediate representation and then to a weight matrix which

is used to do the mapping. The model turned out to be good in

finding efficient solutions for simple programs, but found only

close to optimal solutions for complex programs. The model

also carries forward the drawbacks of gradient descent method

(which it uses for optimisation) i.e., it performs only local

transformations.

While handling advanced software and hardware an

automatic and accurate optimization heuristics are highly

required. These heuristics can be learnt by the model by

machine learning technique by training it with the help of

features/parameters that are hard coded by experts by their

knowledge, trial and error methods. Thus the accuracy of the

model depends on the features that are chosen for optimisation.

In [11] the authors proposed an advanced method for

formulating the optimised heuristics over raw data, without

using features. Neural networks are used for analysis the code

and to find the optimal heuristics where there is no human

intervention. During compilation/execution of code, decisions

are made based on hand coded heuristics thus the performance

and accuracy of the output depends on the heuristic that are hard

coded.

Deep tune is an end to end machine learning approach for

optimising the heuristics with deep neural networks. It has

following phases,

Source Rewriter: Source normalizing transformations are

applied on the raw code to generate a consistent code structure.

Sequence Encoder: Source code is encoded with integers

which is an index of predetermined hybrid vocabulary

(character and token)

Embedding: From sequence encoding the relation between

tokens cannot be interpreted so we translate the semantically

related tokens into a lower dimensional vector space.

Sequence Characterization: This phase is equivalent to

manual feature extraction. Long Short Term Memory (LSTM)

is a two-layer network, inputs the embedded vectors and

outputs a single output vector characterizing the given

sequence.

Heuristic model: The former layer has 32 neurons and the

latter one has a single neuron for each heuristic decision.

Finally, whichever neuron has the more activation is considered

to the optimal heuristic.

3. Conclusion

Deep learning implementations require a high level of

abstraction to separate developers from low level design. This

abstraction is provided by highly efficient compilers which

either work with specific DSLs or can be customized for any

DSL. Since the structure of neural networks can be represented

by graphs, compilers need to translate these graphs representing

tensor computations into executable which is usually done by

generating multiple IR, where on each IR optimizations and

lowering can be done. This paper explored various ways in

which compilers are used in the deep learning community from

implementing specific DSLs to use in frameworks to

simplifying the implementation by mapping onto FPGA. For

the former it resolves scalability issues by acting as an

intermediate between frontends and backends and for the latter,

it aids in faster training and implementation of neural networks

to make use of the efficiency and reprogrammability of field

programmable gate arrays. Certain compiler optimizations and

neural network frameworks were also reviewed to understand

the current approaches used.

References

[1] Truong, L., Barik, R., Totoni, E., Liu, H., Markley, C., Fox, A. and

Shpeisman, T., 2016. Latte: a language, compiler, and runtime for elegant

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

315

and efficient deep neural networks. ACM SIGPLAN Notices, 51(6),

pp.209-223.

[2] Wei, R., Schwartz, L. and Adve, V., 2017. DLVM: A modern compiler

infrastructure for deep learning systems.

[3] Abdelfattah, M.S., Han, D., Bitar, A., DiCecco, R., O'Connell, S.,

Shanker, N., Chu, J., Prins, I., Fender, J., Ling, A.C. and Chiu, G.R., 2018,

August. DLA: Compiler and FPGA Overlay for Neural Network

Inference Acceleration. In 2018 28th International Conference on Field

Programmable Logic and Applications (FPL) (pp. 411-4117). IEEE.

[4] Ma, Y., Cao, Y., Vrudhula, S. and Seo, J.S., 2017, September. An

automatic RTL compiler for high-throughput FPGA implementation of

diverse deep convolutional neural networks. In 2017 27th International

Conference on Field Programmable Logic and Applications (FPL) (pp.

1-8). IEEE.

[5] Cyphers, S., Bansal, A.K., Bhiwandiwalla, A., Bobba, J., Brookhart, M.,

Chakraborty, A., Constable, W., Convey, C., Cook, L., Kanawi, O. and

Kimball, R., 2018. Intel nGraph: An intermediate representation,

compiler, and executor for deep learning.

[6] Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov, R., Hegeman,

J., Levenstein, R., Maher, B., Nadathur, S., Olesen, J. and Park, J., 2018.

Glow: Graph lowering compiler techniques for neural networks.

[7] Ballal, P.A., Sarojadevi, H. and Harsha, P.S., 2015. Compiler

optimization: A genetic algorithm approach. International Journal of

Computer Applications, 112(10).

[8] Bergstra, James & Breuleux, Olivier & Bastien, Frederic & Lamblin,

Pascal & Pascanu, Razvan & Desjardins, Guillaume & Turian, Joseph &

Warde-Farley, David & Bengio, Y. (2010). Theano: A CPU and GPU

math compiler in Python. Proc. Of The 9th Python in Science Conf.

[9] Bergstra, James, et al. "Theano: Deep learning on gpus with python."

NIPS 2011, BigLearning Workshop, Granada, Spain. vol. 3. Microtome

Publishing., 2011.

[10] Bunel, Rudy R., et al. "Adaptive neural compilation." Advances in Neural

Information Processing Systems. 2016.

[11] Cummins, Chris, et al. "End-to-end deep learning of optimization

heuristics." 2017 26th International Conference on Parallel Architectures

and Compilation Techniques (PACT). IEEE, 2017.

