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Abstract: Compilers today have large amount of optimization to 

choose from, and correct one can have significant impact. Also the 

correct order of applying those optimization has been a long 

standing problem in compiler research. Traditional system applies 

same set of optimization in same order to all functions in a 

program. But, understanding the interactions of optimizations is 

important in determining good solution to phase ordering 

problems. Hence, we develop a system that selects good 

optimization order on per method basis within dynamic compiler 

automatically. Machine learning based compilation has become 

mainstream activity in the last decade. Machine learning and 

compiler optimization can be combined with the main concepts of 

features, models, training and deployment. Along with the above 

optimizations, compilers can also be optimized by parallelizing 

application for symmetric and shared memory multiprocessors. 

Algorithm considers data locality, parallelism and the granularity 

of parallelism. Optimization is given by using dependence analysis 

and a simple cache model. Inter procedural analysis and 

transformations is used to achieve optimization across procedures. 

 
Keywords: compiler optimization, code optimization 

1. Introduction 

There are 2 common requirements to be done for optimizing 

compiler. One, to minimize the time taken for execution and the 

other is to minimize the amount of memory occupied. Compiler 

optimization s generally implemented using a sequence of 

optimizing transformations, algorithms which take a program 

and transform it to produce a semantically equivalent output 

program that uses fewer resources. It has been shown that some 

code optimization problems are np-complete, or even 

undecidable. It is generally a very CPU- and memory intensive 

process. 

Compilers translate the code written by humans to binary 

executable code. Here the correctness is critical and caution is 

a by-word. Machine learning is an area of AI aimed at detecting 

and predicting patterns. Hence these can fit and develop into a 

research domain. 

Based on the feedback from compilers, user rewrites the 

program. Programs rewritten are always independent of any 

particular vector hardware and is style in which it is written is 

easily controllable to vectorization. Because of this machine 

depended vector code were able to generate by the compilers  

 

with excellent results. It is very hard to measure the success of 

parallelized compilers because the presence of parallelism in a 

dusky seck program is can’t be spotted that easily. There are 

different kinds of programs mainly of three types where it can 

be sequential, parallel or in between. The code   and algorithmic 

requirement of the parallelized programs are different from that 

of the sequential counterparts. These programs are tested with 

the different fortran collected codes. There are basically two 

types of code optimization, Machine independent and machine 

dependent. Optimization regardless of compiler and processor 

is machine independent optimization. Some important 

attributes of compiler and processor are to be considered for 

machine dependent optimization e.g. cycles per element. 

One of the important place of optimization is loops. Manly 

program spend bulk of times in the inner loops. This is a major 

part where code has to be optimized. By decreasing the number 

of instruction in the inner loop, running time of the program can 

be improved. This will not be effected even if the code in the 

outside of the loop is increased. 

Primary jobs of compilers are translation and optimization. 

The code first has to be converted to binary correctly. After this, 

the most efficient possible translation is found. With each 

translation the performance varies significantly, where there are 

many correct translations. The vast majority of research and 

engineering practices is focused on this second goal of 

performance, traditionally misnamed optimization. 

The reader is assumed to be familiar with the data 

dependencies. k represents a hybrid direction/distance vector 

for a data dependence between two array references. Each entry 

present in the vector gives the distance or the direction in the 

loop iteration where location to same location is compared. 

Dependence vectors are written left to right from the outermost 

to innermost loop enclosing the references. 

2. Algorithm  

The way toward applying ML to compilers include:  

A. Feature generation 

The model depends on a lot of quantifiable properties, or 

highlights, to portray the programs. There are a wide range of 
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features that can be utilized. These incorporate the static data 

structures that is from the program source code or the compiler 

transitional portrayal, (for example, the quantity of guidelines 

or branches), dynamic profiling data, (for example, execution 

counter qualities) acquired through runtime profiling, or a mix 

of the both.  

Changes that improves the code: Code Motion, Reduction in 

strength, Common Subexpression Elimination, Loop Unrolling. 

3. Procedure 

Data Generation, Feature Search  

A. Learning model  

The second step is to utilize training data to infer a model 

utilizing a learning calculation. In contrast to different uses of 

ML, we normally create our very own training data utilizing 

existing applications or benchmarks. The compiler designer 

will choose preparing programs which are run of the mill of the 

application area. For each preparation program, we figure the 

element esteems, gathering the program with various 

improvement choices, and running and timing the accumulated 

pairs to find the best performing choice. This procedure 

produces, for each preparation program, a preparation case that 

comprises of the element esteems and the ideal compiler 

alternative for the program. Mostly three sorts of ANN models 

are available single layer feed forward system, Multilayer feed 

forward system and repetitive system. 

Optimize–Uses loop permutation and tiling on a single nest 

to exploit data locality and parallelism. 

The steps involved in algorithm: 

Reference Groups, 

Loop Cost in Terms of Cache Lines 

Memory Order 

Achieving Memory Order 

Tiling for Parallelism 

Fuser–Incorporating loop fusion and distribution to enable 

Optimizer on a single nest and to increase the granularity of 

parallelism across multiple nests. Beginning with the innermost 

loop ln in a nest, the algorithm divides the statements into 

strongly connected regions scrs based on the dependences. 

B. Intra and Internest Parallelization 

We consolidate Optimize and Fuser to upgrade circle settles 

inside a solitary strategy. We call this algorithm Parallelize. It 

combines fusion and distribution with Optimize to acquaint 

powerful parallelism and with improve the granularity of 

parallelism accomplished. Parallelize–Combines Optimize and 

Fuser, resulting in an effective intraprocedural parallelization 

algorithm for loop nests. 

C. Loop distribution 

If a loop nest cannot be parallelized effectively using 

Optimize. Distribution algorithm. Beginning with the 

innermost loop ln in a nest, the algorithm Distribute divides the 

statements into strongly connected regions scrs based on the 

dependences. 

D. Loop fusion 

Loop fusion merges multiple loops with conformable 

headers into a single loop. Two loop headers are conformable 

if they have the same number of iterations and are both either 

sequential or parallel loops. It is safe if it does not reverse any 

dependencies between candidate loops. We only perform safe 

fusions. Our goal is to maximize parallelism. Subject to this 

constraint, we then minimize the number of parallel loops. 

Fusion does not combine two parallel loops when dependences 

would force the resulting loop to execute sequentially. 

E. Deployment 

In the final step, the learned model is embedded into the 

compiler to anticipate the best streamlining decisions for new 

projects. To make a prediction, the compiler first extracts the 

features of the input program, and then feeds the extracted 

feature values to the learned model to make a prediction. 

Enabler: Inter procedural Analysis and Transformation 

We introduce two new inter procedural transformations: 

1. Loop embedding–which pushes a loop header into a 

procedure called within the loop, and 

2. Loop extraction–which extracts an outermost loop 

from a procedure body into the calling procedure. 

 

The following subsections first review the inter procedural 

analysis we need and, then, describe the extensions to the loop 

transformation, and our use of inter procedural transformations. 

For our experimental validation, we take measure our 

algorithm’s ability to match or exceed performance on parallel 

programs written by programmers who thought and cared about 

parallel performance, not dusty deck sequential programs. The 

standard estimation is therefore a hand coded parallelized 

program. We assembled programs written for a variety of 

parallel machines. We eliminated all the parallel loops and 

synchronization to create sequential versions of each program. 

We then applied our algorithm to these sequential versions. The 

compiler was required to utilize its examination and 

calculations to parallelize the program. 

4. Results 

Experimental results demonstrate that profiles of program 

can be used for optimization of code. 

 
Table 1 

Speed ups over sequential program versions 
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Table 2 

Program execution times 

 

5. Conclusion 

In this paper we introduced a hybrid approach for 

optimization of code which includes the machine learning 

based compilation using an evidence approach for an optimized 

compilation, parallelization algorithm for balancing the 

parallelism factor and data locality, and optimizing the program 

code using neural networks. 

 Machine learning-based aggregation is presently a standard 

compiler look into zone and, throughout the most recent decade 

or somewhere in the vicinity, has produced a lot of scholarly 

premium and papers. We utilize a powerful procedure to 

present area, abuse parallelism, and expand the granularity of 

parallelism. Interprocedural segment investigation is a 

significant segment of our triumphs. We assessed the 

parallelization calculation against hand-parallelized programs 

with promising outcomes. The calculation improves execution 

over hand-parallelized programs at whatever point it connected 

advancements, essentially improving execution in three of the 

nine projects. 
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