
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

237

Abstract: Immediate feedback on sign language gestures can

greatly improve sign language education. We classify the sign

language using webcam images. We can successfully classify up to

92 − 93% of the signs using a linear or Gaussian kernel SVM,

outperforming k-nearest neighbor classification by about 10%.

Using a custom set of features, we developed, we can successfully

classify 81−82% of the signs with an SVM. Implementing

techniques in machine learning and image processing, we hope to

obtain a high level of accuracy in determining sign language.

Keywords: Sign Language Recognition

1. Introduction

Implementing techniques in machine learning and image

processing, we hope to obtain a high level of accuracy in

distinguishing sign language. Our system receives input from

webcam images and classifies them based on features denied by

post-processing the images. The primary application for sign

language recognition is to improve sign language education. A

person who wants to learn and practice sign language today

does so by hiring a sign language instructor or watching

instructional videos on-line while practicing in front of a mirror.

The former method can be expensive and inconvenient for

people with busy schedules and the latter does not provide the

user with necessary feedback on correctness.

Our recognition system can be implemented into a desktop

or browser application that can provide immediate feedback to

a user’s hand gesture. Such a tool would be inexpensive and

convenient, requiring the user to practice in front of their

webcam rather than attending expensive sessions with an

instructor. Unlike the mirror, the system can also provide

instant feedback on the correctness of the hand gesture.

Our choice of using webcam images as our input for-mat also

creates some difficulty in correctly classifying hand shapes.

Depending on the quality of the webcam, captured image data

typically contains noise from compression. Since we cannot

constrain where the user’s hand will be in relation to the camera,

our recognition system needs to be invariant to scale and

position. Rotational invariance is less important because the

user’s arm will typically be pointing vertically upward to make

hand gestures, but this is a feature we hope to include in the

future. We tackle these challenges in post-processing, explained

in a later section, of the image captures.

 Current solutions incorporate a variety of machine learn-ing

techniques to classify hands. Using a Pyramid of His-to gram

of Oriented Gradients as a feature for an SVM with 70-30 cross

validation, Knight is able to distinguish between a hand and

non-hand [1]. Hidden Markov models, commonly used in

handwriting recognition, achieve a 97%+ ac-curacy in

classifying 40 words in American Sign Language [4].

2. Data collection

Fig. 1. A sampled set of images processed training data

Our dataset comprises over 1800 webcam images of hand

gestures (see Figure 1). The images were taken from a standard

laptop webcam at 640 x 480px resolution. Using a custom

MATLAB script to expedite the process, each team member

took 20-30 images of his right hand signing each of the 25

letters (skipping the letter "j"). While capturing images, the

hand gestures were moved or rotated slightly to avoid taking

sets of images that were too similar. By introducing some

variance into the dataset, we help ensure that any new data we

test on does not need to look exactly like the training data in

order to be correctly classified. A single image of the

background without a hand in the foreground is also taken for

both the training and test data. This background plate allows our

system to extract the fore-ground from the images much more

easily by performing back-ground subtraction, which we

describe later.

3. Image processing

We apply image processing to better extract features from

our input images. In particular, the features that we extract from

our images should be invariant to background data, translation,

Sign Language Recognition using Image based

Hand Gesture

N. Adarsh1, M. G. Banish2, K. R. Rohan3, J. Rahul4, Manjunath Kotari5

1,2,3,4Student, Dept. of Computer Science and Engg., Alva's Institute of Engg. and Technology, Shimoga, India
5Professor & HoD, Dept. of Computer Science and Engg., Alva's Institute of Engg. and Tech., Shimoga, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

238

scale, and lighting condition.

Fig. 2. Image processing timeline. We start with a raw image (a), subtract

the background (b), binarize (c), remove small white and black holes (d),

remove white patches and crop the hand (e), cut out the wrist (f), normalize

the hand size (g).

First, images are converted to grayscale. While this makes

other operations much more simple and quicker to compute, we

lose colour information from the original images. Since our

system needs to be lighting invariant, the colour information

should actually be ignored because we cannot rely on the col-

oration of the hand to be consistent between test and training

image data. Since the background data is not relevant and

should not be trained nor tested against, we remove the

background from the foreground. By subtracting the

background image from an input image, we and the intensity

changes of each pixel. Intensity changes above some threshold

are classified as foreground pixels and the remaining pixels are

background pixels. The threshold was set to ensure that hand

pixels would not be subtracted out.

The next step is to get the silhouette of the hand. The image

is binarized by setting all non-black pixels to white (1) and

leaving the remaining pixels as black (0). We remove holes and

remove all but the largest connected components to get a single,

solid silhouette of the hand. We normalize the translation and

scale by relying on some assumptions about the wrist. First, we

locate the wrist by starting from the bottom-most row, assuming

the hand protrudes from the bottom edge of the image, and

checking the width of the arm in each row until the width

reaches its minimum, which is assumed to be the wrist location.

The hand is repositioned such that the wrist is centered at the

bottom of the image and padded by a factor dependent on the

wrist width to t into a square. The final image is resized into a

20 x 20px image, forming a 400-member feature vector. The

full erect of processing can be seen in Fig. 2.

4. Approach

Our overall approach to the classification problem is

summarized in Fig. 3.

After obtaining our full data set, we the data and split into

85%=15% train/test, which still leaves us with over 250 test

examples. Since it’s not obvious which image size will provide

the most distinguishing features, we varied the resized image

dimension and examined the 10-nearest neighbour test error.

We and that a 20 x 20px image is optimal, and these results are

summarized in the Cross-Validation subsection. Once we have

an optimal image size, we run 10-fold cross-validation on the

train examples to determine optimal SVM parameters C and

(for the Gaussian kernel). Given an optimal set of parameters,

we then train on the full training set, forming a training model,

and test on the test set.

Fig. 3. The classification process

5. Results

A. Pixel features

1) Image scaling

To determine the optimal image dimensions to use for

classification, we ran k-nearest neighbor (with k = 10) classi

cation on our full test set with pixel dimensions = [10 20 30 40

50]. We chose to use k-nearest neighbor classi cation rather than

SVM since using an SVM would require tuning model

parameters for each pixel dimension, significantly complicating

the cross validation. The results can be seen in Figure 4.

Fig. 4. Image resize dimension test error using 10-nearest neighbor

classification

We and that 10 pixels is not enough to robustly classify

among the signs, as expected. When scaling the image down

that severely, many distinguishing features are lost. 20- and 30-

pixel image dimensions have improved performance (error

around 16%, and the 50-pixel image dimension has the best

performance. We chose to use 20 x 20-pixel images because

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

239

enough distinguishing features should remain and we can later

out some noise by scaling down to that size. In addition, with a

training set of around 1500 images, we could ensure that our

number of features (400) was still significantly smaller than the

training set size.

B. Cross validation

After creating the feature vectors for all of our test and train

examples, we ran 10-fold cross validation to determine the

optimal soft margin parameter C and the Gaussian parameter

(for the Gaussian kernel). We used a log2 space search (in either

1 or 2 dimensions) and picked the parameter (or parameter pair)

with the highest cross validation accuracy. In general, we run a

coarse search, and if necessary, a research. For example, the

search for optimal C, parameters are shown in Fig. 5.

Fig. 5. The cross-validation accuracy for a range of Gaussian kernel SVM

parameters

C. Classification results

The Gaussian kernel slightly outperforms the linear kernel

SVM when testing the full 25 sign set, but they are both 98:6%

accurate on the condensed 12 sign set. They both outperform

the baseline k-nearest neighbor classifier (with k = 10). Our test

error is actually slightly lower than the cross-validation error,

which seems somewhat anomalous. The likely explain-nation

is that when we randomly our data and split into training and

test sets, the training set happened to get a disproportionate

amount of poor examples.

D. Learning curve

To get an idea of how well our algorithm was learning, we

plotted the learning curve, seen in Fig. 6.

Fig. 6. Learning curve. The test error appears to be asymptotically

decreasing, suggesting a high variance situation

The plot shows an asymptotic decrease in the test error,

coupled with a slow increase in the training error as the training

set size increases. It appears that we have a high variance

situation - lots of features and not enough training examples.

Since our train error is fairly low, high bias is not a problem.

6. Custom features

To compare the performance of our pixel-based feature

vector, we also created a 13-feature vector from the images. To

collect the features, we used the normalized (but not resized)

image, as in Fig. 2 (g), except with the hand pixels in grayscale.

Three features we collected were the relative area, height and

width of the normalized hand. We also deter-mined the width

of the top of the hand and the gap in the top the hand. These two

features could be useful in telling us how many fingers that the

user was holding up. Running the Fourier transforms provides

a rough alternative to edge detection. The edges are primarily

caused by the fingers, so the position of the fingers in the hand

gives a unique spectral signature which can be used to recognize

the sign.

The classification results using our custom features can be

seen in Table 2.

With our custom features, the Gaussian kernel is actually less

effective than the linear kernel, suggesting that some over thing

is taking place in the higher dimensional feature space. We have

a higher test accuracy than C.V. accuracy for the linear kernel,

but not for the Gaussian kernel, which is di cult to explain. The

linear kernel SVM outperforms the 10-nearest neighbor

classifier for both sign sets.

Table 1

Pixel feature classification results

 C.V. accuracy Test accuracy

Classifier 12

signs

25

signs

12

signs

25

signs

Linear

kernel

97.2% 90.8% 98.6% 92.4%

Gaussian

kernel

98.3% 92.4% 98.6% 93.5%

k-

nearest-

neighbour

N/A N/A 93.0% 84.8%

Table 2

Custom Feature Classification Results

 C.V. accuracy Test accuracy

Classifier 12

signs

25

signs

12

signs

25

signs

Linear

kernel

93.8% 78.8% 98.2% 82.3%

Gaussian

kernel

96.8% 85.7% 86.1% 81.2%

k-

nearest-

neighbour

N/A N/A 92.7% 78.0%

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

240

A. Further work

There are several key extensions of our work. While our

method works well on webcam images, ideally, we would like

to classify live webcam video of sign language. This would re-

quire a different image processing scheme to isolate the hand in

the image. In particular, our background subtraction algorithm

would have to be modified, since the background would be

dynamic. An alternate approach would be to use scale in-variant

features derived from webcam stream images, derived from an

algorithm such as SIFT [5], which would be less sensitive to

background noise and rotations of the hand.

7. Conclusion

This paper presents an overview on sign language

recognition using image based hand gesture.

References

[1] Knight, D., Tang, M., Dahlkamp, H., and Plagemann, C. "A Framework

for Recognizing Hand Gestures", CS229 Final Project Paper, 2010.

[2] Shari, S. and Kulkarni, A. "Identifying Hand Configurations with Low

Resolution Depth Sensor Data", CS229 Final Project Paper, 2009.

[3] Marx, M., Fenton, M., and Hills, G. "Recognizing Hand Gestures with a

3D Camera", CS229 Final Project Paper.

[4] T. Starner, J. Weaver and A. Pentland, "Real-time American sign

language recognition using desk and wearable computer based video,"

in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

20, no. 12, pp. 1371-1375, Dec. 1998.

