
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

210

Abstract: Compilation optimization is very essential in order to

increase the running speed of programs as well as minimize the

object file size. Machine learning algorithms are used to select the

best compiler options that result in such improvements. Compiler

auto-tuning refers to the process of optimizing the performance of

the code during the intermediate code-generation phase of

compilation. This paper deals with machine learning based

compilation optimization on feature processing, compiler auto-

tuning and compiler optimization techniques such as loop nest

optimizations and automatic generation of optimization heuristics

for a target processor by machine learning. It then explores the

concept of evolving iterative compilers which attempts a large

number of optimization strategies and choosing the best one. It

proposes an approach of selecting compiler transformations –

namely probabilistic optimization. Using this approach, we can

achieve significant performance improvements.

Keywords: Compiler heuristics, loop nests, feature mining,

compiler auto-tuning, Intermediate Code Generation (ICG), k-

Nearest Neighbors (kNN), Principal Component Analysis (PCA)

1. Introduction

Optimization occurs without changing the high-level source

code itself, only its compiled representation. One of the major

problems with manual optimization is that it can be

architecture-dependent, thereby reducing the portability of the

compiled target and requiring multiple optimizations to be

specified, in accordance to the computer architectures used.

Problems in compiler optimization are many-fold, and include

issues such as selecting the best steps to be taken for

optimization, dealing with phase-dependencies of these steps,

i.e. the need for correct ordering of the steps. Selecting each

optimization step cannot be done in a vacuum- each step chosen

has an influence on other steps, and the selection of the correct

subset of optimization options available greatly influences

performance. Feature processing is of great significance for

most machine learning techniques and also provides ways to

acquire spatial information within a program and convert it into

features that are required by the different techniques.

Loop optimization techniques are used to transform loop

nests and improve the performance of the code on a target

architecture, including exposing parallelism. Finding and

evaluating an optimal, semantic-preserving sequence of

transformations is a complex problem. The sequence is guided

using heuristics and/or analytical models and there is no way of

knowing how close it gets to optimal performance or if there is

any headroom for improvement. The automatic generation of

optimization heuristics for a target processor by machine

learning is addressed and the potential of this method on an

always legal and simple transformation loop unrolling is

evaluated. Iterative compilation is used to narrow the gap

between compiled code and hand-written code by attempting a

large number of different optimization strategies, and choosing

the best. This approach can easily be transferred to other, or

even yet to be invented, processors and extract high levels of

performance unachievable by traditional techniques with no

additional native compiler effort.

Autotuning involves defining a ‘tuning parameter’ and

optimizing the system (in this case, a compiler at the ICG step)

to optimize this parameter. Machine learning can be used to

select relevant features and sequences of action, to plan and

execute the passes made for code optimization. It is used to

compare and optimize the various solutions in the parameter

space via feature analysis and dimensionality reduction is

usually performed to select only the best features. In this paper,

we explain the aforementioned methods of compiler

optimization and describe these techniques in detail. The rest of

the paper is arranged as follows: An overview of the methods,

a modest description of different machine learning techniques,

a description of related work and references to the researched

work.

2. Overview

A. Feature mining and generation

GCC provides four different optimization levels, namely,

O0, O1, O2 and O3, for proper selection of the best algorithms.

In feature processing, there are different methods used to find

the best optimization plan [1]-[3]. Iterative search looks for

global optimal solutions but, due to the wide gap between

research and practical use, it is not the most commonly used

approach. Heuristic algorithms search for near optimal

solutions but, just like iterative searches, they are not suitable

for practical purposes as they take a tremendous amount of time

in finding the solutions [4]. Machine learning algorithms, on the

other hand, predicts the near optimal solutions in real-time

manner making it an effective approach for compiler

Compiler Optimization using Machine Learning

Techniques

Amogh S. Inamdar1, Sindhuja V. Rai2, Anagha M. Rajeev3, Sini Anna Alex4

1,2,3Student, Department of CSE, Ramaiah Institute of Technology, Bengaluru, India
4Assistant Professor, Department of CSE, Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

211

optimization. Feature design is one of the most important

aspects of Machine Learning. Program features are generally

defined before learning and are divided into static and dynamic

features.

Spatial information, which basically shows how instructions

are distributed within a program, is also very significant for

compilation optimizations. Predictive modeling techniques rely

on picking the best features to characterize an optimization

space. Machine learning techniques are widely used to build

predictive models that select the best compiler options [5]. The

performance of the machine learning techniques is highly

dependent on the quality of the features selected. The spatial

information is stored in a Data Flow Graph (DFG) which is a

directed graph with each node representing an instruction and

each edge representing the data dependency between the

instructions.

B. Autotuning

Compiler auto-tuning is a complex problem that can be

modeled as a linear system of many parameters. For better

performing target code, there usually have to be trade-offs

between different types of optimization such as loop unrolling

and resource allocation. Optimization of this auto-tuning is

usually done by making multiple passes over the target code,

optimizing a certain aspect of that code and trying to achieve

better performance little by little. The operations performed

during these passes are usually specified as predefined steps by

the compiler designer. Systems such as GCC have specified

optimization levels that perform certain sequences of

transformations that usually lead to better performance on

certain benchmarks. However, the word ‘optimization’ may be

a misnomer here, as these transformations do not necessarily

lead to better performing target code and can even degrade

performance [1]. A ‘tuning parameter’ is defined and the

system is optimized in autotuning (in this case, a compiler at the

intermediate code generation step) to optimize the parameter. A

parameter space is generated, consisting of multiple solutions,

and the feasible ones are compared and the best one returned.

Machine learning can be used to select relevant features and

sequences of action, to plan and execute the passes made for

code optimization and to compare and optimize the various

solutions in the parameter space via feature analysis and

dimensionality reduction. A common algorithm to perform this

is Principal Component Analysis (PCA) [14]

C. Loop nest optimization

Loop optimization techniques are used to transform loop

nests and improve the performance of the code on a target

architecture, including exposing parallelism. Finding and

evaluating an optimal, semantic-preserving sequence of

transformations is a complex problem. The sequence is guided

using heuristics and/or analytical models and there is no way of

knowing how close it gets to optimal performance or if there is

any headroom for improvement. In this work, state-of-the art

code optimizers are considered and then Machine Learning

algorithms are used to make predictions for better, yet clearly

achievable performance for the loop nests using these code

optimizers. Recognizing the inherent behavior of loop nests

using hardware performance counters and Machine Learning

algorithms presents an automated mechanism for compiler

writers to identify where to focus on making improvements in

order to achieve better performance.[8]

D. Iterative Compilation

Iterative compilation is used to narrow the gap between

compiled code and hand-written code by attempting a large

number of different optimization strategies, and choosing the

best. The implication of this work is that built-in compiler

heuristics which select optimization strategies are not doing as

good a job as is possible. This paper describes a new approach

to selecting compiler transformations – probabilistic

optimization.[10] It explains how stochastic methods can be

used to select the high-level transformations, directed by

execution time feedback, where optimization space coverage is

traded off against searching in known good regions. This

approach can easily be transferred to other, or even yet to be

invented, processors and extract high levels of performance

unachievable by traditional techniques with no additional native

compiler effort.

3. Machine learning techniques

A. Supervised learning

Supervised learning or “learning by example” involves

techniques where the learning model is first trained on a dataset

of examples, i.e. problems that have already been classified or

solved. The aim is to generalize the data model learnt to the

entire space of applications that the model will receive for

optimization. This method is used for classification, ranking,

and regression problems [13]. A popular type of supervised

learning uses linear models, such as Linear Regression (LR),

Support Vector Machine (SVM) [15], and k-Nearest Neighbors

(kNN) that can handle fluctuations in input data. SVM can also

perform classification and regression on non-linear data using

the kernel trick. Some systems use Bayesian Networks as

classifiers, and it has been shown that these can lead to

optimization superior to the GCC’s –O2 and –O3 in embedded

processors [16]. Decision trees and ensemble methods such as

random forests have been used for code compression [17] and

optimization [18].

B. Unsupervised learning

Unsupervised learning or “learning by observation” is a class

of techniques that focuses on identifying common features or

patterns in the given data samples. A major type of

unsupervised learning is clustering, which seeks to partition the

input data space into similar clusters. It has been used to reduce

training time of autotuning with machine learning [19].

Dimensionality reduction, as mentioned previously, is a method

that is used to reduce the number of characteristics or features

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

212

of the data, which can drastically speed up and simplify the

optimization process. Evolutionary algorithms, inspired by

natural genetic models, are a powerful tool for autotuning.

Algorithms such Non-dominating Sorting Genetic Algorithm-

II (NSGA-II) [20] and Neuroevolution of Augmenting

Topologies (NeAT) [21] have been used to tackle optimization

and phase ordering problems.

C. Reinforcement learning

Reinforcement Learning (RL) aims to implement a

reward/penalty system that enables learning to obtain the

optimum value of either, inspired by psychology. It has been

used for building an instruction scheduler that can outperform

the commercial Compaq scheduler on evaluated benchmarks

from SPEC95 suite [22]. NeAT has also been used for

reinforcement learning to find optimal instruction placements

where it outperformed all other state-of-the art methods [23].

4. Related work

A. Feature mining- design

Machine learning based optimization has a training part and

a prediction part. In the training period, the learning model is

trained on large datasets and the parameters are calculated. In

the prediction period, the programs are compiled and the

features are extracted from the compiled programs and these

feature vectors are taken as input to the model thereby

predicting a good optimization plan. Due to the fact that it is

hard to define static features that have a positive effectiveness,

a template based static feature is proposed which generates

features having contrasting quantities and qualities.

Most of the feature analysis done so far only gathers the

features once, at the start of the optimization, but, on the other

hand, a better approach is to make use of the entire feature

collection which enhances the quality of learning and also the

precision of the prediction. A multi-phase feature extraction

prototype is designed that extracts features before 10 passes

known as milestone pass. In the training period, the program

features are to be extracted before the execution of each

milestone pass. The prediction period is similar where the

compiler analyzes the code structure and dynamically executes

the optimization plan.

K Nearest Neighbors (KNN), Support Vector Machines

(SVM), Logistic Regression, etc. are various machine learning

models that deal with prediction periods that are similar to

traditional machine learning problems.

B. Spatial based- use of machine learning in compilers

The state of the compiler is first examined before choosing

an optimization that improves the performance of a program.

Important data such as data flow graphs, control flow graphs

and abstract syntax trees are collected at the Single Static

Assignment (SSA) level [5] [6]. The data is then reassigned to

a set of features used by the tools of machine learning whose

quality is dependent on the quality of these features. Benchmark

applications are used to generate a training set. The applications

are compiled many times, each time with different compiler

options, discovering the best options for a given application by

running the newly compiled program. Each tuple in the training

set contains the feature vectors as well as the best compiler

options for a given program. The training set is then given to

the machine learning tool in order to build a model that predicts

the best compiler options for new applications.

C. Spatial information framework

There are four classes of program features that are used to

select the best compiler options: i) code size-based features, ii)

hot instruction-based features, iii) parallelism-based features,

iv) memory access-based features. These features can be

considered as indicators of a program’s performance. Behavior

of the cache is controlled by code-based features as well as

memory access patterns, execution time of a program is

controlled by hot instruction-based features and optimizations

like loop unrolling, instruction scheduling, etc. are controlled

by features based on parallelism. All such information can be

collected at the SSA level of a compiler. A histogram, which is

a bar graph, is used to capture the spatial information, like the

weightage of each element in a dataset in a DFG [7]. The IBM

Milepost GCC is used to implement this framework.

D. Loop nest optimization

In this work, 4 candidate code optimizers were considered

for conducting the experiments which included Polly [11], a

Polyhedral Model based optimizer for LLVM. 2 out of those 4

optimizers could perform auto-parallelization of the loop nests.

 For the experiments, two Intel architectures were used. For the

auto-parallelization related experiments, only one thread is

mapped per core. Two interesting correlations among hardware

performance counters and the characteristic behavior of the

loop nests were discovered -the hardware performance counters

values from Kaby Lake architecture (after disabling loop

transformations and vector code generation) were sufficient to

get well trained ML model to make predictions for a similar

architecture like the Skylake architecture, and, for predicting

the most suited candidate for serial code and for the auto-

parallelized code for a loop nest, the same set of hardware

performance counters, collected from profiling a serial version,

can be used to train the ML model and achieve satisfactory

results.

For training and evaluating the Machine Learning model,

Orange [12] was used. Random Forest (RF) was used as the

classifier for all the experiments. The trained models were

evaluated on Accuracy and Area Under Curve (AUC). The

predicted optimizer’s execution time as compared to that of the

most suited optimizer’s execution time was the same in case of

correct predictions and higher in case of mispredictions. The

ML experiments were repeated thrice in order to validate our

results, taking into account the unique instances from the three

validation datasets for measurements.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

213

E. Automatic production of compiler heuristics using machine

learning

Machine learning techniques offer an automatic, flexible and

adaptive framework for dealing with the many parameters

involved in deciding the effectiveness of program

optimizations.[9] Classically a decision rule is learnt from

feature vectors describing positive and negative applications of

the transformation. To summarize the approach, the steps

involved in using a machine learning technique for building

heuristics for program transformation are:

1. Finding a loop abstraction that captures the

“performance” features involved in an optimization, in

order to build the learning set,

2. Choosing an automatic learning process to compute a

rule in order to decide whether loop unrolling should

be applied,

3. Setting up the result of the learning process as

heuristics for the compiler.

F. Application characterization

Application Characterization techniques seek to identify the

behavior of the target application in its environment, and

characterize it to be able to optimize it accordingly. This is done

by selecting relevant features of the application. This analysis

can be static or dynamic. Static analysis reads the code as-is,

and obtains features from the source code (or compiler

representations) [25] or structures such as Control Flow Graphs

(CFGs) [26]. Dynamic analysis involved characterizing an

application according to its runtime behavior, and may be

architecture dependent or architecture independent. The

methodology involves collecting Performance Counters (PCs)

that indicate program performance and choke points for data,

and using these to characterize the application. A hybrid of the

two types of characterization can also be used, as developed in

the HERCULES system [24]. Dimensionality reduction

techniques are usually performed on the extracted features, to

reduce optimization complexity.

G. Evolving iterative compilation

This describes a probabilistic search algorithm for finding

good source level transformation sequences for typical

embedded programs written in C. Two competing search

strategies provide a good balance between optimization space

exploration and focused search in the neighborhood of already

identified good candidates. The work integrates both

parameter-less global and parameterized local transformations

in a unified optimization framework that can efficiently operate

on a huge optimization space spanned by more than 80

transformations. The evaluation of this optimization toolkit,

based on three real embedded architectures and kernels and

applications from the UTDSP benchmark suite, successfully

demonstrates that the approach is able to outperform any other

existing approach and gives an average speed up of 1.71 across

platforms.

But there is a major drawback to this technique – the

substantial amount of compile and evaluation time required to

achieve the results. The main reason for this is that the

optimization of each program is carried out individually,

starting afresh each time. If there was a way to automatically

gauge the similarity between programs, this technique should

be primed with previously acquired information – to learn from

experience – which could dramatically speed up search, and

improve the results.

5. Conclusion

This paper presents an overview on compiler optimization

using machine learning techniques.

References

[1] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M.

Bailey, Y. Paek, and K. Gallivan, “Finding effective optimization phase

sequences,” in ACM SIGPLAN Notices, vol. 38, no. 7, ACM. New

Orleans, LA: ACM, 2003, pp.12–23.

[2] H. Leather, E. Bonilla, and M. O’Boyle, “Automatic feature generation

for machine learning based optimizing compilation,” in Code Generation

and Optimization, 2009. CGO 2009. International Symposium on, IEEE.

Seattle, WA: IEEE, 2009, pp. 81–91.

[3] M. Stephenson and S. Amarasinghe, “Predicting unroll factors using

supervised classification,” in Code Generation and Optimization, 2005.

CGO 2005. International Symposium on, IEEE. San Jose, California:

IEEE, 2005, pp. 123–134.

[4] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for

reduced code space using genetic algorithms,” ACM SIGPLAN Notices,

vol. 34, no. 7, pp. 1–9, 1999.

[5] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,

B. Mendelson, P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla,

J. Thomson, H. Leather, C. Williams, M. O’Boyle. MILEPOST GCC:

machine learning based research compiler. In Proceedings of the GCC

Developers’ Summit, Ottawa, Canada, June 2008.

[6] S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers, 2006.

[7]] A. Papadopoulos and Y. Manolopoulos. Structure based similarity

search with graph histograms. In Proceedings of the 10th International

Workshop on Database and Expert Systems Applications 1999.

[8] Aniket Shivam, Neftali Watkinson, Alexandru Nicolau, David Padua,

Alexander V. Veidenbaum, Towards an Achievable Performance for the

Loop Nests, arXiv:1902.00603v1 [cs.PF] February 2019.

[9] Antoine Monsifrot, Fran¸cois Bodin, and Ren´e Quiniou, Machine

Learning Approach to Automatic Production of Compiler Heuristics,

IRISA-University of Rennes France.

[10] John D. Thomson, Doctor of Philosophy, Using Machine Learning to

Automate Compiler Optimisation, Institute of Computing Systems

Architecture, School of Informatics University of Edinburgh, 2008.

[11] T. Grosser, A. Groesslinger, and C. Lengauer. Polly - Performing

Polyhedral Optimizations on a Low-level Intermediate Representation.

Parallel Processing Letters, 22(04), 2012.

[12] J. Demˇsar and et. al. Orange: data mining toolbox in python. The Journal

of Machine Learning Research, 14(1):2349–2353, 2013.

[13] Amir H. Ashouri, William Killian , John Cavazos , Gianluca Palermo ,

Cristina Silvano, A Survey on Compiler Autotuning using Machine

Learning, ACM Computing Surveys (CSUR), v.51 n.5, p.1-42, January

2019

[14] Amir Hossein Ashouri. 2016. Compiler Autotuning Using Machine

Learning Techniques. Ph.D. Dissertation. Politecnico di Milano, Italy.

http://hdl.handle.net/10589/129561.

[15] Ricardo Nabinger Sanchez, Jose Nelson Amaral, Duane Szafron, Marius

Pirvu, and Mark Stoodley. 2011. Using machines to learn method-speci_c

compilation strategies. In Proceedings of the 9th Annual IEEE/ACM

International Symposium on Code Generation and Optimization. 257–

266. http://dl.acm.org/citation.cfm?id=2190072

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

214

[16] A.H. Ashouri, G. Mariani, G. Palermo, and C. Silvano. 2014. A Bayesian

network approach for compiler auto-tuning for embedded processors.

(2014), 90–97.

[17] Christopher W. Fraser. 1999. Automatic inference of models for statistical

code compression. ACM SIGPLAN Notices 34, 5 (may 1999), 242–246.

[18] A Monsifrot, F Bodin, and R Quiniou. 2002. A machine learning approach

to automatic production of compiler heuristics. International Conference

on Arti_cial Intelligence: Methodology, Systems, and Applications

(2002), 41–50. http://link.springer.com/chapter/10.1007/3-540-46148-5

[19] J Thomson, M O’Boyle, G Fursin, and B Franke. 2009. Reducing training

time in a one-shot machine learning based compiler. International

Workshop on Languages and Compilers for Parallel Computing (2009),

399–407. http://link.springer.com/10.1007

[20] Cristina Silvano, William Fornaciari, Gianluca Palermo, Vittorio

Zaccaria, Fabrizio Castro, Marcos Martinez, Sara Bocchio, Roberto

Zafalon, Prabhat Avasare, Geert Vanmeerbeeck, and others. 2011.

Multicube: Multi-objective design space exploration of multi-core

architectures. In VLSI 2010 Annual Symposium. Springer, 47–63.

[21] S Kulkarni and J Cavazos. 2012. Mitigating the compiler optimization

phase-ordering problem using machine learning. ACM SIGPLAN

Notices (2012). http://dl.acm.org/citation.cfm?id=2384628.

[22] Amy McGovern, Eliot Moss, and Andrew G Barto. 1999. Scheduling

straight-line code using reinforcement learning and rollouts. Tech report

No-99-23 (1999).

[23] Katherine E Coons, Behnam Robatmili, Matthew E Taylor, Bertrand A

Maher, Doug Burger, and Kathryn S McKinley. 2008. Feature selection

and policy optimization for distributed instruction placement using

reinforcement learning. In Proceedings of the 17th international

conference on Parallel architectures and compilation techniques. ACM,

32–42.

[24] Eunjung Park, Christos Kartsaklis, and John Cavazos. 2014.

HERCULES: Strong Patterns towards More Intelligent Predictive

Modeling. 2014 43rd International Conference on Parallel Processing

(2014), 172–181. DOI: http://dx.doi.org/10.1109/ICPP.2014.26

[25] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori

Fursin, Michael FP O’Boyle, John Thomson, Marc Toussaint, and

Christopher KI Williams. 2006. Using machine learning to focus iterative

optimization. In Proceedings of the International Symposium on Code

Generation and Optimization. IEEE Computer Society, 295–305.

[26] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael FP MFP

O’Boyle. 2009. Towards a holistic approach to auto-parallelization:

integrating pro_le-driven parallelism detection and machine-learning

based mapping. ACM Sigplan Notices (2009), 177–187.

