
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

128

Abstract: The biggest problem that programmers face is errors.

There are two types of errors: syntactical and logical. The

identification of these errors is very time-consuming. This has led

many researchers toward the topic of error detection and

correction. This paper proposes a way to detect errors and suggest

corrections to the user by comparing the user’s code with the

correct code that is stored in the system. Error detection and

correction is incredibly useful in academic institutions where there

is a constant inflow of students with no programming knowledge.

The if-else block is one of the most simple and commonly used

constructs in any programming language. However, a new

programmer may be unaware of the importance of the ordering of

the conditions within the block. In this paper, we try to identify the

different rules which help in correct ordering within the if-else

block. An error can be detected if a violation of these rules is found

and can be prompted to the user. Machine learning models help in

identifying latent errors in programs. Errors occur in the

properties of the program. The machine learning concepts are

tested on the properties of the program so that they are categorized

first and then ranked depending upon the errors occurred. After

analysing the properties, a subset of properties is selected the

machine learning technique which may result in errors. A dynamic

invariant detection is used by fault invariant detection to create

program properties. Two algorithms are applied i.e decision tree

and support vector machine on the properties for classification.

Keywords: SVM, Machine learning, Data mining, Decision tree

1. Introduction

At the beginning of a computer course, the students would

still be unaware of the syntax and make many mistakes. The

compiler generated error messages that are displayed after

running incorrect code are difficult to understand. This makes

it difficult to fix errors and wastes time and resources. This

paper proposes an automatic error detection and correction

system. The system focuses on the integration of data mining

and machine learning concepts and also uses system

programming to detect errors in the code. Data mining is used

to store and organize the correct programs in the database.

Using system programming, each correct program is given a

unique identifier.

Machine learning concepts are used to analyze the code with

errors, compare the incorrect code with the correct programs

that are stored in the database, display the errors and also

suggest corrections. This system helps save the programmers

time and resources. These techniques can be used to model

automated evaluation systems. Automated evaluation of

programs can be done in two ways. Depending on the approach

used in designing the system, they can either be static or

dynamic.

Static assessment systems require the professor to provide a

base model. The program provided by the student is compared

to this model and it is not actually executed. Grades are awarded

based on the amount of similarity between the two. Dynamic

evaluation systems on the other hand, explicitly execute the

students’ programs and then check how correct the output is for

different test cases. Marks are awarded based only on the

success or failure of the student’s program in the different test

cases.

There are, however, many drawbacks to this type of

automated system. Small syntax or logical errors may result in

a failure of the program for a particular case and will result in

the student losing all their marks, which seems a bit unfair for

the student. Moreover, devious students may devise a way to

rig the system, by ensuring that the required output is produced,

even when it is not implemented properly. These disadvantages

led to the need for an automated system that works differently.

There’s no need for any test suite which is used for dividing

success and fail runs therefore dynamic invariant detection is

mostly used expensive programs. A subset of properties are

used as input and outputs the subset which results in faults. A

program analysis which is arbitrary generates program

properties. Mostly the nature of the techniques in this paper are

dynamic but these techniques are equally suitable for static

analyses. The technique used has two steps: training and

classification.

In training, machine learning concepts train the model. The

properties which result in error are used and then fixed, this is

done by machine learning models. Machine learning model

created consists of fault revealing properties. In the second step

which is the classification step, the user provides the trained

model which is pre-computed and those properties which cause

faults in large number are selected by the model. The main

motive is to generate a model that suits the input set of points

to those of points labels successfully.

2. Related works

This paper aims to propose an automated error detection and

correction approach. Several people have previously worked on

error detection and correction method in C programs using the

Error Detection and Correction using Machine

Learning Concepts

Asha Kutsa1, Pauline Joseph2, Garima Choudhary3, Shrey Naik4

1,2,3,4Student, Department of Computer Science Engineering, Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

129

concepts of machine learning and data mining. Kunal Banerjee

and K. K Sharma worked on the problem of the logical error

caused due to incorrect precedence of the if-else statements

which cannot be determined by a standard compiler. They

rectified it by determining the precedence of if-else conditions.

First, the conditions are ordered according to their precedence.

Then these conditions are compared against the rules table.

After this, the innermost conditions are executed first. After the

conditions are normalized, the order of else-if construct is

checked. At last, an analysis is done and time complexity is

computed, which is later used to make it more efficient.

Michael D. Ernst and Yuriy Brun put forward a technique

that uses the errors to generate machine learning models of

program properties. It applies these models to the user’s code

and helps classify and rank properties that may lead to errors.

Research on correcting logical errors in C programs was

conducted by Prakash Murali, Abhay Ashok Patil and Atul

Sandur. They used a combination of statistical control flow

techniques and genetic algorithms for this. A subset of C

language was taken in an attempt to probe the challenges that

occur during error correction.

Xie and Engler demonstrated through their paper that errors

which are correlated with redundancy are present in the source

code where idempotent operations, redundant assignments on

the files or dead code. Faults and errors are mostly caused due

to redundant conditions. There are four steps which are

important. First one, instead of using dynamic analysis they

prefer metric which is statically computed.

In the second step, the relevance is increased by 45%-100%

by an avg of 4860% in C programs which means it is increased

by a factor of 4860%. In the third step, the experimental

analysis is applied to the whole source file. Machine learning

concepts are used by Dickinson et al. during program

executions assuming that it is not as expensive for program

execution but verifying of the correctness in every execution is

very expensive comparatively. The goal is to find the runs with

the most faults. Clustering is used to partition the test cases

which is almost same as what partition testing is doing but

clustering is done without any internal homogeneity guarantee.

3. Proposed work

A method for an automatic error detection system for c

programs has been proposed. Each time code is executed by the

user, it is compiled by the compiler. If the program is correctly

executed, the system stores the program in the database with a

unique identification. If the program does not compile or is not

correctly executed, the incorrect code is compared with similar

programs from the database. We take an example of an if-else

construct. However, before we can compare the sample

program with one already stored in the database, we need to

establish certain rules with regard to the precedence of the

ordering of conditions within the construct. The condition

within the latter block should not be weaker than the condition

within the former. If this condition is not met, then the

subsequent block is similar to dead code and never gets

executed.

This is because the first condition, in this case, would be a

superset of the following conditions. Due to this, the conditions

that appear in the later blocks are not checked because the

conditions that appear in the first block are a superset of the

latter blocks and have already been checked.

 Let’s take an example, suppose you have the code,

 int x=50, i=0;

if (x>10)

 i=i+10;

else if(x>20)

 i=i+20;

else if(x>30)

 i=i+30;

In this case, the latter two statements are never executed

because the set of values that corresponds to the first condition

is a superset of the other two. This results in a logical error,

which is not detected by the compiler. There are some rules

which can help decide the precedence within the if-else block.

The ordering of conditions within the student’s programs can

be tested against these rules. If there is a mismatch, feedback

for correction can be provided automatically.

Let d1, d2,...,dn be the conditions.

Suppose we have two conditions c1 and c2 such that they

have a relation c1=>c2. This means that if c1 is satisfied, c2

must also be satisfied ie, c1 is a stronger condition than c2.

For the following conditions, the ordering of conditions are

as follows-

1) d1 ⇒ d2,

if (d1) {...}

else if (d2) {...}

 2) d3 ⇒ d1 or d3 ⇒ d2

 if (d3) {...}

 else if (d1|| d2) {...}

 3) d1 ⇒ d3 or d2 ⇒ d3

 if (d1||d2) {...}

else if (d3) {...}

 4) d1 ⇒ d3 and d2 ⇒ d4

if (d1 &&d2) {...}

else if (d3&& d4) {...}

 5) d1 ⇒ d3 or d2 ⇒ d4

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

130

if (d1||d2) {...}

else if (d3||d4) {...}

The student’s program is checked against these rules. If there

is a violation of any of the rules then feedback can be given and

the user. Therefore, these rules can detect violation in

precedence. If the student program doesn’t violate the

precedence rules, it is added to the database and other programs

can be compared to it. But if it does happen to violate the rules,

it is compared against a similar program saved in the database.

When the two programs are compared, missing elements can

be identified. Using some data mining concepts, these elements

are organized. With the help of the machine learning device, the

missing elements are analyzed and their function is learnt. Since

the use of the invariants is known, we can either fill in the

missing code or suggest the user do the same. For maximum

efficiency, the code can be divided into functions or modules.

This makes the detection easier as a small part of the programs

are compared instead of the whole program. The correct

solution can be embedded in the form of macros or new

functions as per the user requirement.

4. Implementation

A. Machine learning algorithms

1) SVM

A supervised machine learning algorithm called SVM is used

in both classification or regression challenges. Using the kernel

functions, SVM tries to divide the labeled points. This function

takes inputs as data and then transforms it into the required

form. It also uses kernel functions to transform the point space

and then chooses the best hyperplane which divides the labelled

points successfully. We use linear kernel function of SVM

which forms a hyperplane in the canonical point space. After

training of the model, the points which are new can be classified

depending upon where they belong to the model function.

2) Decision tree

In this algorithm, hyperplanes are used to separate the label

points which is mostly perpendicular to one axis and also

parallel to the other axes. The decision tree machine uses the

greedy algorithm which can partition iteratively depending

upon the entropy which is greater than a given threshold and

then divides the partition to minimize entropy by adding a

hyperplane across it. Fault Invariant Classifier implementation

uses two experiments regarding automatic recognition of fault-

revealing properties, plus a third experiment regarding whether

fault-revealing properties help users find errors.

3) Measurements

Two quantities are measured in this experiment i.e. relevance

and brevity. The importance and usefulness of the output is

defined as relevance. Relevance is the ratio of the number of

properties which are determined as correctly fault revealing to

the total number of fault revealing properties. The brevity is

defined for a set of properties is the opposite of the relevance.

It the average number of properties a user can determine to be

fault revealing.

5. Advantages and disadvantages

The advantages of this system are the time taken by

programmers for debugging will be less as the errors will be

detected and corrections will be suggested to them. Since the

database stores all the correct code that it encounters, two

similar programs can be compared based on space and time

complexity and the most efficient program can be used.

Another advantage of this system is that using cloud storage,

multiple users from all over that world can access this database.

Only programs that are compiled correctly will be stored in the

database so that the error detection is more accurate. Every

system also has disadvantages. Sometimes, if the algorithm or

logic used for the code is not the same as anything stored in the

database, the logical errors cannot be detected, making the

system less efficient.

6. Conclusion

Since there are a large number of students enrolling in

programming courses every year, it would be highly beneficial

to have an automated system for error detection. There have

been many proposals for such a system, but due to their

shortcomings, there was a need for an improvised method to do

the same. We have identified various cases wherein there is a

proper ordering of conditions within the if-else block and we’ve

also prescribed the rules. These rules can help detect violence

in the precedence. If such a violation exists, feedback about the

incorrect ordering of conditions within the if-else block can be

provided to the programmer. The proposed methodology can

help new programmers deal with various types of syntactical

errors and can tell them how to deal with it. The scope of this

paper extends past just the if-else block. It can be broadened to

identify and correct logical errors written in various other

languages like Java or C++.

In this paper, we propose that the experiment after evaluation

shows that the Fault Invariant Classifier can easily determine if

the properties are fault revealing. It is better to rank and select

the top properties than selecting all the properties which are said

to be fault revealing by the machine learning. In C programs the

average of 45% of the top 80 properties can result in fault-

revealing. For Java programs, about 59% of the top 80

properties may be fault revealing. It is not a compulsion that all

properties which are fault revealing may cause an error but most

of the preliminary studies did conclude that. Therefore, we

conclude that on average the user only has to examine 3 of the

properties to be determined an error.

We determine that decision trees substantially underperforms

support vector machines because the decision tree algorithm is

easier to read for the humans and permit a preliminary

examination of what slots appear to be most important. This

decision tree technique can be explained as “learning from

fixes”. the machine learner can be trained on pairs of programs

where one consists an error and the other one is the fixed

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

131

version that solves the error.

References

[1] K. K. Sharma, Kunal Banerjee, Indra Vikas, Chittaranjan Mandal,

“Automated Checking of the Violation of Precedence of Conditions in

else-if Constructs in Student’s Programs”, IEEE International Conference

on MOOC, Innovation and Technology in Education (MITE), 2014

[2] Yuriy Brun, Michael D. Ernst, “Finding latent code errors via machine

learning over program executions”, Proceedings of the 26th International

Conference on Software Engineering (ICSE)., 2004.

[3] Tatiana Vert, Tatiana Krikun, Mikhail Glukhikh, “Detection of Incorrect

Pointer Dereferences for C/C++ Programs using Static Code Analysis and

Logical Inference”, Tools & Methods of Program Analysis, 2013.

[4] T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang, “Ability-training-oriented

automated assessment in introductory programming course,” Computers

& Education, vol. 56, no. 1, pp. 220 – 226, 2011.

[5] T. Wang, X. Su, Y. Wang, and P. Ma, “Semantic similarity-based grading

of student programs,” Info. and Software Technology, vol. 49, no. 2, pp.

99 – 107, 2007.

[6] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High-Level Synthesis:

Introduction to Chip and System Design. Kluwer Academic, 1992.

[7] K. K. Sharma, K. Banerjee, and C. Mandal, “A scheme for automated

evaluation of programming assignments using FSMD based equivalence

checking,” in I-CARE, pp. 10:1–10:4, 2014.

[8] C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade, “A formal

verification method of scheduling in high-level synthesis,” in ISQED, pp.

71–78, 2006.

