
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

185

Abstract: For many years, Chomsky's generative system of

grammar has been in regular use, to express syntax of

programming languages and protocols. This hereby induces

unneeded difficulty to parse machine-oriented languages. PEG

(Parsing Expression grammar) provide an alternate recognition

based foundation which solves ambiguity problem. PEG's uses

prioritized choice instead of alternatives. Parsing Expression

Grammars (PEGs) are nothing but formalisms used to outline top-

down parsers with backtracking. As PEGs don't provide a good

error recovery mechanism they usually don't recover from syntax

errors in the input. PEG parsers hence become unfit for use with

Integrated Development Environments (IDEs), which need to

build syntactic trees even for incomplete, syntactically invalid

programs. We propose an extension for PEGs with labelled

failures, which introduces a syntax error recovery mechanism for

it. Here a label now not only reports a syntax error but also uses

this recovery expression to reach a synchronization point in the

input and resume parsing. We show a technique removing non-

determinism from a formalism yields a formalism with the

semantics of PEGs. Based on these new formalisms, we also prove

how LL (1) grammars define the same language whether

interpreted as CFGs or as PEGs.

Keywords: syntactic foundation, parsing expression grammars

1. Introduction

CFG formalisms are opted by choice for outlining the syntax

of programming languages. A CFG narrates a language by a set

of strings generated from the grammar’s initial symbol by a

sequence of steps that have been rewritten. However, it does not

specify how to parse a language which is extremely crucial for

working with the specified language in a compiler. We also

have the problem of ambiguity which must and should be

eliminated. A PEG in contrast to the one explained above

defines a language in terms of predicates that infer whether or

not a given string is in the language. Simple languages can be

expressed easily in both kinds of grammars.

PEGs are similar in style to that of CFGs with features similar

to that of Regular Expressions and also like EBNF (Extended

Backus-Naur Form) notation. An important difference between

both is that instead of the unordered choice operator `|' used to

indicate alternative expansions for a non-terminal, PEGs use a

prioritized choice operator `/'. PEGs always avoid ambiguities

in the definition of their grammar language due to the use of an

ordered choice operator.

PEG can be understood as being similar to a recursive

descent parser with restricted (or local) backtracking. All the

errors in a PEG should not be considered a failure, but it should

be considered as an indication to backtrack and try another

alternative.

2. PEG (parsing expression grammar)

 Definition: A parsing expression grammar (PEG) is a 4-tuple

G = (VN, VT, R, eS), where VN is a finite set of non-terminal

symbols, VT is a finite set of terminal symbols, R is a finite set

of rules, eS is a parsing expression termed the start expression,

and VN ∩VT = . Each rule r ∈ R is a pair (N, e), which we

write N←e, where N ∈ VN and e is a parsing expression. For any

nonterminal N, there is exactly one e such that N ← e ∈ R. R is,

therefore, a function from non-terminals to expressions, and we

write R(N) to denote the unique expression e such that N ← e ∈
R.

 We define parsing expressions inductively as follows. If e,

e1, and e2 are parsing expressions, then so is:

1. , the empty string

2. a, any terminal, where a ∈ VT.

3. A, any nonterminal, where A ∈ VN.

4. e1 e2, a sequence.

5. e1 /e2, prioritized choice.

6. e∗ , zero-or-more repetitions.

7. !e, a not-predicate.

 Single or double quotes are used as delimiters for string

literals. Literals and character classes usually contain C-like

escape codes. To match a single character '.' is used.

 The sequence expression `e1 e2' looks for a match of the

expression e1 immediately followed by a match of the

expression e2, backtracks to the starting point if a failure

situation occurs. The choice expression `e1 = e2' first attempts

pattern e1, then attempts e2 from the same starting point if e1

fails.

Recognition based Syntactic Foundation,

Relation with CFG’s and Syntax Error Recovery

in Parsing Expression Grammars

Sini Anna Alex1, Aditya Raghu2, K. N. Ajay Shastry3, H. R. Chetan4

1Assistant Professor, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India
2,3,4Student, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

186

 Operators '&' and '!' are syntactic predicates, which provide

practical expressive power of PEGs. Conversely, the expression

`!e' fails if e succeeds, but succeeds if e fails.

3. From CFG to PEG

 A tuple (V, T, P, S) of a finite set V of non-terminals symbols,

a finite set T of terminal symbols, a finite relation P between

non-terminals and strings of terminals and non-terminals, and

an initial non-terminal S. We say that N → is a production of

G if and only if (N,)∈ P.

 A grammar G defines a relation ⇒G where αAγ ⇒G αβγ if

and only if A → β is a production of G. The language of G is

the set of all strings of terminal symbols that relate to S by the

reflexive–transitive closure of ⇒G.

 We now define a PE-CFG (short for CFG using parsing

expressions) G as a tuple (V, T, P, pS), where V and T are still

the sets of non-terminals and terminals, but P is now a function

from non-terminals to parsing expressions, and pS is the initial

parsing expression of the grammar. As P is a function, we will

use the standard notation for function application, P(A), to refer

to the parsing expression associated with a non-terminal A in

G.

 Instead of the relation ⇒G, we define a new relation, CFG,

among a grammar G, a string of terminal symbols v, and CFG

another string of terminal symbols w. We will use the notation

Gv CFG w to say that (G, v, w) ∈ CFG. The intuition for the

CFG relation is that the first string is the input, and the second

string is a suffix of the input that is left after G matches a CFG

prefix of this input. We will usually say G xy CFG y to mean

that G matches a prefix x of input string xy.

As an example, we have a CFG G with the productions:

P = {X-→ YZ, Y → x, Y → y, Z → z, Z → d, Z → e}

Its corresponding PE-CFG T (G) = G has the definition for the

function P:

P (X) = YZ P (Y) = x | y P (Z) = z | d | e

Commutativity and associativity of the choice operator

allow any order that would yield a grammar with the same

language as above, so we could use this definition instead:

P (X) = YZ P (Y) = x / y P (Z) = e / z/ d

A. Unified language definition

1) Conventionally syntax descriptions are split into

two parts: Context-free grammar to show

hierarchical portion.

2) Regexes to define lexical elements to serve as

terminals.

CFGs' are actually unsuitable for lexical syntax as they can't

directly express many of the common idioms or negative

syntaxes. Regular expressions can't describe the recursive

syntax.

 Associating whitespace with each immediately preceding

token is a convenient convention for PEGs, but whitespace

could just as easily be associated with the following token by

referring to Spacing at the beginning of each token definition.

B. New syntax design choices

 Consider that a unified PEG describes a language, however,

it 's extremely easy to characterize the language to allow a `>>'

sequence to be thought of as either one token or two tokens

depending on its context.

 String literals permit escape sequences in most programming

languages for the sake of expressing dynamic string

distributions. A unified PEG that describes a language, can

permit the use of arbitrary expressions in escapes, by exploiting

the complete power of the expression syntax of the language.

C. Priorities, Not Ambiguities

 Constructs that are inherently ambiguous when expressed as

a CFG, usually lead designers of language to relinquish

syntactic formality and depend on informal meta-rules. The all-

pervasive "dangling ELSE" is a classic example of this,

traditionally requiring an informal meta rule. The prioritized

choice operator in a PEG easily expresses this.

D. Quirks and Limitations

 CFG’s permit both left and right recursion. Since PEG’s

represent regenerate loop, left recursion is unavailable with top-

down parsing. For example, the CFG rules ‘A → a A | a’ and

‘A → A a | a’ represents a series of ‘a’s in a CFG, but the PEG

rule ‘A ← A a / a’ is degenerate because it indicates that in order

to recognize nonterminal A, a parser must first recognize

nonterminal A.

 Left and right recursion in a CFG represent only repetition.

However, repetition is easier to express in a PEG using

repetition operators.

E. Desugaring the Concrete Syntax

 The abstract syntax does not include the following which

appear in the concrete syntax.

 character classes

 the “any character” constant ‘.’

 the option operator ‘?’

 the one-or-more- repetitions operator ‘+’

 the and-predicate operator ‘&’

We treat these concrete syntax features as “syntactic sugar,”

reducing them to abstract parsing expressions using local

substitutions as follows and ed denotes the desugaring of e.

 We consider the ‘.’ expression in the concrete syntax

as a character class containing all of the terminals in

VT.

 If a1, a2,..., an are all of the terminals listed in a

character class expression in the concrete syntax, then

we desugar this character class expression to the

abstract syntax expression a1/a2/.../an.

 We desugar an option expression e? to ed/.

 We desugar a one-or-more-repetitions expression e+

to ede∗d.

 We desugar an and-predicate &e to !(!ed).

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

187

F. Language Properties

Definition: A language L over an alphabet VT is a parsing

expression language (PEL) if there exists a parsing expression

grammar G whose language is L.

Theorem: The class of parsing expression languages is closed

under union, intersection, and complement.

Theorem: The class of PELs includes non-context-free

languages.

Proof: The classic example language an bn cn is not context-

free, but we can recognize it with a PEG G =

({A,B,D},{a,b,c},R,D), where R contains the following

definitions:

A ← aAb/
B ← bBc/

D ← &(A!b)a∗ B!.

4. Reduction to PFGs

A. Eliminating repetition operators

 As in CFGs, repetition expressions can be eliminated from a

PEG by converting them into recursive non-terminals. Unlike

in CFGs, the nonterminal to be substituted in a PEG must be

right-recursive.

Theorem: Any repetition expression e∗ can be eliminated by

replacing it with a new nonterminal A with the definition A ←

eA/.

Proof: By induction on the length of the input string.

Theorem: For any PEG G, an equivalent repetition-free

grammar G’ can be created.

Proof: Simply eliminate all repetition expressions throughout

G’s nonterminal definitions and start expression.

B. Eliminating predicates

For any well-formed, repetition-free grammar G = (VN, VT,

R, eS) where L(G), we will create an equivalent well-

formed, repetition-free, and predicate- free grammar G′ = (VN
′

,VT ,R′,e′
S). This process occurs in three normalization stages.

In the first stage, we rewrite the grammar so that sequence and

predicate expressions only contain non-terminals and choice

expressions are disjoint. In the second stage, we rewrite the

grammar in a way where non-terminals never succeed without

consuming any input. In the third stage, we finally eliminate

predicates.

1) Stage 1

We define a function f recursively as follows, to convert

expressions in our original grammar G into our first normal

form:

1. f(e) = e if e ∈{} ∪ VN ∪ VT.

2. f(e1e2) = AB, adding A ← f(e1) and B ← f(e2) to R1.

3. f(e1/e2) = A/!A f(e2), adding A ← f(e1) to R1.

4. f(!e) =!A, adding A ← f(e) to R1.

Definition: The stage 1 grammar G1 of G is (VN
′, VT, R1, eS1),

where eS1 = f(eS), R1 = {A← f(e)|A←e ∈ R} ∪{new definitions

resulting from application of f }, and VN
′ = VN ∪ {new non-

terminals resulting from application of f }.

2) Stage 2

 We use two functions g0 and g1, to “split” expressions into

-only and -free parts, respectively. The -only part g0(e) of

an expression e is an expression that yields the same result as e

on all input strings for which e succeeds without consuming any

input, and fails otherwise. The -free part g1(e) of e likewise

yields the same result as e on all inputs for which e succeeds

and consumes at least one terminal, and fails otherwise.

We first define g0 recursively as follows:

1. g0()=.

2. g0(a)=F.

3. g0 (A) = g0 (RG (A)).

4. g0(AB) = g0(A)g0(B) if A ⇀ 0, otherwise g0(AB) = F.

5. g0(e1/e2)=g0(e1)/g0(e2).

6. g0(!A)=!(A/g0(A)).

Lemma: If G is well-formed, then function g0 terminates.

Proof: By structural induction over the W FG relation.

Termination relies on g0 (AB) not recursively invoking g0 (B)

if A ̸⇀ 0.

4.2.3 Stage 3

Finally we rewrite G2 into the final grammar G′ = (VN′ ,VT

,R′,e′). S

Definition: We define a function d, such that d(A, e)

“distributes” a nonterminal A into an \-only expression e

resulting from the stage 2 function g0:

1. d(A, e) = e, if e ∈ {, F}.

2. d(A, e1e2) = d(A, e1) d(A, e2).

3. d(A, e1/e2) = d(A, e1) / d(A, e2).

4. d(A, !e)=!(Ae).

3) The empty string limitation

 We prove that any predicate-free grammar cannot accept the

empty input string without accepting all input strings to show

that we have no hope of avoiding the restriction that the original

grammar cannot accept the empty input string,

Lemma: Assume that G is a predicate-free grammar and that for

any expression e and input x of length n or less, (e,) ⇒+ if (e,

x) ⇒+ . Then the same holds for input strings of length n + 1.

Proof: By induction over step counts in ⇒G.

Theorem: In a repetition-free grammar G, an expression e

matches the empty string if it matches all input strings and

produces only results. In consequence, ∈ L(G) implies L(G) =

VT
∗.

Proof: By induction over string length.

5. PEG Error Recovery

 In this section, we revisit the problem of error handling in

PEGs and show how labelled failures [1], [2] combined with

the farthest failure heuristic [3] can improve the error messages

of a PEG-based parser. Then we show how labelled PEGs can

be the basis of an error recovery mechanism for PEGs, and

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

188

show an extension of previous semantics for labelled PEGs that

adds recovery expressions.

A. Error recovery

 Fig. 1 is an example of a Java program with two syntax errors

(a missing semicolon at the end of line 7, and an extra

semicolon at the end of line 8). A predictive top-down parser

will detect the first error when reading the RCUR (}) token at

the beginning of line 8 and will know and report to the user that

it was expecting a semicolon.

 Fig. 2 shows a PEG for a tiny subset of Java, where lexical

rules (shown in uppercase) have been elided. While simple (this

PEG is equivalent to an LL(1) CFG), this subset is already rich

enough to show the problems of PEG error reporting; a more

complex grammar for a larger language just compounds these

problems.

 In the case of our PEG, it will still fail when trying to parse

the SEMI rule, which should match a ‘;’, while the input has a

closing curly bracket, but as a failure does not guarantee the

presence of an error the parser cannot report this to the user.

Failure during parsing of a PEG usually just means that the PEG

should backtrack and try a different alternative in an ordered

choice, or end a repetition. For example, three failures will

occur while trying to match the BlockStmt rule inside Prog

against the ‘n’ at the beginning of line 3, first against IF in the

IfStmt rule, then against WHILE in the WhileStmt rule, and

finally against PRINTLN in the PrintStmt rule.

Fig. 1. A Java program with a syntax error

After all the failing and backtracking, the PEG in our

example will ultimately fail in the RCUR rule of the initial

BlockStmt, after consuming only the first two statements of the

body of main. Failing to match the SEMI in AssignStmt against

the closing curly bracket in the input will make the PEG

backtrack to the beginning of the statement to try the other

alternatives in Stmt, which also fail. This marks the end of the

repetition inside the BlockStmt that is parsing the body of the

while statement. The whole BlockStmt will fail trying to match

RCUR against the ‘n’ in the beginning of line 7, this ultimately

makes the whole WhileStmt fail, which makes the PEG

backtrack to the beginning of line 5. In the end, the PEG will

report that it failed and cannot proceed at the beginning of line

5, complaining that the while in the input does not match the

RCUR that it expects, which does not help the programmer in

finding and fixing the actual error. To circumvent this problem,

Ford [3] suggested that the furthest position in the input where

a failure has occurred should be used for reporting an error. A

similar approach for top-down parsers with backtracking was

also suggested by Grune and Jacobs [4]. In our previous

example, the use of the farthest failure approach reports an error

at the beginning of line 8, the same as a predictive parser would.

We can even use a map of lexical rules to token.

Fig. 2. A PEG for a tiny subset of Java

If the programmer fixes this error, the parser will then fail

repeatedly at the extra semicolon at line 8, while trying to match

the first term of all the alternatives of Stmt. This will end the

repetition inside BlockStmt, and then another failure will

happen when trying to match a RCUR token against the

semicolon, finally aborting the parse. The parser can use the

furthest failure information to report an error at the exact

position of the semicolon, and a list of expected tokens that

include IF, WHILE, NAME, LCUR, PRINTLN, and RCUR.

 The great advantage of using the farthest failure is that the

grammar writer does not need to do anything to get a parser

with better error reporting, as the error messages can be

generated automatically. However, although this approach

gives us error messages with a fine approximation of the error

location, these messages may not give a good clue about how

to fix the error and may contain a long list of expected tokens

[1].

We can get more precise error messages at the cost of

manually annotating the PEG with labelled failures, a

conservative extension of the PEG formalism. A labelled PEG

G is a tuple (V, T, P, L, fail, pS) where L is a finite set of labels,

fail L is a failure label, and the expressions in P have been

extended with the throw operator, represented by ⇑. The parsing

expression ⇑l, where l ∈ L, generates a failure with label l.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

189

Fig. 3. A PEG with labels for a small subset of Java

B. Error recovery strategies for PEGs

A parser with a good recovery mechanism is essential for use

in an IDE, where we want an AST that captures as much

information as possible about the program even in the presence

of syntax errors due to an unfinished program.

We can improve the error recovery quality of a PEG parser

by using the FIRST and FOLLOW sets of parsing expressions

when throwing labels or recovering from an error. A detailed

discussion about FIRST and FOLLOW sets in the context of

PEGs can be found in other papers [2, 5, 6].

In our grammar for a subset of Java, we can see that

whenever rule Exp is used it should be followed by either a right

parenthesis or a semicolon, so based on the FOLLOW set of

Exp, we could define (!(RPAR / SEMI) .)∗ as a recovery

expression. Differently, from the rcblk recovery expression,

this one does not consume the synchronization symbols, as they

should be consumed by the following expression.

The recovery expression above could be automatically

computed from FOLLOW(Exp) and associated with labels

condi, condw, edec, rval, eprint, and parexp. Another option is

to compute a specific FOLLOW set for each use of Exp. For

example, the FOLLOW set of the uses of Exp in DecStmt and

AssignStmt contains only SEMI, while the FOLLOW set of the

uses of Exp in IfStmt, WhileStmt, AtomExp, and PrintStmt

contains only RPAR.

The use of the FOLLOW set (probably enhanced by a

synchronization symbol such as ‘;’) provides a default error

recovery strategy. Let us apply this strategy for our annotated

Java grammar and consider that the Java program from Figure

2 has an error on line 5, inside the condition of while loop, as

follows:

5 while (< n) {

Our default error recovery strategy will report this error and

resume parsing correctly at the following right parenthesis. In

the resulting AST, the node for the while loop will have an

empty condition, so we lose the node corresponding to the use

of the n variable, and the information that the condition was a <

expression.

6. Evaluation

A. Error recovery in a Lua parser

In this section, we evaluate our syntax error recovery

approach for PEGs using a complete parser for an existing

programming language in two different contexts, first in

isolation and then by comparison with a parser generated by a

mature parser generator that uses predictive parsing.

We will evaluate our strategy following Pennelo and

DeRemmer’s approach, however, we will compare the AST got

from an erroneous program after recovery with the AST of what

would be the equivalent correct program, instead of comparing

program texts.

Based on this strategy, a recovery is excellent when it gives

us an AST equal to the intended one. A good recovery gives us

a reasonable AST, i.e., one that captures most information of

the original program does not report spurious errors, and does

not miss other errors. A poor recovery, by its turn, produces an

AST that loses too much information, results in spurious errors,

or misses errors. Finally, recovery is rated as failed whenever it

fails to produce an AST at all.

To evaluate our error recovery strategy, we built a PEG

parser for the Lua programming language [7] using the

LPegLabel tool, in which support for associating labels with

recovery expressions has been added to its current version [13].

Our parser is based on the syntax defined in the Lua 5.3

reference manual 3 (https://www.lua.org/manual/5.3/) and

builds the AST associated with a given program.

We used 75 different labels to annotate Lua grammar. The

process of annotating the Lua grammar with labels was done

manually, as well as the process of writing the recovery

expressions for each label. Our parser was always able to build

an AST, given that no recovery expression raised an

unrecoverable error, or entered a loop.

7. Conclusion

We presented a new formalism for context-free grammars

that is based on recognizing (parts of) strings instead of

generating them. We adopted a subset of the syntax of parsing

expression grammars, and the notion of letting a grammar

recognize just part of an input string, to purposefully get a

definition for CFGs that is closer to PEGs, yet defines the same

class of languages as traditional CFGs. These PE-CFGs define

the same class of language as traditional CFGs, and simple

transformations let us get a PE-CFG from a CFG and vice-

versa.

Table 1

Evaluation of our Recovery Strategy Applied to a Lua Parser

Excellent Good Poor Failed Total

100 (≈ 56%) 63 (≈ 35%) 17 (≈ 9%) 0 180

https://www.lua.org/manual/5.3/

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

190

Parsing expression grammars provide a powerful, formally

rigorous, and efficiently implementable foundation for

expressing the syntax of machine-oriented languages that are

designed to be unambiguous. Because of their implicit longest-

match recognition capability coupled with explicit predicates,

PEGs allow both the lexical and hierarchical syntax of a

language to be described in one concise grammar. The

expressiveness of PEGs also introduces new syntax design

choices for future languages.

We have presented a conservative extension of PEGs that is

well- suited for implementing parsers with a robust mechanism

for recovering from syntax errors in the input. Our extension is

based on the use of labels to signal syntax errors, and

differentiates them from regular failures, together with the use

of recovery expressions associated with those labels. When

signalling an error with a label that has an associated recovery

expression, the parser logs the label and the error position, then

proceed with the recovery expression. This recovery expression

is a regular parsing expression, with access to all the parsing

rules that the grammar provides.

References

[1] Andre ́ Murbach Maidl, Fabio Mascarenhas, Se ́rgio Medeiros, and

Roberto Ierusalimschy. 2016. Error Reporting in Parsing Expression

Grammars. Sci. Comput. Program. 132, P1 (Dec. 2016), 129–140.

[2] Abio Mascarenhas, Sergio Medeiros, and Roberto Ierusalimschy. 2014.

On the relation between context-free grammars and parsing expression

grammars. Science of Computer Programming 89 (2014), 235 – 250.

[3] Bryan Ford. 2002. Packrat Parsing: A Practical Linear-Time Algorithm

with Backtracking. Master’s thesis. Massachusetts Institute of

Technology.

[4] Dick Grune and Ceriel J.H. Jacobs. 2010. Parsing Techniques: A Practical

Guide (2nd ed.). Springer, Berlin, Heidelberg, Germany.

[5] Roman R. Redziejowski. 2009. Applying Classical Concepts to Parsing

Expression Grammar. Fundamenta Informaticae 93 (January 2009), 325–

336. Issue 1-3.

[6] Roman R. Redziejowski. 2014. More About Converting BNF to PEG.

Fundamenta Informaticae 133 (2014), 257–270. Issue 2-3.

[7] Roberto Ierusalimschy. 2016. Programming in Lua (4th ed.). Lua.Org,

Rio de Janeiro, Brazil.

