
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

215

Abstract: Natural Language Processing deals with computer

understanding of human language. Basically, the main objective

of Natural Language Processing (NLP) is to write the computer

code is simple language using words which appear in English

dictionary for easy interpretation by 3rd party users. Computer

codes might be tedious and difficult to understand for some

individuals, so by using NLP even individuals who are not that

qualified in this department feel it easier to grasp and understand

the code. English Algorithm inputted to the system and an

equivalent C program is generated. The output C Program file is

a coded interpretation of the English language written code which

will perform the action intended in the English program. Through

this implementation, we have been successful in achieving this

objective. In this paper we present a comparison between syntax

directed translation scheme and non-syntax directed translation

scheme. We also define modules in each method and provide a

comparison report between the 2 methods.

Keywords: Natural Language Processing(NLP), syntax directed

translation, algorithm.

1. Introduction

Natural Language Processing is distinguished as a hard

problem due to human language spoken to be unclear. Being

accessible to everyone, computer programs can be written in

natural language. The system has many advantages like a

person that can write in English but not in programming

language, would still be able to program. Also the code written

in English would be easy to read and understand than code

written in programming languages.

Looking at this example

Input 2 numbers

or

Enter two numbers

Does ‘input’ and ‘enter’ mean the same?Are ‘two’ ,’2’ refer

to same meaning. Also the type has to be determined and

referencing of the variable needs to resolved. The ambiguity of

the grammar is a major concern in natural language processing.

One possibility to resolve ambiguity is to make dictionary for

words whose meanings are the same. Same tokens are

generated and passed to the parser where the parser rules output

the words having same meaning using the syntax directed

translation schema. Restricted natural language restricts the

vocabulary available to the users and force them to construct

sentences in a specific way. The system should produce a single

correct parse and output.

Accuracy of translation and speed are the major goals in any

translation system. Smart tools to handle expressions,words in

the target language are to be developed. Grammar needs to be

optimized and efficient parsing algorithm and data structure are

required. Bison LALR and GLR parsing algorithm along with

Faster token supplier Flex handle the above goals efficiently[1].

Hence the proposed system gives an opportunity to eliminate

some of the ambiguities of translating a natural language

algorithm to program code.

2. Literature survey

The programming languages which support natural language

are called supplemented programming. Natural language

programming is easier than using high level language due to

syntax constraints and user understanding. The Programming

languages like FORTRAN, BASIC and COBOL support

natural language programming.

 KlarDeutsch: KlarDeutsch is the newer supplemented

programming language. It was developed by Andover

Corporation in the year 1995. It can control machines

and equipments with natural language, which changes

the paradigm of giving instructions to machines.

KlarDeutsch is very straightforward and by one way

or another out-dated as yet utilizing go to-statements.

It demonstrates that there is a need to utilize normal

language along with programming language in the

natural language field. Engineers can't generally be

comfortable with the most current improvements in

programming innovation causing difference between

programming languages utilized at college and in

business. KlarDeutsch is as of now utilized to deal

with the critical applications, language usage along

with programming is much in excess of a thought a

long way from viable use.

 AppleScript: AppleScript is a content language created

A Comparative Study of Different Techniques

for Translation of English Algorithm

to C Program

Kaushik Singh1, Gaurav Karkal2, Dhanush Reddy3, Sini Anna Alex4

1,2,3Student, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India
4Assistant Professor, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

216

by Apple, Inc. in 1993. It is substantially more

ellaborate than KlarDeutsch. Notwithstanding that,

there is no chance to get of including client

characterized elements, all activities must be carried

out on existing articles. Then again, AppleScript is one

of only a handful couple of programming languages,

which were multilingual, at any rate for quite a while.

Until form 8.5 of Mac OS, AppleScript projects could

be written in a few natural languages, among them

English, German, Spanish, French, Italian, just as

Japanese and Chinese. Sadly, Apple surrendered the

multilingual methodology, due to the confounded

costumer support.

A. ALGO smart

ALGOSmart is a translator which changes over pseudo

which is composed utilizing XML to the programming

language source code which is in C and Java. Be that as it may,

the ALGOSmart translator makes it mandatory for clients to

have information about a lot of predefined XML labels and their

right usage and use.

B. Conversion of semi natural language algorithm

This interpreter changes over algorithm in natural English

language to code in C and Java This translator has numerous

semantic difficulties, for example, it doesn't support various

variable presentation, it additionally does not support printing

the variable values. Such confinements forces constraints on

client while growing developing useful programs [2].

3. Challenges

Prior to translating natural language algorithms into formal

code few endeavors have been made. Most challenges faced in

converting natural language algorithm to code interpreter rotate

around the following reasons.

 Using Part of Speech (POS) tagging algorithm it is

anything but difficult to label singular words. While

semantics of the algorithm overall ends up hard to

translate and process.

 Every programming language has its own highlights.

The parts of different programming language turn out

to be progressively hard to fuse to be recognized and

deciphered by natural language handling.

 Every individual has an alternate state of mind

furthermore, extraordinary strategy for

communicating a solitary thought. In light of that

adaptability of recognizing and deciphering natural

language algorithm is restricted.

4. Non-syntax-directed translation

So as to address the aforementioned challenge of flexibility,

we have proposed a model comprising of an interpreter and

related connecting modules [4]. The system acknowledges an

algorithm as a contribution from the user. On that algorithm,

basic Natural Language Processing is applied line by line. From

that point onward, the prepared yield is passed to the interpreter.

At the interpreter module, first recognized the announcement

type and in like manner, it is parsed into formal C code. The

code is shown to the user which is sent from the interpreter

module. Hence, the theoretical Model comprises of four

modules cooperating with one another to acknowledge an

algorithm in natural language what's more, translate it in formal

language. The model is appeared Fig. 1. The modules are:

 User

 Basic Algorithm Processing

 Interpreter

 Synonyms

 Personalized Training Model

Fig. 1. Non syntax directed schema

1. User Module: This module shows the end user. An

algorithm is acknowledged into the system, by means

of an application. The algorithm is prepared by

different modules and a Formal C language code is

returned back to the user.

2. Basic Algorithm Processing module: After accepting

the algorithm from the user, basic natural language

processing is connected line by line. Lines also, words

are isolated and Part Of Speech tagging is connected

to the algorithm. This module sets organize for

understanding. Consider explanation instate whole

number I to 5 The yield of this announcement in the

wake of applying basic algorithm processing would be

-initialize_NNinteger_NNi_NNto_TO 5_CD, where

NN is thing, TO will be to and CD is Cardinal Number.

3. Interpreter module: This is the center module of the

model. The interpreter Works in two phases.

4. Type identification: The information sentence is

recognized as affirmation, introduction, input,

contingent, circling and so on proclamation.

Recognized trigger word in the statement are mapped

to a statement type. Consider the statement – initialize

integer I to 5, the interpreter first searches for part of

speech labels or watchwords. Consequently, initialize

would be perceived as a catchphrase and the statement

is sent to initialize module for parsing statement to

code.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

217

5. Parsing into formal C code: Once the announcement

is effectively recognized, it is sent to the particular

module for parsing. Here, utilizing POS labels and the

sentence structure, the algorithmic line is changed

over to formal code. Here, the key is to distinguish and

address distinctive styles of composing algorithms and

effectively parsing them. For this, we execute a

customized training model that learns style of

composing algorithms, in this manner improving

flexibility of composing and exactness of

understanding. In this manner explanation "initialize

integer I to 5", is translated to shape "int i=5".

6. Synonyms: The Flexibility of recognizing a trigger for

the interpreter module increment by the synonyms, the

power of trigger words is expanded by not just

nourishing words physically yet by utilizing

Synonyms too. A vast arrangement of words builds the

likelihood of an announcement being effectively

recognized and parsed.

7. Personalized Training Model: Another amazing

technique to build flexibility is by utilizing a

customized training model. Users would be

approached to include natural language statements for

communicating their individualistic composition

style. This style would be checked and adjusted to by

the system. In this way, whenever the user would type

a comparative statement; it would be effectively

perceived and parsed by the system. This module is

under execution. This module would increment

precision of deciphering algorithm to code by a lot.

5. Syntax-directed-translation

Natural Language System breaks down the sentence into an

imperative verb, determiner and noun. Syntax directed

translation method is completely driven by the parser. SDT is

used to translate the string by attaching a sequence of actions to

each rule of a grammar. Parsing a string of grammar produces

a sequence of rules. The following system modules have been

used for the system development:

 Flex

 Bison

 Gcc Compiler

 Output .c file

A. Flex

The program consists of a list of regular expressions

consisting of actions to perform on input match. A scanner

reads input and input is matched against all of the regular

expressions and does necessary action on each match. The

regular expressions are converted to an efficient internal form

by flex. A scanner module is produced which is compiled and

linked to other compiler modules. Flex generates a file that

consist yylex() which returns an integer indicating token

recognized.

It contains 3 components:

 C and Scanner declarations: Lex definitions used in

the regular expressions and C declarations to include

the file produces by Yacc/Bison.

 Token: Consist of regular expression with

corresponding actions.

 C subroutines: May contain C code with

corresponding actions.

 Lex file is compiled using the command Flex TEC.1

producing file lex.yy.c that defines function yylex().

Bison: In order to convert an annotated CFG (context free

grammar) into a deterministic LR-parser a general purpose

parser, Bison which employes LALR (1) parser tables is used.

It is also able to make a canonical LR(1) parse tables.

It consists of 3 sections:

B. 1st Section

Ordinary C subroutine declaration part, the specification of

the start symbol, a list of tokens that are expected by the parser

are contained in the first section. It also includes files with C

code, variable declaration and user defined function protocol

which are written between “%{“ “ %} “ brackets.

C. 2nd Section

CFG for the language is contained in the second section. The

action along with the production is present within braces. Each

Production is distinguished from one another by semicolons

and the empty productions remain empty. The action along with

the production is present within braces. The multiple character

terminal symbols are written in uppercase while the non-

terminals appear in lower case. The phrase structural grammar

along with its actions which are written in C is included so as

to generate result based on SDT (syntax directed translation)

schema.

D. 3rd Section

The file Yacc consisting of C program is present in the third

section. The driver routine for the parser is a main() function

which class yyparse(). Reporting of the errors is during the

parsing is handled by yyerror (). It also contains main function

and the yyerror function along with the function which is user

defined used in grammar action part allowing the system to be

complete [5]. Compiling the Bison file causes the creation of

files- “TEC.tab.h”,“TEC.tab.c”. The first one contain tokens to

be be included in the scanner defining file. The second file

contains the definition for the yyparse function.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

218

6. Results and Conclusion

A. Non syntax directed translation model

The framework comprises of User, Basic Algorithm

Processing, Interpreter, Synonyms and Personalized Training

Dataset modules which communicate to frame a formal code.

An algorithm to program converter is an interpreter that is fit

for changing over algorithms in English (with fixed information

group) to "C", "CPP" and "Java "code whose adaptability of

elucidation has been improved by utilizing synonyms and by

the presentation of a personalized training model [6].

Successful change of algorithms referenced in common English

language to code will empower programmers to concentrate on

rationale assembling and restrict them from sentence structure

stresses, further it will likewise help the outwardly weakened

programmers. Albeit valuable, usage of such converter

experiences various challenges like demarcation involved

because of semantics of the English language, case outlines, and

so on. We have opened promising outcomes utilizing our

present model and we plan to expand it and consolidate

capacities, clusters, statements and pointers. This part can be

secured by making further modules with related triggers and

rationale for the equivalent.

B. Syntax directed translation model

 Model is evaluated with C functions including scanf, if else,

for, variables, declarations of pointers and variables. The

system was successful in returning accurate meanings in case

of each translation The system is capable in handling the

ambiguity with words having similar meaning depending on the

lexical section. The upper-case and lower-case sensitivity with

words is yet to be tackled by the model due to the limited

dictionary taken into consideration and the lack of the

morphological phase.

References

[1] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman "Compilers:

Principles, Techniques, and Tools” Publisher: Addison Wesley. (1986):

796

[2] Biermann, Alan W., and Bruce W. Ballard. "Toward natural

language computation." Computational Linguistics 6, no. 2 (1980):

71-86.

[3] Ballard, Bruce W., and Alan W. Biermann. "Programming in

natural language: “NLC” as a prototype." In Proceedings of the

1979 annual conference, pp. 228-237. ACM, 1979.

[4] Carlos, Cohan Sujay. " Natural Language Programming Using

Class Sequential Rules. " In IJCNLP, pp. 237-245. 2011.

[5] Christiansen, Morten H., and Nick Chater. "Connectionist natural

language processing: The state of the art." Cognitive science 23, no.

4 (1999): 417-437.

[6] Cozzie, Anthony, and Samuel T. King. “Macho: Writing programs with

natural language and examples.” Technical report, University of Illinois

at Urbana-Champaign, 2012.

Input Algorithm Output

input an integer num1, num2

if num1 lesser than num2 then

print "num1 is smaller"

else print "num2 is greater"

end if

int num1, num2;

scanf ("%d" , &num1);

scanf("%d" , &num2);

if (num1 < num2)

{ printf("number 1 is smaller"); }

System Input System Output

accept 2 nums

sum 2 nums

print result

or

any other arithmetic operation

#include<stdio.h>

int main()

{

int no1 ;

int no2 ;

int ans ;

ans=0 ;

scanf("%d",&no1);

scanf("%d",&no2);

ans= no1 + no2 ;

printf("result is %d",ans);

return 0;

}

type your full name

type your gender

type your position

type your DOB

display full name

display gender

display position

display DOB

#include<stdio.h>

#include<string.h>

int main()

{

char *full_name;

char *gender;

char *position;

char *DOB;

gets(full_name);

gets(gender);

gets(position);

gets(DOB);

printf("Full name is %s",full_name);

printf("gender is %s",gender);

printf("position is %s",position);

printf("DOB is %s",DOB);

return 0;

}

accept 4 nums

sum 4 nums.

print result.

#include<stdio.h>

#include<string.h>

int main()

{

int num[4];

int j;

int ans =0;

for(j=0;j<4;j++)

{

scanf("%d"\n,&num[j]);

}

for(j=0j<4;j++)

{

ans = ans + num[i] ;

}

printf("Result is %d",ans);

return 0;

}

