
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

276

Abstract: This paper is intended to provide insights about

different optimizations available and their application details in

compiler design. Optimization of compilers means tuning of

objectives like latency, size, resource consumption etc. The most

powerful thought about optimizations is that putting all of them at

once does not solve all problems at once. This paper therefore also

discusses different orders in which optimizations can be applied to

have a much bigger impact with increased efficiency in desired

sectors. Two compilers are also compared here.

Keywords: Compiler optimization, Conflicting Pairs of

Optimizations, Feature Space Exploration, Increased Efficiency,

Optimization Technique Combinations, Reduced Latency.

1. Introduction

In embedded world the efficiency of the software executed

on the processor holds great importance. Specialized

architectures pose a great deal of problems for good quality of

code because of the old compiler technology and sometimes the

incompatibility between instruction sets and the high-level

languages. Re-targetable compilers were proposed for the same

problem as when the designer feeds them with a well-versed

account of the target architecture they can generate code for

different architectures. This states that low-level optimizations

can sometimes be let go of when targeting, but in such situation

the efficiency drops. The paper talks more about how low-level

optimizations can help increase efficiency of re-targetable

compilers.

Wireless Sensor Networks have memory restrictions,

program storage restrictions etc. They also need good

optimization techniques on these ends to give better results. The

combination of optimizations that do lead to better WSN

performance are discussed in the paper. Since the compiler

optimizations are endless what optimizations should we use in

what order and their efficiency derived through optimized

sequence of optimizations is also discussed. The conflicts are

taken in account when discussing the optimal sequence of

optimizations. Previous works targeting the problem used

search techniques of some sort to cope up with the problem but

the search space is huge and exponential which makes the task

unprofessional. The paper discusses the algorithm that makes

the solution to the problem a mere fully formalized set of steps.

The code needs many transformations to meet the architecture

demands. The optimizations can be used in handy for the same

process.

Now - O0, -O1, -O2 and -O3 are the four definitions GCC

has given for these optimization techniques.. These have

complex relationships among them and using a bulk of them

will not give the optimal result. The concept of feature mining

is described in the paper. A program execution spends most of

it’s time in a small region of code [14]. The ‘90-10 rule’ says

that 90% of execution time comes from 10% of code [14].

Intrinsically 85% from loops and 15% from function calling –

often called hotspots. Thus study of feature space gives one

room for study of particular optimizations and their advantages

on the specific cases.

2. Related work

A. Literature survey

The GCC compiler is said to have a pipeline description,

which may/may not be used for RISC and VLIW processors

[1]. The description language used in GCC is not so powerful

as it does not cover the instruction flags. The fundamental aim

of WSN is to collect statistical data and pose control over it’s

environment [2]-[4]. The organizability of WSNs holds the key

to their effectiveness, they can be deployed over any region of

importance and they must be able to organize themselves as a

wireless network [5]-[7]. Therefore, a WSN is a self-organizing

wireless network with the ability of producing, processing and

transmitting application data. The durability expected may

range from days to years [8].

The most important aspect of compiler optimizations is the

order and combination part of it. For specific parts of the code

these combinations of optimizations might conflict and results

in one optimization which is used to diminish the performance

enhancement achieved by any other. The conflicts so obtained

are mainly from loops, function call boundaries, conditional

statements etc. [9]-[13]. These conflicting pairs are called

optimizations conflicting pairs (CPs). The discussion in this

paper elaborates the idea for an algorithm to solve the

conflicting pairs problem and do so in a formal paradigm. The

optimizations that will be obtained after applying the algorithm

will be Optimal Sequence of Optimizations (OSOs) [13].

Previous work in the area of providing with a set of optimal

A Brief Survey of Compiler Optimizations and

their Sequence Optimization

Shiv Dutt Tripathi1, Sashank Agarwal2, Rohit Kumar3, A. Parkavi4

1,2,3Student, Dept. of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India
4Assistant Professor, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

277

optimizations depended on the idea of iterative compilation.

The techniques used were Local minima search techniques,

Pruning strategy, Genetic algorithms, Geometrical

transformations, Pareto optimal. The machine learning

approach is also used in way to extract static and dynamic

features from the code and then use a Design of Experiments

(DOE) [14] containing tool to search and find out the optimal

optimizations to apply. This technique is explained in the paper

along with the tools necessary to come up with results.

B. Comparison

Let us see two compilers known as GCC, LLVM which

works on the EISC processor [15]. When compared both of

them, we can see that LLVM is having calculation optimization

better but in case of register allocation and jump optimization,

GCC is excellent when compared to LLVM. Overall, the GCC

compiler has better performance about 18% on average in terms

of dynamic instruction. In addition, the compiled code size by

GCC is smaller than that of LLVM. Table 1 shows comparisons

of both architecture on the basis of instruction set.

Table 1. Comparison

3. Discussion

1) Pipeline aspects

A very detailed pipeline description is needed for re-

targetable compilers. The forwarding nature is present in many

processors which poses problems. The feature is essential as it

also overcome many pipeline hazards. Also, exclusive write is

a property in some processors: if there are two instructions

which are consecutive and both of them write the same operand

and if the order of execution makes second to execute over first

then too the order of writes must be preserved. An instruction’s

behavior can be described in many ways on the pipeline, of

them two can easily be discussed. The first description can be

viewed as when assuming the description of each instruction,

the stage’s description holds good for the same. The second

description uses the fact that instructions on the basis of

read/written operands can easily be grouped. So they are

grouped each group now is associated a pipeline pattern. The

model explained has the following structure: stages section,

pipeline section, value holding section, auxiliary resource

section [1].

2) Pipeline Model

 Stage Section: In order to get the best of a pipeline

structure there needs to be a set of stages, each of them

performing the task individually and passing the

results to the next stage. This promotes parallel

architecture and provides of efficiency. The first line

of this section has a tabular description subdivided into

processor’s pipeline stages and for each of them, their

stage description follows.

 Pipeline pattern section: Before entering this stage the

instruction set is divided into subsets. A pipeline

pattern groups similar sections.

 Value holding resource section: The description for all

the value-holding resources is provided in this section.

Memory, registers and forwarding network are the

value holding resources.

 Auxiliary resource section: Resources such as

functional units need their description to be provided

in this section.

3) Model based instruction scheduling results

The model based instruction scheduling results in observable

speed optimization in VLIW or VLES based target

architectures. The core idea is of reordering the code of the

application which in turn minimizes latencies.

4) WSN optimizations

Putting all 150 optimizations to WSN available on GCC is

impractical. Some important optimizations, which affect the

code size considerably, are chosen over others and put to test.

Total 61 optimizations are chosen but the feasibility is still high

so they are divided into 15 groups, which can be tested. Both

the code size and the performance are conflicting in some

instances when the results are compared. Since sometimes the

optimization techniques use some extra code space for better

control flow constructs. The basic trade here is of code space in

order to get better performing code. The energy side of the code

is highly marketed.

5) Optimized sequence of optimizations

Finding the optimized sequence of optimizations using the

graphical methodology of choosing three triangles of

optimizations and out of all triplets the optimized ones to be

applied are chosen. The sequences are graded on their

performance as triplets and the resultant grades are the basis for

choosing the optimized sequence. The process is compared to

traditional approaches and the results report an improvement of

41% in some cases. Since the proposition of optimized

sequence of optimizations is very important to be worked on,

the triplet method is an important study to be included.

6) Feature mining technique

This is another approach to designing a space explorer, which

will observe behavior of different optimizations techniques on

different source codes and divides the static and dynamic

features. This method is still not combined with the above

discussed method of OSOs. The analysis of compiler

optimizations can be easily done using the feature mining

technique and using tools like the M3 Explorer and PIN tool.

The explorer provides with features like automatic design space

exploration, portability and modular composition. The feature

extraction part is done using the Intel PIN based dynamic

profiling framework. This tool extracts the two kinds of features

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

278

there are i.e. static and dynamic. The tool will however give

results based on the architecture. The point to note from the

results of this analysis is that when more number of

optimizations are applied the number of movements by the

program counter decreases. Stack reads and writes in turn are

reduced thereby stating there is less need of storing intermediate

values. This in turn makes executables faster.

7) Loop-invariant optimization

Compiler optimization and its consequences on real-time

systems is explained where control flow in code is generated by

an optimizing compiler is generally different from the control

flow generated by user’s source code. Therefore, this might

result in setting breakpoints at incorrect locations in the code or

it might fail to set relevant breakpoints. In addition, these

scenarios are being given under the Debugging Highly

Optimized Ada with Code Motion (DHACM) program. The

goal of this program is to improve the performance of the

debugger when applied on optimized code.

8) COS and COSP

The compiler optimization set (COS) and Compiler

optimization selection problem (COSP) are discussed about the

problem of using the same COS in a fixed order to all programs,

it can improve the performance of some benchmarks while

degrading the performance of others. Further architecture Fig.

1, where exploratory space has some performance counter set

and ‘N’ COS for many programs. In addition, COSP Mitigate

is used to identify the best COSs of exploratory space. In

addition, the compiler optimization sequence validator is used

for the validation and verification for which COS will be the

best one.

Fig. 1. The architecture

4. Conclusion

The pipeline model is discussed as to study how the pipeline

models can affect optimizations. The most important part of

upcoming communication networks are WSNs and the need for

code optimizations is high inside a WSN. The discussion about

WSN code optimizations aims at putting more effort in making

these networks more efficient. The optimizations cannot be just

put in any order and so the Optimized Sequence of

Optimizations using the triplet method is discussed. The feature

mining technique focusses on the use of two tools and the

technique can be used along with OSO to come up with better

set of optimizations.

References

[1] Ghica, Lavinia, "An accurate pipeline model for optimizing retargetable

compiler", 9th International Conference on Intelligent Computer

Communication and Processing (ICCP), pp. 283-286. IEEE, 2013.

[2] I. F. Akyildiz, “Wireless Sensor Networks”, John Wiley & Sons Inc,

2010.

[3] A. Hac, “Wireless Sensor Network Designs”, San Francisco, CA, USA:

John Wiley, 2003.

[4] M. Ilyas, “Handbook of Sensor Networks: Compact Wireless and Wired

Sensing Systems”, CRC PRESS, 2004.

[5] A. L. L. Aquino, “Wireless Sensor Networks for Monitoring

Amphibians,” in Proceedings of Grand Challenges in Computer Science

Research in Latin America Workshop, 2008, pp. 25–49.

[6] R. Herlien, “An Ocean Observatory Sensor Network Application,” in

Proceedings of IEEE Sensors Conference, 2010, pp. 1837–1842.

[7] C. Goumopoulos, “Ambient Ecologies in Smart Homes”, Comput. J., vol.

52, pp. 922–937, November 2009.

[8] L. B. Ruiz, “On the Design of a Self-managed Wireless Sensor Network”,

IEEE Communications Magazine, vol. 43, no. 8, pp. 95–102, 2005.

[9] C. Norris, “An experimental study of several cooperative register

allocation and instruction scheduling strategies”, 28th annual

international symposium on Microarchitecture, pages 169–179. IEEE

Computer Society Press, 1995.

[10] D. Berson, “Integrated instruction scheduling and register allocation

techniques”, Languages and Compilers for Parallel Computing, pages

247–262, 1999.

[11] R. Kumar, “Compiling for instruction cache performance on a

multithreaded architecture”, 35th annual ACM/IEEE international

symposium on Microarchitecture, pages 419–429. IEEE Computer

Society Press, 2002.

[12] M.E. Wolf, “Combining loop transformations considering caches and

scheduling”, 29th annual ACM/IEEE international symposium on

Microarchitecture, pages 274–286. IEEE Computer Society, 1996.

[13] Asher, "A study of conflicting pairs of compiler optimizations", 11th

International Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSoC), pp. 52-58. IEEE, 2017.

[14] Kumar, Tarun, "Analysis of compiler optimization techniques by using

feature mining technique", 39th National Systems Conference (NSC), pp.

1-6. IEEE, 2015.

[15] Chanhyun, Miseon Han, "Performance comparison of GCC and LLVM

on the EISC processor", International Conference on Electronics,

Information and Communications (ICEIC), pp. 1-2. IEEE, 2014.

