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Abstract: Compilation optimization is very essential in order to 

increase the running speed of programs as well as minimize the 

object file size. Machine learning algorithms are used to select the 

best compiler options that result in such improvements. Compiler 

auto-tuning refers to the process of optimizing the performance of 

the code during the intermediate code-generation phase of 

compilation. This paper deals with machine learning based 

compilation optimization on feature processing, compiler auto-

tuning and compiler optimization techniques such as loop nest 

optimizations and automatic generation of optimization heuristics 

for a target processor by machine learning. It then explores the 

concept of evolving iterative compilers which attempts a large 

number of optimization strategies and choosing the best one. It 

proposes an approach of selecting compiler transformations – 

namely probabilistic optimization. Using this approach, we can 

achieve significant performance improvements.  

 

Keywords: Compiler heuristics, loop nests, feature mining, 

compiler auto-tuning, Intermediate Code Generation (ICG), k-

Nearest Neighbors (kNN), Principal Component Analysis (PCA) 

1. Introduction 

Optimization occurs without changing the high-level source 

code itself, only its compiled representation. One of the major 

problems with manual optimization is that it can be 

architecture-dependent, thereby reducing the portability of the 

compiled target and requiring multiple optimizations to be 

specified, in accordance to the computer architectures used. 

Problems in compiler optimization are many-fold, and include 

issues such as selecting the best steps to be taken for 

optimization, dealing with phase-dependencies of these steps, 

i.e. the need for correct ordering of the steps. Selecting each 

optimization step cannot be done in a vacuum- each step chosen 

has an influence on other steps, and the selection of the correct 

subset of optimization options available greatly influences 

performance. Feature processing is of great significance for 

most machine learning techniques and also provides ways to 

acquire spatial information within a program and convert it into 

features that are required by the different techniques. 

Loop optimization techniques are used to transform loop 

nests and improve the performance of the code on a target 

architecture, including exposing parallelism. Finding and 

evaluating an optimal, semantic-preserving sequence of 

transformations is a complex problem. The sequence is guided 

using heuristics and/or analytical models and there is no way of  

 

knowing how close it gets to optimal performance or if there is 

any headroom for improvement. The automatic generation of 

optimization heuristics for a target processor by machine 

learning is addressed and the potential of this method on an 

always legal and simple transformation loop unrolling is 

evaluated. Iterative compilation is used to narrow the gap 

between compiled code and hand-written code by attempting a 

large number of different optimization strategies, and choosing 

the best. This approach can easily be transferred to other, or 

even yet to be invented, processors and extract high levels of 

performance unachievable by traditional techniques with no 

additional native compiler effort. 

Autotuning involves defining a ‘tuning parameter’ and 

optimizing the system (in this case, a compiler at the ICG step) 

to optimize this parameter. Machine learning can be used to 

select relevant features and sequences of action, to plan and 

execute the passes made for code optimization. It is used to 

compare and optimize the various solutions in the parameter 

space via feature analysis and dimensionality reduction is 

usually performed to select only the best features. In this paper, 

we explain the aforementioned methods of compiler 

optimization and describe these techniques in detail. The rest of 

the paper is arranged as follows: An overview of the methods, 

a modest description of different machine learning techniques, 

a description of related work and references to the researched 

work.  

2. Overview 

A. Feature mining and generation 

GCC provides four different optimization levels, namely, 

O0, O1, O2 and O3, for proper selection of the best algorithms. 

In feature processing, there are different methods used to find 

the best optimization plan [1]-[3]. Iterative search looks for 

global optimal solutions but, due to the wide gap between 

research and practical use, it is not the most commonly used 

approach. Heuristic algorithms search for near optimal 

solutions but, just like iterative searches, they are not suitable 

for practical purposes as they take a tremendous amount of time 

in finding the solutions [4]. Machine learning algorithms, on the 

other hand, predicts the near optimal solutions in real-time 

manner making it an effective approach for compiler 
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optimization. Feature design is one of the most important 

aspects of Machine Learning. Program features are generally 

defined before learning and are divided into static and dynamic 

features. 

Spatial information, which basically shows how instructions 

are distributed within a program, is also very significant for 

compilation optimizations. Predictive modeling techniques rely 

on picking the best features to characterize an optimization 

space. Machine learning techniques are widely used to build 

predictive models that select the best compiler options [5]. The 

performance of the machine learning techniques is highly 

dependent on the quality of the features selected. The spatial 

information is stored in a Data Flow Graph (DFG) which is a 

directed graph with each node representing an instruction and 

each edge representing the data dependency between the 

instructions. 

B. Autotuning 

Compiler auto-tuning is a complex problem that can be 

modeled as a linear system of many parameters. For better 

performing target code, there usually have to be trade-offs 

between different types of optimization such as loop unrolling 

and resource allocation. Optimization of this auto-tuning is 

usually done by making multiple passes over the target code, 

optimizing a certain aspect of that code and trying to achieve 

better performance little by little. The operations performed 

during these passes are usually specified as predefined steps by 

the compiler designer. Systems such as GCC have specified 

optimization levels that perform certain sequences of 

transformations that usually lead to better performance on 

certain benchmarks. However, the word ‘optimization’ may be 

a misnomer here, as these transformations do not necessarily 

lead to better performing target code and can even degrade 

performance [1].  A ‘tuning parameter’ is defined and the 

system is optimized in autotuning (in this case, a compiler at the 

intermediate code generation step) to optimize the parameter. A 

parameter space is generated, consisting of multiple solutions, 

and the feasible ones are compared and the best one returned. 

Machine learning can be used to select relevant features and 

sequences of action, to plan and execute the passes made for 

code optimization and to compare and optimize the various 

solutions in the parameter space via feature analysis and 

dimensionality reduction. A common algorithm to perform this 

is Principal Component Analysis (PCA) [14] 

C. Loop nest optimization 

Loop optimization techniques are used to transform loop 

nests and improve the performance of the code on a target 

architecture, including exposing parallelism. Finding and 

evaluating an optimal, semantic-preserving sequence of 

transformations is a complex problem. The sequence is guided 

using heuristics and/or analytical models and there is no way of 

knowing how close it gets to optimal performance or if there is 

any headroom for improvement. In this work, state-of-the art 

code optimizers are considered and then Machine Learning 

algorithms are used to make predictions for better, yet clearly 

achievable performance for the loop nests using these code 

optimizers. Recognizing the inherent behavior of loop nests 

using hardware performance counters and Machine Learning 

algorithms presents an automated mechanism for compiler 

writers to identify where to focus on making improvements in 

order to achieve better performance.[8] 

D. Iterative Compilation 

Iterative compilation is used to narrow the gap between 

compiled code and hand-written code by attempting a large 

number of different optimization strategies, and choosing the 

best. The implication of this work is that built-in compiler 

heuristics which select optimization strategies are not doing as 

good a job as is possible. This paper describes a new approach 

to selecting compiler transformations – probabilistic 

optimization.[10] It explains how stochastic methods can be 

used to select the high-level transformations, directed by 

execution time feedback, where optimization space coverage is 

traded off against searching in known good regions. This 

approach can easily be transferred to other, or even yet to be 

invented, processors and extract high levels of performance 

unachievable by traditional techniques with no additional native 

compiler effort. 

3. Machine learning techniques 

A. Supervised learning 

Supervised learning or “learning by example” involves 

techniques where the learning model is first trained on a dataset 

of examples, i.e. problems that have already been classified or 

solved. The aim is to generalize the data model learnt to the 

entire space of applications that the model will receive for 

optimization. This method is used for classification, ranking, 

and regression problems [13]. A popular type of supervised 

learning uses linear models, such as Linear Regression (LR), 

Support Vector Machine (SVM) [15], and k-Nearest Neighbors 

(kNN) that can handle fluctuations in input data. SVM can also 

perform classification and regression on non-linear data using 

the kernel trick. Some systems use Bayesian Networks as 

classifiers, and it has been shown that these can lead to 

optimization superior to the GCC’s –O2 and –O3 in embedded 

processors [16].  Decision trees and ensemble methods such as 

random forests have been used for code compression [17] and 

optimization [18]. 

B. Unsupervised learning 

Unsupervised learning or “learning by observation” is a class 

of techniques that focuses on identifying common features or 

patterns in the given data samples. A major type of 

unsupervised learning is clustering, which seeks to partition the 

input data space into similar clusters. It has been used to reduce 

training time of autotuning with machine learning [19]. 

Dimensionality reduction, as mentioned previously, is a method 

that is used to reduce the number of characteristics or features 
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of the data, which can drastically speed up and simplify the 

optimization process. Evolutionary algorithms, inspired by 

natural genetic models, are a powerful tool for autotuning. 

Algorithms such Non-dominating Sorting Genetic Algorithm-

II (NSGA-II) [20] and Neuroevolution of Augmenting 

Topologies (NeAT) [21] have been used to tackle optimization 

and phase ordering problems. 

C. Reinforcement learning 

Reinforcement Learning (RL) aims to implement a 

reward/penalty system that enables learning to obtain the 

optimum value of either, inspired by psychology. It has been 

used for building an instruction scheduler that can outperform 

the commercial Compaq scheduler on evaluated benchmarks 

from SPEC95 suite [22]. NeAT has also been used for 

reinforcement learning to find optimal instruction placements 

where it outperformed all other state-of-the art methods [23]. 

4. Related work 

A. Feature mining- design 

Machine learning based optimization has a training part and 

a prediction part. In the training period, the learning model is 

trained on large datasets and the parameters are calculated. In 

the prediction period, the programs are compiled and the 

features are extracted from the compiled programs and these 

feature vectors are taken as input to the model thereby 

predicting a good optimization plan.  Due to the fact that it is 

hard to define static features that have a positive effectiveness, 

a template based static feature is proposed which generates 

features having contrasting quantities and qualities.   

Most of the feature analysis done so far only gathers the 

features once, at the start of the optimization, but, on the other 

hand, a better approach is to make use of the entire feature 

collection which enhances the quality of learning and also the 

precision of the prediction. A multi-phase feature extraction 

prototype is designed that extracts features before 10 passes 

known as milestone pass. In the training period, the program 

features are to be extracted before the execution of each 

milestone pass. The prediction period is similar where the 

compiler analyzes the code structure and dynamically executes 

the optimization plan. 

K Nearest Neighbors (KNN), Support Vector Machines 

(SVM), Logistic Regression, etc. are various machine learning 

models that deal with prediction periods that are similar to 

traditional machine learning problems.  

B. Spatial based- use of machine learning in compilers 

The state of the compiler is first examined before choosing 

an optimization that improves the performance of a program. 

Important data such as data flow graphs, control flow graphs 

and abstract syntax trees are collected at the Single Static 

Assignment (SSA) level [5] [6]. The data is then reassigned to 

a set of features used by the tools of machine learning whose 

quality is dependent on the quality of these features. Benchmark 

applications are used to generate a training set. The applications 

are compiled many times, each time with different compiler 

options, discovering the best options for a given application by 

running the newly compiled program. Each tuple in the training 

set contains the feature vectors as well as the best compiler 

options for a given program. The training set is then given to 

the machine learning tool in order to build a model that predicts 

the best compiler options for new applications. 

C. Spatial information framework 

There are four classes of program features that are used to 

select the best compiler options: i) code size-based features, ii) 

hot instruction-based features, iii) parallelism-based features, 

iv) memory access-based features. These features can be 

considered as indicators of a program’s performance. Behavior 

of the cache is controlled by code-based features as well as 

memory access patterns, execution time of a program is 

controlled by hot instruction-based features and optimizations 

like loop unrolling, instruction scheduling, etc. are controlled 

by features based on parallelism. All such information can be 

collected at the SSA level of a compiler. A histogram, which is 

a bar graph, is used to capture the spatial information, like the 

weightage of each element in a dataset in a DFG [7]. The IBM 

Milepost GCC is used to implement this framework. 

D. Loop nest optimization 

In this work, 4 candidate code optimizers were considered 

for conducting the experiments which included Polly [11], a 

Polyhedral Model based optimizer for LLVM. 2 out of those 4 

optimizers could perform auto-parallelization of the loop nests. 

 For the experiments, two Intel architectures were used. For the 

auto-parallelization related experiments, only one thread is 

mapped per core. Two interesting correlations among hardware 

performance counters and the characteristic behavior of the 

loop nests were discovered -the hardware performance counters 

values from Kaby Lake architecture (after disabling loop 

transformations and vector code generation) were sufficient to 

get well trained ML model to make predictions for a similar 

architecture like the Skylake architecture, and, for predicting 

the most suited candidate for serial code and for the auto-

parallelized code for a loop nest, the same set of hardware 

performance counters, collected from profiling a serial version, 

can be used to train the ML model and achieve satisfactory 

results. 

For training and evaluating the Machine Learning model, 

Orange [12] was used. Random Forest (RF) was used as the 

classifier for all the experiments. The trained models were 

evaluated on Accuracy and Area Under Curve (AUC). The 

predicted optimizer’s execution time as compared to that of the 

most suited optimizer’s execution time was the same in case of 

correct predictions and higher in case of mispredictions. The 

ML experiments were repeated thrice in order to validate our 

results, taking into account the unique instances from the three 

validation datasets for measurements. 
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E. Automatic production of compiler heuristics using machine 

learning  

Machine learning techniques offer an automatic, flexible and 

adaptive framework for dealing with the many parameters 

involved in deciding the effectiveness of program 

optimizations.[9] Classically a decision rule is learnt from 

feature vectors describing positive and negative applications of 

the transformation. To summarize the approach, the steps 

involved in using a machine learning technique for building 

heuristics for program transformation are: 

1. Finding a loop abstraction that captures the 

“performance” features involved in an optimization, in 

order to build the learning set, 

2. Choosing an automatic learning process to compute a 

rule in order to decide whether loop unrolling should 

be applied, 

3. Setting up the result of the learning process as 

heuristics for the compiler. 

F. Application characterization 

Application Characterization techniques seek to identify the 

behavior of the target application in its environment, and 

characterize it to be able to optimize it accordingly. This is done 

by selecting relevant features of the application. This analysis 

can be static or dynamic. Static analysis reads the code as-is, 

and obtains features from the source code (or compiler 

representations) [25] or structures such as Control Flow Graphs 

(CFGs) [26]. Dynamic analysis involved characterizing an 

application according to its runtime behavior, and may be 

architecture dependent or architecture independent. The 

methodology involves collecting Performance Counters (PCs) 

that indicate program performance and choke points for data, 

and using these to characterize the application. A hybrid of the 

two types of characterization can also be used, as developed in 

the HERCULES system [24]. Dimensionality reduction 

techniques are usually performed on the extracted features, to 

reduce optimization complexity. 

G. Evolving iterative compilation 

This describes a probabilistic search algorithm for finding 

good source level transformation sequences for typical 

embedded programs written in C. Two competing search 

strategies provide a good balance between optimization space 

exploration and focused search in the neighborhood of already 

identified good candidates. The work integrates both 

parameter-less global and parameterized local transformations 

in a unified optimization framework that can efficiently operate 

on a huge optimization space spanned by more than 80 

transformations. The evaluation of this optimization toolkit, 

based on three real embedded architectures and kernels and 

applications from the UTDSP benchmark suite, successfully 

demonstrates that the approach is able to outperform any other 

existing approach and gives an average speed up of 1.71 across 

platforms. 

But there is a major drawback to this technique – the 

substantial amount of compile and evaluation time required to 

achieve the results. The main reason for this is that the 

optimization of each program is carried out individually, 

starting afresh each time. If there was a way to automatically 

gauge the similarity between programs, this technique should 

be primed with previously acquired information – to learn from 

experience – which could dramatically speed up search, and 

improve the results. 

5. Conclusion 

This paper presents an overview on compiler optimization 

using machine learning techniques. 
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