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Abstract: Immediate feedback on sign language gestures can 

greatly improve sign language education. We classify the sign 

language using webcam images. We can successfully classify up to 

92 − 93% of the signs using a linear or Gaussian kernel SVM, 

outperforming k-nearest neighbor classification by about 10%. 

Using a custom set of features, we developed, we can successfully 

classify 81−82% of the signs with an SVM. Implementing 

techniques in machine learning and image processing, we hope to 

obtain a high level of accuracy in determining sign language. 

 
Keywords: Sign Language Recognition 

1. Introduction 

Implementing techniques in machine learning and image 

processing, we hope to obtain a high level of accuracy in 

distinguishing sign language. Our system receives input from 

webcam images and classifies them based on features denied by 

post-processing the images. The primary application for sign 

language recognition is to improve sign language education. A 

person who wants to learn and practice sign language today 

does so by hiring a sign language instructor or watching 

instructional videos on-line while practicing in front of a mirror. 

The former method can be expensive and inconvenient for 

people with busy schedules and the latter does not provide the 

user with necessary feedback on correctness. 

Our recognition system can be implemented into a desktop 

or browser application that can provide immediate feedback to 

a user’s hand gesture. Such a tool would be inexpensive and 

convenient, requiring the user to practice in front of their 

webcam rather than attending expensive sessions with an 

instructor. Unlike the mirror, the system can also provide 

instant feedback on the correctness of the hand gesture. 

Our choice of using webcam images as our input for-mat also 

creates some difficulty in correctly classifying hand shapes. 

Depending on the quality of the webcam, captured image data 

typically contains noise from compression. Since we cannot 

constrain where the user’s hand will be in relation to the camera, 

our recognition system needs to be invariant to scale and 

position. Rotational invariance is less important because the 

user’s arm will typically be pointing vertically upward to make 

hand gestures, but this is a feature we hope to include in the 

future. We tackle these challenges in post-processing, explained 

in a later section, of the image captures. 

 

 Current solutions incorporate a variety of machine learn-ing 

techniques to classify hands. Using a Pyramid of His-to gram 

of Oriented Gradients as a feature for an SVM with 70-30 cross 

validation, Knight is able to distinguish between a hand and 

non-hand [1]. Hidden Markov models, commonly used in 

handwriting recognition, achieve a 97%+ ac-curacy in 

classifying 40 words in American Sign Language [4]. 

2. Data collection 

 
Fig. 1.  A sampled set of images processed training data 

 

Our dataset comprises over 1800 webcam images of hand 

gestures (see Figure 1). The images were taken from a standard 

laptop webcam at 640 x 480px resolution. Using a custom 

MATLAB script to expedite the process, each team member 

took 20-30 images of his right hand signing each of the 25 

letters (skipping the letter "j"). While capturing images, the 

hand gestures were moved or rotated slightly to avoid taking 

sets of images that were too similar. By introducing some 

variance into the dataset, we help ensure that any new data we 

test on does not need to look exactly like the training data in 

order to be correctly classified. A single image of the 

background without a hand in the foreground is also taken for 

both the training and test data. This background plate allows our 

system to extract the fore-ground from the images much more 

easily by performing back-ground subtraction, which we 

describe later. 

3. Image processing 

We apply image processing to better extract features from 

our input images. In particular, the features that we extract from 

our images should be invariant to background data, translation, 
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scale, and lighting condition. 

 
 

Fig. 2.  Image processing timeline. We start with a raw image (a), subtract 

the background (b), binarize (c), remove small white and black holes (d), 

remove white patches and crop the hand (e), cut out the wrist (f), normalize 

the hand size (g). 

 

First, images are converted to grayscale. While this makes 

other operations much more simple and quicker to compute, we 

lose colour information from the original images. Since our 

system needs to be lighting invariant, the colour information 

should actually be ignored because we cannot rely on the col-

oration of the hand to be consistent between test and training 

image data. Since the background data is not relevant and 

should not be trained nor tested against, we remove the 

background from the foreground. By subtracting the 

background image from an input image, we and the intensity 

changes of each pixel. Intensity changes above some threshold 

are classified as foreground pixels and the remaining pixels are 

background pixels. The threshold was set to ensure that hand 

pixels would not be subtracted out. 

The next step is to get the silhouette of the hand. The image 

is binarized by setting all non-black pixels to white (1) and 

leaving the remaining pixels as black (0). We remove holes and 

remove all but the largest connected components to get a single, 

solid silhouette of the hand. We normalize the translation and 

scale by relying on some assumptions about the wrist. First, we 

locate the wrist by starting from the bottom-most row, assuming 

the hand protrudes from the bottom edge of the image, and 

checking the width of the arm in each row until the width 

reaches its minimum, which is assumed to be the wrist location. 

The hand is repositioned such that the wrist is centered at the 

bottom of the image and padded by a factor dependent on the 

wrist width to t into a square. The final image is resized into a 

20 x 20px image, forming a 400-member feature vector. The 

full erect of processing can be seen in Fig. 2. 

4. Approach 

Our overall approach to the classification problem is 

summarized in Fig. 3. 

After obtaining our full data set, we the data and split into 

85%=15% train/test, which still leaves us with over 250 test 

examples. Since it’s not obvious which image size will provide 

the most distinguishing features, we varied the resized image 

dimension and examined the 10-nearest neighbour test error. 

We and that a 20 x 20px image is optimal, and these results are 

summarized in the Cross-Validation subsection. Once we have 

an optimal image size, we run 10-fold cross-validation on the 

train examples to determine optimal SVM parameters C and 

(for the Gaussian kernel). Given an optimal set of parameters, 

we then train on the full training set, forming a training model, 

and test on the test set. 

 

 
Fig. 3.  The classification process 

5. Results 

A. Pixel features 

1) Image scaling 

To determine the optimal image dimensions to use for 

classification, we ran k-nearest neighbor (with k = 10) classi 

cation on our full test set with pixel dimensions = [10 20 30 40 

50]. We chose to use k-nearest neighbor classi cation rather than 

SVM since using an SVM would require tuning model 

parameters for each pixel dimension, significantly complicating 

the cross validation. The results can be seen in Figure 4. 

  

 
Fig. 4.  Image resize dimension test error using 10-nearest neighbor 

classification 

 

We and that 10 pixels is not enough to robustly classify 

among the signs, as expected. When scaling the image down 

that severely, many distinguishing features are lost. 20- and 30-

pixel image dimensions have improved performance (error 

around 16%, and the 50-pixel image dimension has the best 

performance. We chose to use 20 x 20-pixel images because 
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enough distinguishing features should remain and we can later 

out some noise by scaling down to that size. In addition, with a 

training set of around 1500 images, we could ensure that our 

number of features (400) was still significantly smaller than the 

training set size. 

B. Cross validation 

After creating the feature vectors for all of our test and train 

examples, we ran 10-fold cross validation to determine the 

optimal soft margin parameter C and the Gaussian parameter 

(for the Gaussian kernel). We used a log2 space search (in either 

1 or 2 dimensions) and picked the parameter (or parameter pair) 

with the highest cross validation accuracy. In general, we run a 

coarse search, and if necessary, a research. For example, the 

search for optimal C, parameters are shown in Fig. 5. 

  

 
Fig. 5.  The cross-validation accuracy for a range of Gaussian kernel SVM 

parameters 

C. Classification results 

The Gaussian kernel slightly outperforms the linear kernel 

SVM when testing the full 25 sign set, but they are both 98:6% 

accurate on the condensed 12 sign set. They both outperform 

the baseline k-nearest neighbor classifier (with k = 10). Our test 

error is actually slightly lower than the cross-validation error, 

which seems somewhat anomalous. The likely explain-nation 

is that when we randomly our data and split into training and 

test sets, the training set happened to get a disproportionate 

amount of poor examples. 

D. Learning curve 

To get an idea of how well our algorithm was learning, we 

plotted the learning curve, seen in Fig. 6. 

 

 
Fig. 6.  Learning curve. The test error appears to be asymptotically 

decreasing, suggesting a high variance situation 

 

The plot shows an asymptotic decrease in the test error, 

coupled with a slow increase in the training error as the training 

set size increases. It appears that we have a high variance 

situation - lots of features and not enough training examples. 

Since our train error is fairly low, high bias is not a problem. 

6. Custom features 

To compare the performance of our pixel-based feature 

vector, we also created a 13-feature vector from the images. To 

collect the features, we used the normalized (but not resized) 

image, as in Fig. 2 (g), except with the hand pixels in grayscale. 

Three features we collected were the relative area, height and 

width of the normalized hand. We also deter-mined the width 

of the top of the hand and the gap in the top the hand. These two 

features could be useful in telling us how many fingers that the 

user was holding up. Running the Fourier transforms provides 

a rough alternative to edge detection. The edges are primarily 

caused by the fingers, so the position of the fingers in the hand 

gives a unique spectral signature which can be used to recognize 

the sign. 

The classification results using our custom features can be 

seen in Table 2. 

 

With our custom features, the Gaussian kernel is actually less 

effective than the linear kernel, suggesting that some over thing 

is taking place in the higher dimensional feature space. We have 

a higher test accuracy than C.V. accuracy for the linear kernel, 

but not for the Gaussian kernel, which is di cult to explain. The 

linear kernel SVM outperforms the 10-nearest neighbor 

classifier for both sign sets. 

Table 1 

Pixel feature classification results 

 C.V. accuracy Test accuracy 

Classifier 12 

signs 

25 

signs 

12 

signs 

25 

signs 

Linear 

kernel 

97.2% 90.8% 98.6% 92.4% 

Gaussian 

kernel 

98.3% 92.4% 98.6% 93.5% 

k- 

nearest- 

neighbour 

N/A N/A 93.0% 84.8% 

 

 

Table 2 

Custom Feature Classification Results 

 C.V. accuracy Test accuracy 

Classifier 12 

signs 

25 

signs 

12 

signs 

25 

signs 

Linear 

kernel 

93.8% 78.8% 98.2% 82.3% 

Gaussian 

kernel 

96.8% 85.7% 86.1% 81.2% 

k- 

nearest- 

neighbour 

N/A N/A 92.7% 78.0% 
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A. Further work 

There are several key extensions of our work. While our 

method works well on webcam images, ideally, we would like 

to classify live webcam video of sign language. This would re-

quire a different image processing scheme to isolate the hand in 

the image. In particular, our background subtraction algorithm 

would have to be modified, since the background would be 

dynamic. An alternate approach would be to use scale in-variant 

features derived from webcam stream images, derived from an 

algorithm such as SIFT [5], which would be less sensitive to 

background noise and rotations of the hand. 

7. Conclusion 

This paper presents an overview on sign language 

recognition using image based hand gesture. 
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