
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

296

Abstract: Finding the good set of compiler optimisation

sequence for a particular program is a difficult task in hand. If the

best suited optimisation technique is not chosen, the subsequent

compiler settings thus generated can result in the program not

executing at its performance peak. This problem can be avoided if

there is proper awareness about which compiler optimisation

technique to apply given the use case. This paper therefore

discusses various compiler optimisation techniques which are

known to work well in their domain. The paper helps in providing

a clear idea about selecting the appropriate compiler optimisation

technique for the given program.

Keywords: Compiler Optimisation, Optimisation Sequence,

Compilers, Optimisation Technique Selection, Performance

1. Introduction

Compiler optimisation deals with managing some of the

attributes of the program execution procedure in order to

minimise the time taken to execute the program or minimize the

total memory used by the program. There are numerous ways

to optimise any program. GCC provides some code

optimisations each of them changes several optimisation

options. Many methods have been proposed to further optimise

the optimisations already provided by various compilers. The

problem that most of the programmers face is to decide which

set of optimisation will make their program most optimised.

Compiler optimisations can be program specific, general

purpose or targeting power efficiency. This paper provides an

overview of such techniques which are generally used in

optimisation. Two of the techniques described in this paper are

program specific, one is case based and the other makes use of

Genetic Algorithms to find the compiler options [1] [3]. The

other two techniques are generic optimization techniques [2]

[4].

2. Optimization techniques

A. Optimization of sequences using case based technique

This technique finds the best compiler optimisation by

reducing the size of search space greatly. This is done with the

help of compiler optimisation sequence (COS) available for

other programs. This technique maintains a search space where

a performance counter is maintained along with a certain

number of COSs for various programs. The performance

counter stores the efficiency of each COS when applied to a

program. A baseline of efficiency is made for the given

program, and all the programs falling above the baseline are

stored in reduced search space along with their COS. Then the

reduced search space is sorted according to the similarity of

stored programs with the given program. The COS of most

similar program is applied while compiling the given program

and its performance is monitored. If it is not satisfactory then

the next most similar program’s COS is taken. In case if no

program is above baseline then the baseline program’s COS is

taken as the best optimization sequence.

B. Optimisation of general purpose optimisation

This paper proposes that though it is generally believed that

there is no common setting for compiler switches which

performs optimally for all the programs, they have derived a

compiler setting that gives best results for all programs which

is seen by the fact that it increases the efficiency by nearly 20%.

But given there are 54 switches, there are 254 possible settings.

Therefore, the search space for the optimal setting needs to be

trimmed down. This is achieved in two ways:

a) By iteratively adding new switch states to already

successful switch settings which are incrementally

extended.

b) By creating a representative subset of 254 different

settings using an orthogonal array of fractional

factorial design.

The algorithm to find a compiler setting:

a) Finding the maximal subsets of positively interacting

options. This is done so as to not include the settings

which interact negatively together and thus negatively

impact the performance improvement.

b) Now the subsets which do not have a negative impact

on each other are found. This is done so as to find out

which subsets must be combined to give the final set.

c) This step selects the best setting. After getting the set

of candidate compiler settings by the two steps (by

analysing reduced search space), the search space is

still reduced since it is not feasible to execute all

settings in S (set of candidate settings) to select the

best one. A setting is selected from those settings

which have most optimizations turned on. After

execution and calculating E(s) (effect of a compiler

setting) for each s from S, the compiler setting with

maximal E(s) is chosen.

This setting when run through the standard SPECint95

benchmarking suite, the improvement in performance was

significantly better. This proves that the proposed systematic

Analysis of Compiler Optimization Techniques

Anshul Gupta1, Ashutosh Pattanaik2, Atul Rustagi3, Sini Anna Alex4

1,2,3Student, Dept. of Computer Science and Engg., M. S. Ramaiah Institute of Technology, Bangalore, India
4Assistant Professor, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

297

way of finding the optimal compiler setting works the way as

designed.

C. Tuning of Compiler Optimisation Options (AcovSA)

GNU compiler collection gives many options while

compiling for optimization. GCC provides a built-in set of these

options for optimization but user can also choose the set of

options. As the number of possible combinations of these set is

huge, thus reaching to most optimum is very hard. AcovEA

(Analysis of compiler options via evolutionary algorithm) uses

genetic algorithms to search for the optimum set of options. It

compiles the program with every set and analyse the

performance and select the best, but this process is time

consuming. This paper introduces a tool AcovSA (Analysis of

compiler options via simulated annealing) which reaches to

similar result as AcovEA but in less time.

Simulated Annealing is a heuristic algorithm. New

benchmarks are used based on multiprocessor scheduling

problem with DAG test data. The number of generations is

changed which compromises with the problem size and sticks

with the original problem definition. DAG scheduling problem

is solved using genetic algorithms (GA). First the pre-

processing of DAG test data needs to be done and then GA is

used to iterate on the solution. To reduce the number of

iterations, number of iterations are reduced to 10. Keeping the

number of iterations less can be a good compromise for

complexity of problem. The proposed alternative approach

gives a good optimization option set with better performance.

D. Embedded Softwares - Impact of Compiler Optimisations

In compilers, power and energy optimization can be done by

compile time analysis and code reshaping that can be further

implemented in hardware along with circuit design. But current

compilers are unaware of the energy details of the processor and

are only tuned for performance and code size.

In recent times, global optimization levels (-o0 to -o3) are

used to study the effects of compilers on power consumption

and energy dissipation. In previous works effect of architectural

features like dual memory accesses and packing of instructions

into pairs, and instruction level power models are used to study

energy consumption on programmable processors. Influence of

high-level compiler optimization like loop unrolling and fusion

were also studied.

When effect of optimization was studied on energy and

power consumption it was found that more aggressive

optimization (-o3 and -o2) consumes more power when

compared to less aggressive one but when software loop

pipelining features of -o3 and -o2 were taken consideration then

they provide substantial energy savings as compared to -o1, -

o0, and no optimization which uses more variables and pre-

fetched data for most of the benchmarks.

On analysing the effect of optimization levels on other

execution characteristics like cache miss, it was found that more

the cache miss more will be the CPU stall cycles but in case of

optimization level -o3 which supports pipelining, pipelining

miss hides the miss overhead by overlapping the processing of

several cache misses. Thus, in case of -o3 level stall cycles

decreased but no effect on power consumption. Also, power

consumption is inversely proportional to parallelization.

Thus we can conclude that energy usage while running an

algorithm with -o3 optimization level is significantly decreased

by 95.6%. Also, the aim to decrease power consumption is not

much entertained and that is why to target both performance

and power consumption it is recommended to use -o3 while

disabling the software pipelined loop using -mu in conjunction

with -o3.

3. Discussion results

The paper discusses different compiler optimization

techniques. These methods are used in different scenarios with

a common goal - that is to optimize the performance of the

running code or the machine. Depending on the use case, the

paper gives an insight about which algorithm to select. For

deciding the compiler settings for a program, any technique

which focuses on optimising performance of the given program

can be used. This results in the choice of two techniques –

AcovSA and case based technique. If computation involves

executing a program that is similar to that of those already

optimised to its best known performance measure, then those

optimisation sequences can be used to optimise the given

program. This reduces the exploratory state space and causes a

performance gain. On the other hand using less or non-similar

programs increases number of optimisation sequences, which

in turn increases the search time. Hence case-based approach

should be used in this scenario.

It can be seen that if execution time of the given program is

large, then the process of discovering good compiler options

becomes very difficult. For programs with large execution time,

AcovSA can be used as it uses GA with reduced number of

iterations to find the optimised compiler options. This

compromise is acceptable for problems with such large

complexity.

For the generic use, the readily available optimisation

techniques can be used and/or modified for better performance.

These techniques sets the different optimisation options

dynamically depending on the program being executed and thus

are better for the quick and efficient optimization. Along with

these techniques for energy consumption, the pipelining in loop

can be introduced. The parallel search for the best optimisation

set can greatly reduce the power consumption as well as

decrease the execution time.

4. Conclusion

This paper gives an idea of which compiler optimisation

technique to be used depending on the use case. This helps

greatly in achieving the proper performance and productivity as

it eases decision making during testing or development.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

298

Acknowledgment

We would like to acknowledge Management and staff of

Ramaiah Institute of Technology in supporting us to do this

research work.

References

[1] https://www.embedded.com/electronics-products/electronic-product-

reviews/embedded-tools/4086427/Advanced-Compiler-Optimization-

Techniques

