
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

136

Abstract: In the method of implementing CUP support we have

a tendency to additionally modularized the pre-processor to form

it easier to support extra generators within the future. this can

build JastAddParser less enthusiastic about the continued support

and development of Beaver. it's additionally interesting to examine

however a CUP generated programme performs compared to 1

designed by Beaver.

Keywords: JastAddParser, Token, construction kinkly braces.

1. Introduction

Beaver and Construction of helpful Parsers (CUP) square

measure 2 open supply LALR Java programme generators. A

programme generator may be a program that takes a programme

specification as input and produces programme code that

implements the specification. The programme code will then be

connected with a scanner to create the primary stages of a

compiler that may rework ASCII text file into code. The

scanner reads the ASCII text file and divides the character

sequence into tokens like numbers, variable names, operators,

etc. The take apartr’s task is then to create a parse tree out of

the tokens, that is later utilized by a code generator to provide

the ultimate code. JastAddParser may be a preprocessor for the

Beaver programme specification, that adds some options to the

Beaver specification. This project aims to feature support for

generating CUP specifications to JastAddParser. There square

measure 2 main motivations for doing this. Firstly, to form

JastAddParser less enthusiastic about Beaver, that has not seen

any updates for a short time. Secondly, within the method

modularize JastAddParser, to form future modifications of this

type easier to perform.

2. Background

Parser specifications outline the assembly rules of a

programing language descriptive linguistics. Specifications

square measure usually written in Backus-Naur type, a proper

notation for context-free grammars. A context-free descriptive

linguistics may be a descriptive linguistics during which all

production rules encompass a nonterminal image breaking

down into variety of non-terminals and/or terminals (tokens).

Context-free implies that any such rule will invariably be

applied to a nonterminal image despite the symbols preceding

the nonterminal. Extended Backus-Naur type (EBNF) is AN

extended variant of the Backus-Naur type, with else support for

multi-line rules and shorthand symbols representing repetition,

exceptions, etc. AN example is seen in figure one. the instance

options four production rules with a nonterminal on the left

facet of the assignment, and variety of terminals or non-

terminals on the correct. Terminal strings square measure boxed

in quotation marks, a vertical bar rep-resents ’or’, and commas

square measure for concatenation. every rule is terminated by a

punctuation. Symbols within sq. brackets square measure

nonobligatory, whereas kinky braces indicate repetition.

All grammars expressed in EBNF is born-again to BNF.

Figure a pair of shows however one will convert AN EBNF

illustration with optional and repetition to BNF. Nonterminal

square measure boxed in angle brackets. No semicolons square

measure required as a result of a rule is usually delineate by one

line.

Fig. 1. A small example of a grammar in EBNF

Fig. 2. The grammar from Fig. 1, expressed in BNF

A. JastAddParser

JastAddParser may be a pre-processor for Beaver that

enables programme specifications to be split into modules and

additionally uses a rather different syntax. The specification for

JastAddParser is constructed with Beaver in mind, and so

shares several similarities. Moreover, the implementation of

JastAddParser takes advantage of this by, as an example,

storing components of the specification that don't want

transformation as raw strings internally, and simply prints it at

the right location. JastAddParser uses the meta-compilation

system JastAdd2 to get AN AST category hierarchy.

A JastAdd Parser specification is seen in figure three. The

ex-ample options one terminal of kind ’TOKEN’ and 2

nonterminal, ’list’ and ’list item’. whereas being terribly like

Beaver specification, it's slightly less windy. Another

noteworthy feature is that JastAddParser supports each

definitions with”:=” in addition as those with ”=”. the previous

replaces previous definitions, whereas the latter adds on to

them. Extend J (previously referred to as JastAddJ) is AN

extensile Java compiler designed with JastAdd Parser. it's not

CUP Parser Generator for JustAdd (EDAN70)

K. Raghavendra1, R. Mithuna2, Sini Anna Alex3

1,2Student, Department of CSE, M. S. Ramaiah Institute of Technology, Bangalore, India
3Assistant Professor, Department of CSE, M. S. Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

137

as quick because the common place

TokenList list =

list list_item

| list_item come back new TokenList(list_item); :}

;

ListItem list_item =

TOKEN come back new ListItem(TOKEN); :}

;

Fig. 3. A small JastAddparser specification

javac compiler, however it is extended to support custom

languages supported Java.

JastAddParser uses a take a look at framework for machine-

driven testing. every test suit for this framework incorporates a

separate directory that contains the take a look at input file, the

take a look at parameters and also the expected output of the

test suit. The take a look at parameters embody any flags that

ought to be passed to JastAddParser and also the goal take a

look at pass for the test suit. The take a look at passes square

measure connected as in figure four and works as follows:

B. Jap pass

 Tests with this pass as goal can pass if JastAddParser

success-fully parses the computer file.

 JAP ERR OUTPUT: Tests with this goal can pass if

JastAddParser fails to take apart the computer file.

 JAP OUTPUT PASS: Tests with this goal passes if

JastAddParser with success parses the computer file,

and also the output matches the expected output.

 EXEC PASS: Tests with this pass as goal passes if the

output from the Japanese OUTPUT PASS is wont to

take apart the take a look at information with-out

errors.

 EXEC OUTPUT PASS: Tests with this goal pass if the

output type the Japanese OUTPUT PASS is wont to

take apart the take a look at information, and also the

expected AST is gen-erated.

C. CUP programme generator

CUP is another LALR programme generator like Beaver,

however uses a specification syntax like the one utilized by the

yet one more Compiler-Compiler (YACC) programme

generator, that successively is analogous to BNF. CUP is

presently maintained by the Technical University of metropolis

and is frequently being updated, with the newest version free in

October 2015. Unlike the Beaver programme generator, CUP

doesn't support list and nonobligatory productions like’?’,’+’

and ’*’. Also, CUP doesn't use’%’ before of directives, and a

non-terminal must be declared before it is set as start/goal

production. CUP lists terminal precedence’s from low to high,

in contrast to Beaver. For the linguistics actions, the variable

’RESULT’ should be used.

A sample CUP specification is seen in figure half-dozen. The

specification describes identical language because the one

employed in figure five and figure three. Note the larger

distinction in syntax, which the beginning rule must intend the

declaration of the assembly employed in it.

D. JFlex scanner generator

JFlex may be a generator like Beaver and CUP, except for

generating the scanner part of a compiler. JFlex is intended

specifically to figure with CUP, however is paired with

different programme generators if required. Beaver equipped

with a scanner integration API to facilitate the utilization of

JFlex and similar tools. JastAddParser uses JFlex for scanner

generation.

E. The Beaver programme generator

Beaver may be a programme generator for generating LALR

parsers from AN EBNF descriptive linguistics specification.

LALR stands for Look-Ahead Left-to-right, right derivation

and describes however the programme works to use the

assembly rules of a language. the quantity within the

parenthesis indicates the quantity of lookahead to-kens, with the

foremost common variant being only 1. LALR was developed

as another to the LR(1) parser, with the ad-vantage of a smaller

memory demand at the expense of some language recognition

power. the newest version of Beaver was free in Dec 2012. The

beaver specificaion uses’%’ before its directives. These square

measure at the start of the specification and specify what

terminals and non-terminals the programme uses, in addition as

their kind and that pro-duction is that the goal/start production.

this is often followed by the particular productions. one thing to

notice regarding Beaver specifications is that terminal

precedences square measure listed from high to low, and

linguistics actions feature a come statement.

A sample Beaver programme specification is seen in figure

five. The programme specification is functionally a twin of the

JastAddParser one in figure three. Note the similarities,

however additionally the accumulated style.

3. Implementation

To start off our work, we have a tendency to else a flag to

change CUP generation. This needed U.S. to rewrite the

argument handling code, that orig-inally wasn't designed to

support straightforward introduction of extra flags. we have a

tendency to selected to not use a library for arguments, since we

have a tendency to solely required easy flags, and implementing

it absolutely was a comparatively straightforward task.

JastAddParser uses Apache hymenopteron for building and

testing. hymenopteron is tool for machine-driven code building.

it's enforced in Java and runs on the Java platform, and uses xml

files to explain the build task. Initially, we have a tendency to

had some difficulties with running the tests in JastAddParser

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

138

thanks to AN incorrect path within the build xml file.

JastAddParser, being specifically designed around Beaver,

solely featured one facet for printing programme specifications,

named Pretty Print. Since we might be introducing another facet

for printing CUP specifications, we have a tendency to renamed

the previous facet to Beaver Print.

We then derived the contents of Beaver Print to a

replacement facet, CUP Print, to use as a place to begin for

CUP, and replaced all the Beaver-specific syntax with its CUP

counterpart. samples of this includes rearrangement rules to

place the goal/start and precedence directives last, dynamic the

order of parameters to the non-terminal directives, dynamic

symbols (such as substitution” =” with”: =”) and substitution”

return x” with” RESULT = x” in productions. The order of

terminal precedences had to be reversed, as Beaver lists them

from highest to lowest, whereas most different programme

generators, together with CUP, do the other.

Fig. 4. The test passes of the JastAddParser framework

%terminals TOKEN;

%goal list;

%typeof list = "TokenList";

%typeof list_item = "ListItem";

list =

list.list list_item.list_item

| list_item.list_item come back new TokenList(list_item); :}

;

list_item =

TOKEN.TOKEN come back new ListItem(TOKEN); :}

;

terminal TOKEN;

non terminal TokenList list;

non terminal ListItem list_item;

start with list;

list ::=

list:list list_item:list_item

| list_item:list_item

;

list_item ::=

TOKEN:TOKEN

;

When JastAddParser is dead with the ”–cup” flag, it calls the

CUPPrint that writes a CUP programme specification, rather

than a Beaver specification, to a file.We modified the take a

look at framework to run all tests twice: once for Beaver, and

once for CUP, and that we created the corresponding files for

checking the take a look at output. In order to use the generated

CUP programme, a scanner is required. JFlex may be a scanner

generator natively supported by each Beaver and CUP, that is

employed by the JastAddParser take a look at framework to try

and do the executive department PASS and also the executive

department OUTPUT PASS. we have a tendency to had

troubles writing JFlex files for generating scanners for the CUP

files, and weren't able to succeed at intervals the timeframe of

this project. this implies that these passes aren't supported once

testing the CUP practicality. If one in every of these passes

square measure the goal of the take a look at it stops at the

Japanese OUTPUT PASS for the CUP testing.

4. Evaluation

JastAddParser currently has support for generating a CUP

specification in an exceedingly similar manner to however it

generates a Beaver specification. The code for generating these

2 specification have loads in common, and will sure take

pleasure in some abstractions. This work has been started

within the PrintCommons JastAdd facet. We extended the take

a look at framework to get and take apart CUP specifications in

addition because the Beaver ones for all take a look at cases.

This works for tests that use BNF grammars. we have a

tendency to originally planned to match the performance of the

generated parsers, however we have a tendency to weren't able

to construct appropriate JFlex scanners for the cup parsers

within the timeframe of this project.

During the course of this project we've got encountered some

difficulties that everyone consumed a good quantity of your

time. initially we have a tendency to had hassle running the

tests, even before we have a tendency to change any code. This

clothed to be a slip within the build file, it failed to properly

purpose to the supply directory. Understanding the present code

has not invariably been simple, and far time has been spent on

this.

5. Conclusion

The greatest issue of implementing CUP support in

JastAddParser has been that Beaver supports EBNF grammars,

while CUP does not. this implies that there's not a transparent

translation between a Beaver specification and a CUP one. This

doesn't mean, how-ever, that such a translation is not possible.

it's attainable to precise a EBNF descriptive linguistics in BNF,

however it needs extra productions. This is one thing that will

need larger changes to theJastAddParser structure, it's presently

not designed to feature productionsto itself. JastAddParser

currently incorporates a new flag cup, and once given

JastAddParser generates valid CUP specification if the

JastAddParser specification is in BNF. Future work might

embody extending the testing with JFlex scanners for the

generated CUP files, and comparisons between the parsed trees

created by CUP and Beaver severally. A more advanced task

would be to support CUP generation for EBNF JastAddParser

specifications.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

139

References

[1] Apache Ant, http://ant.apache.org/.

[2] Beaver-A LALR programme Generator, http://beaver. sourceforge.net/

[3] CUP 0.11b, http://www2.cs.tum.edu/projects/cup/

[4] JastAddParser, https://bitbucket.org/jastadd/ jastaddparser/.

[5] JFlex, http://www.jflex.de/

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

[7] F. L. DeRemer. sensible translators for LR(k) languages. Ph. D. thesis,

MIT, Cambridge, MA, USA, 1969.

[8] T. Ekman and G. Hedin. The jastadd extensile java compiler. In

Proceedings of the twenty second annual ACM SIGPLAN conference on

Object-oriented programming systems and applications, OOPSLA ’07,

pages 1–18, New York, NY, USA, 2007. ACM.

