
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

1043

Abstract: Edge detection is the most common pre-processing

step in digital image processing. Edge detection which significantly

reduces the amount of data and filter out the unwanted

information in an image. Canny edge detection is the most

common edge detection algorithm and it is based on frame level

statistics. Direct implementation of canny algorithm at the block

level leads to excessive edges in smooth region and loss of

significant edges in high detailed region. This cannot be used for

real time implementation because it requires higher latency. To

overcome this problem, a distributed canny edge detection

algorithm is proposed and it is based on block classification. This

resulting block based code will significantly reduce the latency.

Hence, the proposed algorithm will yield a better performance

than the other edge detection algorithm. Finally, this algorithm is

mapped onto Xilinx Spartan-3(EDK) Embedded Development Kit

FPGA platform

Keywords: Distributed image processing, canny edge detector,

high throughput, parallel processing, FPGA.

1. Introduction

Edge detection is the most common pre-processing step in

image processing such as image segmentation, image

enhancement, tracking and image/video coding. The Canny

edge detector is predominantly used due to its ability to extract

significant edges. Edge detection is a basic operation in image

processing. There are many edge detection algorithms, such as

Robert detector, Prewitt detector, Kirsch detector, Gauss-

Laplace detector and canny detector have been proposed.

Among these algorithms, canny algorithm has been used widely

in the field of image processing because of its good

performance. The Canny edge detector is predominantly used

in many real-world applications due to its ability to extract

significant edges with good detection and good localization

performance. The Canny edge detection algorithm contains

extensive pre-processing and post processing steps and is more

computationally complex than other edge detection algorithms.

Furthermore, it performs hysteresis thresholding which requires

computing high and low thresholds based on the entire image

statistics. Finally, this algorithm is mapped onto Xilinx Spartan

3 (EDK) FPGA platform.

A. CANNY edge detection Algorithm

Canny developed an approach to derive an optimal edge

detector based on three criteria for edge detection.

 Low error rate of detection. It should find all edges and

 nothing but edges.

 Localization of edges. The distance between actual

edges in the image and the edges found by the

algorithm should be minimized.

 Single response. The algorithm should not return

multiple edge pixels when only a single edge exists.

The model was based on a step edge corrupted by additive

white Gaussian noise. The original canny algorithm consists of

following steps:

a) Smoothing the input image by Gaussian mask. This

eliminates the high frequency components in the

image. The output smoothed image is denoted as I(x,

y).

b) Calculating the horizontal and vertical gradient

Gx(x,y) and Gy(x, y) respectively at each pixel

location by convolving the image I(x, y).

c) Computing the gradient magnitude G(x, y) and

direction Өg(x, y) at each pixel location.

d) Applying non-maximum suppression (NMS) to thin

the edges.

e) Computing the hysteresis high and low thresholds

based on the histogram of the magnitudes of the

gradients of the entire image [3][4].

2. Proposed distributed CANNY edge detection

Fig .1. Block Diagram

Edge detection is the most common pre-processing step in

many image processing algorithms such as image enhancement,

image segmentation, tracking and image/video coding. Among

Edge Detection using Distributed CANNY

Algorithm and Implementation in FPGA

R. Jayarani

Lecturer, Dept. of Electronics and Communication Engineering, Government Polytechnic College, Trichy, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

1044

the existing edge detection algorithms, the canny edge detector

has remained a standard for many years and has best

performance. Canny edge detection algorithm cannot be used

for real time application since it requires higher latency and

decreased throughput. Due to the drawback, distributed canny

edge detection algorithm is proposed which is based on block

classification. Block classification is based on block type such

as smooth, texture, edge/texture and strong edge. The proposed

algorithm yields better edge detection results for both clean and

noisy images.

Distributed Canny edge detection algorithm is proposed. A

diagram of the proposed algorithm is shown in Fig.1. In the

proposed distributed version of the canny algorithm, the input

image is divided into m × m overlapping blocks and the blocks

are processed independent of each other. For an L × L gradient

mask, the m × m overlapping blocks are obtained by first

dividing the input image into n × n non-overlapping blocks and

then extending each block by (L + 1)/2 pixels along the left,

right, top, and bottom boundaries. This results in m × m

overlapping blocks, with m = n + L + 1. Next horizontal and

vertical gradient are calculated. NMS step involves computing

the gradient direction at each pixel. If the pixel’s gradient

direction is one of 4 possible main directions (0°, 45°, 90°,

135°) the gradient magnitude of this pixel is compared with two

of its immediate neighbours along the gradient direction and the

gradient magnitude is set to zero if it does not correspond to a

local maximum. For the gradient directions that do not coincide

with one of the 8 possible main directions, an interpolation is

done to compute the neighbouring gradients. Distributed Canny

algorithms are the same as in the original canny algorithm

except that these are now applied at the block level. Next step

which is the hysteresis high and low thresholds calculation is

modified to enable parallel block-level processing without

degrading the edge detection performance.

A. The distributed canny edge detection algorithm consists of

following steps

 Smoothing the input image by Gaussian mask. This

eliminates the high frequency components in the

image. The output smoothed image is denoted as G(x,

y).

 Calculating the horizontal and vertical gradient Gx and

Gy respectively at each pixel Location by convolving

the image G(x, y).

 The gradient magnitude and direction at each pixel

location.

 Applying non-maximum suppression (NMS) to thin

the edges.

 Block classification.

 Adaptive threshold calculation.

 Computing the hysteresis high and low thresholds

based on the histogram of the magnitudes of the

gradients of the entire image.

1) Input Image:

2D Input image of size 512x512 in Fig. 2 is consider as input

image and can be represented as G(x,y).

Fig. 2. Lena input image

2) Gaussian filtering to remove noise

The Gaussian filter is used to blur and remove unwanted

detail and noise. By calculating a suitable 3x3 mask, the

Gaussian smoothing can be performed using standard

convolution method. A convolution mask is much smaller than

the actual image. As a result, the mask is slide over the image,

calculating every square of pixels at a time. Gaussian filter uses

2D distribution to perform convolution.

 (1)

 (2)

Where x and y represents horizontal and vertical values of a

two dimensional image, sigma =0.1 is the standard deviation

of the Gaussian function and G(x, y) represents the smoothened

image. Sigma plays a major role in the selection of the

coefficients of the Gaussian filter.

3) Gradient

Gradient is a directional change in the intensity or colour in

an image. Image gradients may be used to extract information

from images. Vertical edges can be detected by using a

horizontal gradient operator followed by a threshold operation

to detect the extreme values of the gradient. Horizontal edges

produce a vertical gradient in the image, and can be enhanced

with a vertical gradient detector. After smoothing the image and

eliminating the noise, the next step is to find the edge strength

by taking the gradient of the image [7]. The gradient can be

calculated using two different masks such as horizontal and

vertical gradient. Column of sobel operator is horizontal

gradient (Di) and row is vertical gradient (Dj).Sobel operator is

used to determine the gradient at each pixel of smoothened

image. Sobel operators in i and j directions are given as,

(3)

Sobel masks are convolved with smoothed image and giving

gradients in i and j directions.

Gx=Di*G(x,y) (4)

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

1045

Gy=Dj*G(x,y) (5)

Where Gx and Gy are horizontal and vertical gradient. G(x,y)

represents the image.

4) Gradient magnitude and direction:

Gradient magnitude: Gradient magnitude provides the

information about the strength of the edge. The horizontal and

vertical gradient values obtained in the gradient unit are the

inputs to the magnitude block, these gradient values are used

for finding the magnitude of the input image. Magnitude of the

gradient is calculated using the formula,

 (6)

Gradient Direction: The direction of gradient is always

perpendicular to the direction of the edge. Finding the edge

direction is trivial once the gradient in the x and y directions are

known.

 (7)

 Gy represents the vertical direction. Gx represents the

horizontal direction

5) NMS (Non Maximum Supperssion)

Non-maximum suppression is an edge thinning technique.

Given estimates of the image gradients, is carried out to

determine if the gradient magnitude assumes a local maximum

in the gradient direction. In some implementations, the

algorithm categorizes the continuous gradient directions into a

small set of discrete directions, and then moves a 3x3 filter over

the output of the previous step (that is, the edge strength and

gradient directions). At every pixel, it suppresses the edge

strength of the centre pixel (by setting its value to 0) if its

magnitude is not greater than the magnitude of the two

neighbours in the gradient direction.

6) Block Classification

The block classification method based on local variance of

pixel using 3x3 window that is centered around the considered

pixel in order to label the size it as of type edge, texture. Each

block is classified based on the total number of edges, texture

and uniform pixel in the block. Here the input image is divided

into block and each block can be classified according to

classification techniques [1]. Each block size of an input image

is 64x64.

Pseudo codes for block classification:

STEP1: Pixel Classification:

STEP 2: Block classification:

Table 1

Block Classification

Block type No. of pixels of pixel type

N uniform N edge

Smooth ≥ 0.3 Total pixel 0

Texture < 0.3 Total pixel 0

Edge/texture < 0.65(Total_ pixel-

N edge)

(>0)&(<0.3 Total_

pixel)

Strong edge ≤0.7 Total_ Pixel ≥0.3 Total_ Pixel

var (x, y): the local(3x3) variance at pixel (x, y)

Tu and Te: two thresholds

Total pixel: the total numbers of pixels in the block

N uniform: the total number of uniform pixels in the block

N edge: the total number of edge pixels in the Block

7) Hysteresis Thresholding

Large intensity gradients are more likely to correspond to

edges than small intensity gradient. Hysteresis thresholding is

used to determine the edge map. Streaking is the breaking up of

an edge contour caused by the operator output fluctuating above

and below the threshold. Equally it will also extend above the

threshold making an edge look like a dashed line. Any pixel in

the image that has a value greater than t1(0.25) is presumed to

be an edge pixel, and is marked as such immediately. Then, any

pixels that are connected to this edge pixel and that have a value

greater than t2 (0.8).

3. Simulation output

Fig. 3. Input image

Fig. 4. Canny edge detection

Fig. 5. Proposed distributed canny edge detection

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

1046

A. Performance evaluation

This validates the observation that sensitivity for noisy image

and clean image, the edge detection performance of the

proposed distributed canny algorithm is better than the original

frame-based canny algorithm.

 (8)

TN=True Negative, FP=False positive

Table 2

Performance Evaluation

Image type Canny Algorithm Distributed Canny

Algorithm

Clean image 90.5890% 99.0706%

Noise image 92.2551% 98.9970%

Fig. 6. Comparison Graph

4. Implementation in FPGA

In order to demonstrate the parallel efficiency of the

proposed distributed canny edge detection algorithm, an FPGA

based hardware implementation of the proposed algorithm is

used in this section [5]. Architecture: Depending on the

available FPGA resources, the image needs to be partitioned

into q sub images and each sub-image is further divided into p

m×m blocks. The proposed architecture, shown in Figure-6

consists of q processing units in the FPGA and some Static

RAMs (SRAM) organized into q memory banks to store the

image data, where q equals to the image site divided by SRAM

size.

Fig. 7. Architecture of proposed distributed canny edge detector

Each processing unit processes a sub-image and reads/writes

data from to the SRAM through ping-pong buffers, which are

implemented with dual port Block RAMs (BRAM) on the

FPGA. Each processing unit (PU) consists of p computing

engines (CE), where each CE detects the edge map of an m×m

block image. Thus, p×q blocks can be processed at the same

time and the specific values of p and q depend on the processing

time of each PE, the data loading time from the SRAM to the

local memory and the interface between FPGA and SRAM,

such as total pins on the FPGA, the data bus width, the address

bus width and the maximum system clock of the SRAM. Each

CE consists of the following 6 units, 1. Smoothening unit using

Gaussian filter. 2. Vertical and horizontal gradient calculation

unit. 3. Magnitude calculation unit. 4. Directional non-

maximum suppression unit. 5. Block classification. 6.

Thresholding with hysteresis unit.

5. Simulation output

Fig. 8. Input image

Fig. 9. Edge detected image

6. Conclusion

A novel distributed Canny edge detection algorithm that

results in a significant speed up without sacrificing the edge

detection performance. As a result, the computational cost of

the proposed algorithm is very low compared to the original

canny edge detection algorithm. This algorithm is mapped to

onto a Xilinx Spartan-3(EDK) FPGA platform.

References

[1] Arbelaez. P, C. Fowlkes, and D. Martin. (2013). The Berkeley

Segmentation Dataset and Benchmark

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

[2] Bao. P, L. Zhang, and X. Wu, “Canny edge detection enhancement by

scale multiplication,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no.

9, pp. 1484– 1490, Sep. 2004.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

1047

[3] Canny. J. F, “A computation approach to edge detection,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 769–798, Nov. 1986.

[4] Gentsos. C, C. Sotiropoulou, S. Nikolaidis, and N. Vassiliadis, “Realtime

canny edge detection parallel implementation for FPGAs,” in Proc. IEEE

ICECS, Dec. 2010, pp. 499–402.

[5] He. W and K. Yuan, “An improved canny edge detector and its realization

on FPGA,” in Proc. IEEE 7th WCICA, Jun. 2008, pp. 6461–6464.

[6] Lourenco. L. H. A, “Efficient implementation of canny edge detection

filter for ITK using CUDA,” in Proc. 13th Symp. Comput. Syst., 2012,

pp. 33–40.

[7] Luo. Y and R. Duraiswami, “Canny edge detection on NVIDIA CUDA,”

in Proc. IEEE CVPRW, Jun. 2008, pp. 1–8.

[8] Narvekar. N. D and L. J. Karam, “A no-reference image blur metric based

on the cumulative probability of blur detection (CPBD),” IEEE Trans.

Image Process., vol. 20, no. 9, pp. 2678–2683, Sep. 2011.

