
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

132

Abstract: This survey paper aims to illustrate the major

advancements in techniques for optimization of compilers.

Optimizing compilers is a crucial task and often requires extensive

work for different types of applications. Compiler suites that

employ the latest optimization techniques can offer a plethora of

benefits to developers as well as routinely produce code 20-30%

faster than standard compilers. Superior optimization would also

allow developers to cut cost and improve products without having

to fall back on higher speed and higher cost processors. In this

paper we discuss the various techniques of obtaining better

compiler optimization by using different cache optimization

techniques, dynamic optimization techniques as well as optimizing

compilers for dynamic languages such as JavaScript. Machine

learning techniques that can be employed for better optimization

in compilers are also discussed.

Keywords: compiler optimization, cache optimization, dynamic,

JavaScript, machine learning, survey.

1. Introduction

With the rise of various forms of computer programming

languages, the multitude of compilers available has also

increased. Compiler optimization therefore is a crucial task,

allowing code to be run faster as compared to standard

compilers without optimizations. Compilers can be optimized

by employing a variety of different techniques, such as cache

optimization, dynamic optimization etc. The paper is broadly

divided into five different categories of compiler optimization,

cache optimization, optimization for dynamic languages such

as JavaScript, dynamic optimization, machine learning

optimization techniques and general optimization techniques.

Cache optimization is a technique employed in order to

maximize the the reuse of registers and the cache. This is often

achieved by using a variety of scheduling algorithms as well as

improving data locality in order to reduce the time for memory

access. In the case of dynamic languages such as JavaScript,

optimization is a crucial yet difficult task. Thus by using the

concept of parallelization and removing ambiguity in tasks such

as type assignment the performance of dynamic languages can

be drastically improved.

Dynamic optimization are techniques that can be used in Just

in Time(JIT) compilers in order to improve code performance

dynamically and improving the code performance of languages

using JIT compilers. With the rise of machine learning and deep

learning with the easy availability of GPU’s, various machine

learning techniques can be used to optimize as well as fine tune

compilers. The ease with which machine learning models can

solve complex tasks is what makes it a suitable approach to

optimize compilers. Also with the use of genetic algorithms,

compilers can be further fine-tuned in order to provide a high

degree of performance.

2. Literature survey

A. Cache optimization

Kevin Stock et al. in their research developed a framework

to enhance register reuse in regular loop computations. This

was achieved by utilizing the commutativity and associativity

of operations. Optimization frameworks can be used to enhance

performance in a particular class of important computations

known as stencils. The research further showed how register

reuse can be exploited as well as reduce the number of

loads/stores by optimizing stencil operations. Higher order

stencil operations can be optimized by reordering operations in

such a way as to enhance data locality and register reuse. The

effectiveness of this transformation framework for a range of

higher order stencils was demonstrated by using a

multidimensional retiming formalism [1].

Hee-Seok Kim et al. proposed an OpenCL compiler which

schedules work-items according to their data locality. By

closely monitoring the the memory locations accessed in loops

within a kernel, the scheduling technique can schedule work-

items to create better memory access patterns. This would lead

to a speedup over multiple different types of CPU architectures.

The existing work-item scheduling techniques are inherently

flawed as they do not take into consideration the impact of

work-item scheduling on memory access pattern. In the

proposed system the decision of the preferred schedule is made

on a per-loop basis. This would mean that multiple loops in the

same regions could potentially be assigned different schedules.

The proposed technique achieved a speedup of 1.71x over Intel

and 3.32x over AMD’s implementations on Parboil and Rodinia

benchmarks [2].

Wei Ding et al. in their research showed how the number of

links that off chip data access through the on chip network can

be reduced in a chip. By using a compiler-based off-chip data

access localization strategy the number of hops required for the

off chip data to reach the memory controller can be minimized.

Doing so can reduce the network latency of the the off-chip

accesses. It would also reduce the network latency of on-chip

access. The frameworks is the first compiler based work that

targets optimizing on-chip network behaviors of off chip

A Survey of Compiler Optimization Techniques

Aman Raghu Malali1, Ananya Pramod2, Jugal Wadhwa3, Sini Anna Alex4

1,2,3Student, Department of Computer Science Engineering, Ramaiah Institute of Technology, Bengaluru, India
4Assistant Professor, Dept. of Computer Science Engg., Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

133

accesses in both private L2s and shared L2 based multicores.

The distance between the requested node to that of the target

memory controller is reduced. This allows the off-chip data to

travel over shorter distances and further reduces the on-chip

access latencies [3].

Steve Carr et al have provided a simple and effective way for

cost estimation of loop nest considering with respect to

references of cache lines. Attempts have been made to measure

inherent data locality of programs and improve them. Fusion,

distribution, and reversal have been analysed taking cost model

into consideration. Loop Fusion Algorithm and Compound

Transformation Algorithms have been proposed with

optimizations and tested on cache hit rates. These algorithms

have been used to implement cost models, the transformations,

and the algorithms in Memoria. The approach presented is

unique in the sense that it is the first to combine techniques such

as fusion, distribution and reversal to improve data locality [4].

B. Optimization for dynamic languages

Kyle Dewey et al. demonstrated how a JavaScript abstract

interpreter could be parallelized. Because of JavaScript’s tricky

semantics and dynamic behaviour, the static analysis of

JavaScript proves to be difficult. The paper presents an

alternative model to analyze programs, called STS an

alternative to the usual DFA approach. STS splits he analysis

into two separate components. An embarrassingly parallel

reachability computation on a state transition system, and a

method to selectively merge states during reachability

computation. The STS framework makes it easy to explore

different parallelization strategies. It is also more applicable to

languages with difficult control flow as compared to DFA. The

results shown were conclusive that the new STS framework by

using parallelization provided significant speedups for realistic

Java programs [5].

Wonsun Ahn et al. in their research showed how

performance in dynamic languages like JavaScript can be

improved by examining how data types are assigned to

variables. JavaScript does not have a concept of types but still

assigns them to objects for ease of code generation. The papers

describe how Chrome V8 compiler defines types and the main

reasons for the lack of performance improvement. A newer

modified chrome V8 compiler is illustrated which removes the

requirements (1) the inherited prototype object is part of the

current object definition and (2) method bindings are also part

of type definition. These requirements are what make type

assignment unpredictable. The paper identifies the core

problems hampering optimization in type predictability. The

optimization methods suggested include function creation,

optimizing built-in object creation, partial and complete

decoupling of methods from types [6].

Michael R Jantz et al. explore the various single and

multilevel (Just In Time) JIT compilation policies for modern

machines. Dynamic compilation is important for languages

such as Java and C# in order to achieve high performance. In

the paper they describe experiments in order to control the

compiler aggressiveness and optimization levels in Oracle

HotSpot Java VM. By analyzing all the various JIT compilation

policies, the most effective policy for any particular application

can be identified. It was proven that employing all the free

compilation resources aggressively to compiler more program

methods eventually reaches a point of diminishing returns. At

the same time using free resources to reduce the queue backup

significantly increases the performance especially in slower JIT

compilers. The paper further shows how prioritizing JIT

method is crucial in systems with smaller hardware budgets [7].

C. Dynamic optimization

Byron Hawkins and Brian Demsky et al. Maintaining

consistency between the translated application and the source

application poses a special performance challenge. Two

methods to optimize binary translations are introduced in this

paper. This first method is of efficiently annotating the source

code, allowing the demarcation of the dynamic regions by the

developer and then identifying the code changes in only these

regions. Another technique avoids source code requirements

and the need for annotation by automatically inferring the

presence of a JIT. Then the write instructions are instrumented

with translation consistency operations. The techniques in the

DynamoRIO showed a performance improvement of 7.3x over

the existing state of the art DBT systems on JIT applications

[8].

Tiark Rompf et al. Discuss an interesting take on optimizing

JIT compilers by converting them into precision tools by adding

generic metaprogramming facilities. First, allowing JIT

compilation to be invoked explicitly by the programs. It would

also enable JIT compiler to report errors and warnings to the

program when it is unable to compile a given code in the

demanded way. The second metaprogramming ability would be

that of allowing JIT compiler to perform compile time

computation by being able to call back into the program. This

allows the program to itself define the translation strategy for

constructs dynamically and enabling “smart” libraries which

would supply domain specific compiler optimizations. The

framework proposed was Lancet, a JIT compiler framework for

Java Bytecode. Lancet allows tight, two-way integration with

the running program. Lancet was created by adding abstract

interpretation to a simple bytecode compiler using lightweight

modular staging [9].

D. Machine learning optimization techniques

Zheng Wang et al. described the use of ensemble machine

learning models for compiler optimization. The ensemble

model was a mix of different machine learning techniques such

as supervised and unsupervised learning. The proposed

ensemble model consisted of algorithms such as Decision

Trees, Support Vector Machines as well as K-means clustering.

The ensemble model was tested and it was shown to produce

accurate as well as efficient results [10].

Jay Patel et al. propose a method for code optimization in

compilers using artificial neural networks. The method

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

134

proposed in the article requires implementing the different

optimization techniques in 4Cast-XL. For each compiled

method, a feature vector of current method's state is generated

along with profiles of programs. Artificial Neural Networks are

then used to predict the best optimization to be used. Instead of

using the same optimization for the entire program, the

prediction helps to select the best ordering of the optimizations

for the program. Phase reordering is then performed using

genetic algorithms. An automatic feature generation model is

also used comprising of training data generation, feature search

and machine learning components. As part of data generation,

samples of input programs are compiled in different ways and

the optimal heuristic value is decided. The feature search

component is associated with feature expressions where the

feature evaluated on a program is calculated. The machine

learning component provides feedback on how good a feature

is and selects the best optimization orderings on a per methods

basis within a dynamic compiler by including profile of

programs [11].

Dmitry Plotnikov et al. Automatic tuning of compilers would

provide the expected performance on a particular platform and

also suggest which optimizations can be improved to increase

the overall performance. For this a genetic algorithm based

automatic tuner was created called Tool for Automatic

Compiler Tuning (TACT). It works on a genetic algorithm core,

which can be used to find optimal parameters to each of the

optimizations. It reads the compiler options from a

configuration file and then creates the chromosomes which are

random set of compiler options. The chromosomes from each

of the populations are then evaluated to check for their

effectiveness. The best configuration would then move on to the

next generation, random mutations and crossbreeding is

introduced at every generation. TACT can handle multiple

objective tuning as well as error handling. Various performance

measures such as error handling capability, tuning speed,

convergence and overall tuning result is used in order to

evaluate the impact of using TACT [12].

Enyindah and Okon E. Uko have reviewed use of

optimization algorithms in new compilers to reduce the actual

size of code. The new techniques are contrasted with the

conventional optimization methods. The conventional methods

like dataflow analysis, local optimization and global

optimization are considered for analysis. The newer compilers

use mechanisms like dataflow analysis, Leaf optimization

functions, cross linking optimization, etc. Data-Flow Analysis

brings in fuzziness in data information. It also includes Alias

analysis. Reverse Inlining (Procedural Abstraction) aim is to

achieve code size reduction. Leaf Function Optimization

involves utilizing leaf functions to reduce code length. Leaf

functions are the functions that do not directly call functions in

a program and form the leaves in a call graph. Cross Linking

optimization technique is used to factor out codes so as to

reduce the code size. These optimization techniques in new

compilers help to utilize memory efficiently, reduce code size

and increase program execution speed [13].

3. Discussions

In our survey we identified that cache optimization

techniques involve the efficient use of registers and cache

memory in order to speed up computation. By exploiting the

associativity and commutativity of operations frameworks can

reorder important computations ins such as way as to encourage

the reuse of memory. Another technique by which cache

optimization can be used to optimize compilers is by the use of

the principle of data locality. By making sure that frequently

accessed data are closer by, the number of load and stores can

be greatly reduced. A crucial aspect of cache optimization is the

scheduling technique used, by using an appropriate scheduling

technique on a per-loop basis can provide significant speedups

to the compiler.

Dynamic languages like JavaScript pose an interesting

challenge when it comes to compiler optimization. But by

parallelizing compilation and by analyzing the programs in

separate components can improve the performance of dynamic

language compilers. The STS framework leverages various

parallelization strategies in order to select the most optimal one.

Another technique to improve performance in dynamic

languages is by simplifying how type assignment works. By

making this step less ambiguous, the programs are shown to

have a significant speedup.

Dynamic Optimization, is vastly improves performances for

Just In Time(JIT) compilers. Optimizing binary translations is

one of the ways in order to improve performance of JIT

compilers. By annotating the dynamic aspects of the source

code and by only looking for code changes in these regions, the

compiler efficiency can be improved. Another technique

involves converting the JIT compiler into a precision tool by

adding metaprogramming facilities. The metaprogramming

abilities discussed are allow programs to explicitly invoke the

JIT and another being allowing JIT to perform compile time

computation by being able to call back into the program

Machine learning techniques are also being used for the

overall performance improvement as well as fine tuning of

compilers. Ensemble methods of models can be used in order

to improve the performance of the compiler. This ensemble

method consisted of K-means, Support vector machines as well

as decision trees. Deep learning techniques with the use of

Artificial Neural Networks can also be used in order to improve

compiler performance, by treating all parameters of compilers

as features and iterating through all of them till the most

efficient of those is found.

4. Conclusion

A survey of the current research being carried out on

compiler optimization techniques have shown how various

different subsystems are being worked on in order to improve

compiler efficiency. We have discussed various techniques

under the categories of cache optimization, dynamic

optimization, optimization in dynamic languages as well as the

use of machine learning techniques in order to improve

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

135

compiler performance. Several different techniques of

improving these subsystems in current literature as well as their

overall impact on compiler performance was discussed. The

survey paper is meant to be an aggregation of current research

being conducted in the field of compiler optimization. It is

meant to serve as a reference as well as a benchmark for

researchers working on new techniques to improve compiler

efficiency.

References

[1] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Nol Pouchet, Fabrice

Rastello, J. Ramanujam, and P. Sadayappan. “A framework for enhancing

data reuse via associative reordering,” in Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’14), June 2014.

[2] Hee-Seok Kim, Izzat El Hajj, John Stratton, Steven Lumetta and Wen-

mei Hwu. “Locality Centric Thread Scheduling for Bulk-synchronous

Programming Models on CPU Architectures,” in Proceedings of the 2015

International Symposium on Code Generation and Optimization (CGO

’15), February 2015.

[3] Wei Ding, Xulong Tang, Mahmut Taylan Kandemir, Yuanrui Zhang, and

Emre Kultursay. “Optimizing Off-Chip Accesses in Multicores,” in

Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’15), June 2015.

[4] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. 1994. Compiler

optimizations for improving data locality. SIGPLAN Not. 29, 11

(November 1994), pp. 252-262.

[5] Kyle Dewey, Vineeth Kashyap, and Ben Hardekopf. “A Parallel Abstract

Interpreter for JavaScript,” in Proceedings of the 2015 International

Symposium on Code Generation and Optimization (CGO’15), February

2015.

[6] Wonsun Ahn, Jiho Choi, Thomas Shull, Mara J. Garzarn, and Josep

Torrellas. “Improving JavaScript performance by deconstructing the type

system,” in Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’14), June

2014.

[7] Igor Costa, Pericles Alves, Henrique Nazare Santos, Fernando Magno

Quintao Pereira. “Justin-Time Value Specialization,” in Proceedings of

the 2013 International Symposium on Code Generation and Optimization

(CGO ’13), February 2013.

[8] Byron Hawkins, Brian Demsky, Derek Bruening and Qin Zhao.

“Optimizing Binary Translation of Dynamically Generated Code,” in

Proceedings of the 2015 International Symposium on Code Generation

and Optimization (CGO ’15), February 2015.

[9] Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown, Hyouk Joong Lee,

Hassan Chafi and Kunle Olukotun. “Surgical precision JIT compilers,” in

Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’14), June 2014.

[10] Wang, Zheng, and Michael O'Boyle. "Machine learning in compiler

optimization." Proceedings of the IEEE 99 (2018): 1-23.

[11] Jay Patel and Mahesh Panchal, International Journal of Computer Science

and Mobile Computing, Vol.3 Issue.5, May- 2014, pp. 557-561

[12] Dmitry Plotnikov, Dmitry Melnik, Mamikon Vardanyan, Ruben

Buchatskiy, Roman Zhuykov and Je-Hyung Lee (2013). Automatic

Tuning of Compiler Optimizations and Analysis of their Impact. Procedia

Computer Science, 18, pp. 1312–1321.

[13] Enyindah P., Okon E. Uko "The New Trends in Compiler Analysis and

Optimizations". International Journal of Computer Trends and

Technology (IJCTT) V46(2):95-99, April 2017.

