
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

306

Abstract: Compilers today have large amount of optimization to

choose from, and correct one can have significant impact. Also the

correct order of applying those optimization has been a long

standing problem in compiler research. Traditional system applies

same set of optimization in same order to all functions in a

program. But, understanding the interactions of optimizations is

important in determining good solution to phase ordering

problems. Hence, we develop a system that selects good

optimization order on per method basis within dynamic compiler

automatically. Machine learning based compilation has become

mainstream activity in the last decade. Machine learning and

compiler optimization can be combined with the main concepts of

features, models, training and deployment. Along with the above

optimizations, compilers can also be optimized by parallelizing

application for symmetric and shared memory multiprocessors.

Algorithm considers data locality, parallelism and the granularity

of parallelism. Optimization is given by using dependence analysis

and a simple cache model. Inter procedural analysis and

transformations is used to achieve optimization across procedures.

Keywords: compiler optimization, code optimization

1. Introduction

There are 2 common requirements to be done for optimizing

compiler. One, to minimize the time taken for execution and the

other is to minimize the amount of memory occupied. Compiler

optimization s generally implemented using a sequence of

optimizing transformations, algorithms which take a program

and transform it to produce a semantically equivalent output

program that uses fewer resources. It has been shown that some

code optimization problems are np-complete, or even

undecidable. It is generally a very CPU- and memory intensive

process.

Compilers translate the code written by humans to binary

executable code. Here the correctness is critical and caution is

a by-word. Machine learning is an area of AI aimed at detecting

and predicting patterns. Hence these can fit and develop into a

research domain.

Based on the feedback from compilers, user rewrites the

program. Programs rewritten are always independent of any

particular vector hardware and is style in which it is written is

easily controllable to vectorization. Because of this machine

depended vector code were able to generate by the compilers

with excellent results. It is very hard to measure the success of

parallelized compilers because the presence of parallelism in a

dusky seck program is can’t be spotted that easily. There are

different kinds of programs mainly of three types where it can

be sequential, parallel or in between. The code and algorithmic

requirement of the parallelized programs are different from that

of the sequential counterparts. These programs are tested with

the different fortran collected codes. There are basically two

types of code optimization, Machine independent and machine

dependent. Optimization regardless of compiler and processor

is machine independent optimization. Some important

attributes of compiler and processor are to be considered for

machine dependent optimization e.g. cycles per element.

One of the important place of optimization is loops. Manly

program spend bulk of times in the inner loops. This is a major

part where code has to be optimized. By decreasing the number

of instruction in the inner loop, running time of the program can

be improved. This will not be effected even if the code in the

outside of the loop is increased.

Primary jobs of compilers are translation and optimization.

The code first has to be converted to binary correctly. After this,

the most efficient possible translation is found. With each

translation the performance varies significantly, where there are

many correct translations. The vast majority of research and

engineering practices is focused on this second goal of

performance, traditionally misnamed optimization.

The reader is assumed to be familiar with the data

dependencies. k represents a hybrid direction/distance vector

for a data dependence between two array references. Each entry

present in the vector gives the distance or the direction in the

loop iteration where location to same location is compared.

Dependence vectors are written left to right from the outermost

to innermost loop enclosing the references.

2. Algorithm

The way toward applying ML to compilers include:

A. Feature generation

The model depends on a lot of quantifiable properties, or

highlights, to portray the programs. There are a wide range of

Optimization of Program Flow using Hybrid

Approach of Compiler Optimization and Code

Optimization using Machine Learning and ANN

Sini Anna Alex1, S. Abhishek2, K. Sidhartha Nambiar3, K. Keshava Pranath4

1Assistant Professor, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India
2,3,4Student, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

307

features that can be utilized. These incorporate the static data

structures that is from the program source code or the compiler

transitional portrayal, (for example, the quantity of guidelines

or branches), dynamic profiling data, (for example, execution

counter qualities) acquired through runtime profiling, or a mix

of the both.

Changes that improves the code: Code Motion, Reduction in

strength, Common Subexpression Elimination, Loop Unrolling.

3. Procedure

Data Generation, Feature Search

A. Learning model

The second step is to utilize training data to infer a model

utilizing a learning calculation. In contrast to different uses of

ML, we normally create our very own training data utilizing

existing applications or benchmarks. The compiler designer

will choose preparing programs which are run of the mill of the

application area. For each preparation program, we figure the

element esteems, gathering the program with various

improvement choices, and running and timing the accumulated

pairs to find the best performing choice. This procedure

produces, for each preparation program, a preparation case that

comprises of the element esteems and the ideal compiler

alternative for the program. Mostly three sorts of ANN models

are available single layer feed forward system, Multilayer feed

forward system and repetitive system.

Optimize–Uses loop permutation and tiling on a single nest

to exploit data locality and parallelism.

The steps involved in algorithm:

Reference Groups,

Loop Cost in Terms of Cache Lines

Memory Order

Achieving Memory Order

Tiling for Parallelism

Fuser–Incorporating loop fusion and distribution to enable

Optimizer on a single nest and to increase the granularity of

parallelism across multiple nests. Beginning with the innermost

loop ln in a nest, the algorithm divides the statements into

strongly connected regions scrs based on the dependences.

B. Intra and Internest Parallelization

We consolidate Optimize and Fuser to upgrade circle settles

inside a solitary strategy. We call this algorithm Parallelize. It

combines fusion and distribution with Optimize to acquaint

powerful parallelism and with improve the granularity of

parallelism accomplished. Parallelize–Combines Optimize and

Fuser, resulting in an effective intraprocedural parallelization

algorithm for loop nests.

C. Loop distribution

If a loop nest cannot be parallelized effectively using

Optimize. Distribution algorithm. Beginning with the

innermost loop ln in a nest, the algorithm Distribute divides the

statements into strongly connected regions scrs based on the

dependences.

D. Loop fusion

Loop fusion merges multiple loops with conformable

headers into a single loop. Two loop headers are conformable

if they have the same number of iterations and are both either

sequential or parallel loops. It is safe if it does not reverse any

dependencies between candidate loops. We only perform safe

fusions. Our goal is to maximize parallelism. Subject to this

constraint, we then minimize the number of parallel loops.

Fusion does not combine two parallel loops when dependences

would force the resulting loop to execute sequentially.

E. Deployment

In the final step, the learned model is embedded into the

compiler to anticipate the best streamlining decisions for new

projects. To make a prediction, the compiler first extracts the

features of the input program, and then feeds the extracted

feature values to the learned model to make a prediction.

Enabler: Inter procedural Analysis and Transformation

We introduce two new inter procedural transformations:

1. Loop embedding–which pushes a loop header into a

procedure called within the loop, and

2. Loop extraction–which extracts an outermost loop

from a procedure body into the calling procedure.

The following subsections first review the inter procedural

analysis we need and, then, describe the extensions to the loop

transformation, and our use of inter procedural transformations.

For our experimental validation, we take measure our

algorithm’s ability to match or exceed performance on parallel

programs written by programmers who thought and cared about

parallel performance, not dusty deck sequential programs. The

standard estimation is therefore a hand coded parallelized

program. We assembled programs written for a variety of

parallel machines. We eliminated all the parallel loops and

synchronization to create sequential versions of each program.

We then applied our algorithm to these sequential versions. The

compiler was required to utilize its examination and

calculations to parallelize the program.

4. Results

Experimental results demonstrate that profiles of program

can be used for optimization of code.

Table 1

Speed ups over sequential program versions

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

308

Table 2

Program execution times

5. Conclusion

In this paper we introduced a hybrid approach for

optimization of code which includes the machine learning

based compilation using an evidence approach for an optimized

compilation, parallelization algorithm for balancing the

parallelism factor and data locality, and optimizing the program

code using neural networks.

 Machine learning-based aggregation is presently a standard

compiler look into zone and, throughout the most recent decade

or somewhere in the vicinity, has produced a lot of scholarly

premium and papers. We utilize a powerful procedure to

present area, abuse parallelism, and expand the granularity of

parallelism. Interprocedural segment investigation is a

significant segment of our triumphs. We assessed the

parallelization calculation against hand-parallelized programs

with promising outcomes. The calculation improves execution

over hand-parallelized programs at whatever point it connected

advancements, essentially improving execution in three of the

nine projects.

References

[1] McKinley, Kathryn S. "A compiler optimization algorithm for shared-

memory multiprocessors." IEEE Transactions on Parallel and Distributed

Systems 9, no. 8 (1998): 769-787.

[2] Patel, Jay, and Mahesh Panchal. "Code Optimization in Compilers using

ANN." (2014): 557-561.

[3] Wang, Zheng, and Michael O'Boyle. "Machine learning in compiler

optimization." Proceedings of the IEEE 99 (2018): 1-23.

[4] F. Allen, M. Burke, P. Charles, J. Ferrante, W. Hsieh, and V. Sarkar, “A

Framework for Detecting Useful Parallelism,” Proc. Second Int’l Conf.

Supercomputing, St. Malo, France, July 1988

[5] J.R. Allen, D. Callahan, and K. Kennedy, “Automatic Decomposition of

Scientific Programs for Parallel Execution,” Proc. 14th Ann.

[6] ACM Symp. Principles of Programming Languages, Munich, Germany,

Jan. 1987.

[7] J.R. Allen and K. Kennedy, “Automatic Loop Interchange,” Proc.

SIGPLAN ‘84 Symp. Compiler Construction, Montreal, Canada, June

1984.

[8] J.R. Allen and K. Kennedy, “Automatic Translation of FortranPrograms

to Vector Form,” ACM Trans. Programming Languages and Systems, vol.

9, no. 4, pp. 491–542, Oct. 1987.

[9] J. Anderson, S.P. Amarasinghe, and M. Lam, “Data and Computation

Transformations for Multiprocessors,” Proc. Fifth ACM SIGPLAN

Symp. Principles and Practice of Parallel Programming, Santa Barbara,

Calif., July 1995

[10] B. Appelbe, S. Doddapaneni, and C. Hardnett, “A New Algorithm for

Global Optimization for Parallelism and Locality,” Proc. Sixth Workshop

Languages and Compilers for Parallel Computing, Portland, Ore., Aug.

1993.

[11] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers

Principles, Techniques & Tools, Pearson Publication.

[12] S. Rajasekaran, G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic

and Genetic Algorithm: Synthesis and Application, PHI learning Pvt. Ltd.

[13] Sameer Kulkarni, John Cavazos, Mitigating the Compiler Optimization

Phase Ordering Problem Using Machine Learning, 14th April 2012.

[14] J. Chipps, M. Koschmann, S. Orgel, A. Perlis, and J. Smith, “A

mathematical language compiler,” in Proc. 11th ACM Nat. Meeting,

1956, pp. 114–117.

[15] P. B. Sheridan, “The arithmetic translatorcompiler of the IBM FORTRAN

automatic coding system,” Commun. ACM, vol. 2, no. 2, pp. 9–21, 1959.

[16] M. D. McIlroy, “Macro instruction extensions of compiler languages,”

Commun. ACM, vol. 3, no. 4, pp. 214–220, 1960.

