
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

103

Abstract: In Integrated Development Environments (IDEs),

error recovery is an important feature for parsers, which must

build Abstract Syntax Trees (ASTs) even for syntactically

incorrect programs in order to offer some features. Parsing

Expression Grammars are formalisms that describe a top down

parser with backtracking. In this paper we discuss some of the

error recovery techniques and error reporting method that can be

applied to PEGs.

Keywords: Parsing Expression Grammars, Error Recovery,

Error Reporting, Parsing.

1. Introduction

 Parsing Expression Grammars [16] are formalisms that are

used to describe top down parsers with backtracking. But these

don’t provide a good error recovery mechanisms and thus are

not suitable to be used in Integrated Development

Environments (IDEs). Over the years few error recovery

techniques and error reporting methods have been proposed and

this paper provides a summary of those techniques. Error

reporting techniques used for top down parsers cannot be

applied to parsers which are based on PEGs, so an error

reporting technique for these parsers was introduced. Labeled

error recovery is a conservative extension of PEGs where an

error recovery expression is mapped to each label. These

expressions can use the full expressivity of PEGs to recover

from syntactic errors. To avoid the burden of manually

annotating a grammar with recovery expressions and labels,

automatic error recovery technique was introduced where it

automatically annotates a PEG with labels, and builds their

corresponding recovery expressions was proposed. The rest of

the paper is divided as follows: The following section (2) gives

a brief history about PEGs, section (3) discusses about the error

reporting technique and section (4) discusses about the two

error recovery methods and then a final conclusion is given.

2. Parsing expression grammars

Since several decades we have been using context-free

grammars (CFGs) and regular expressions (REs), in order to

express the syntax of programming languages. The context free

grammars are able to express ambiguous syntax for natural

languages but this ability gradually reduces when we use

context free grammars for machine oriented languages.

Ambiguity in CFGs is difficult to avoid even when we want to,

and it makes general CFG parsing an inherently super-linear-

time problem [1,2]. Alternatively, Parsing Expression

Grammars or PEGs are used. PEGs are stylistically similar to

CFGs with RE-like features added, much like Extended

Backus-Naur Form (EBNF) notation [3], [4]. One major

difference is that instead of unordered choice operator ‘|’

Parsing Expression Grammars use prioritized choice

operators’/’which using first correct match lists alternative

patterns to be tested in order unconditionally. The EBNF rules

‘X → x y| x’ and ‘X→ x |x y’ are both equivalent in a CFG, but

the PEG rules ‘X ← x y/ x’ and ‘X ← x / x y’ are different.

A PEG can be visualized as a formal description of a top-

down parser. Two closely related prior systems upon which this

work is based, were developed primarily, for the purpose of

studying top-down parsers [5, 6]. PEGs have far more syntactic

expressiveness than the LL(k) language class typically

associated with top-down parsers, however, and can express all

deterministic LR(k) languages and many others, including

some non-context-free languages. Despite their considerable

expressive power, all PEGs can be parsed in linear time using a

tabular or memorizing parser [7]. These features determine that

both context free grammar and Parsing expression grammars

define incomparable language classes. Also PEG can be

considered as recursive descent parser with limited

backtracking which means that when an input prefix is being

recognized by an alternative no other of similar choice will be

tried but when input prefix fails to be recognized by an

alternative then parser will back track to the next alternative.

Although PEGs are considered as a class of top down parsers,

the error handling techniques applied to top down parsers

cannot be applied to PEGs as these error handling techniques

assume that the parser reads the input without backtracking.

Also it is more difficult to identify the position and cause of

error in PEGs. Ford [3] has already identified this limitation of

error reporting in PEGs, and, in his parser generators for PEGs,

included a heuristic for better error reporting. This heuristic

simulates the error reporting technique that is implemented in

top-down parsers without backtracking. The idea is to track the

position in the input where the farthest failure occurred, as well

as what the parser was expecting at that point, and report this to

the user in case of errors. Tracking the farthest failure position

Error Reporting and Recovery in Parsing

Expression Grammars

N. K. Theertha Krishnan1, Shraddha Sahinath Rane2, Sinni Anna Alex3

1,2Student, Dept. of Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India
3Assistant Professor, Dept. of Computer Science and Engg., Ramaiah Institute of Technology, Bangalore, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

104

and context gives us PEGs that produce error messages similar

to the automatically produced error messages of other top-down

parsers; they tell the user the position where the error was

encountered, what was found in the input at that position, and

what the parser was expecting to find. However, although this

approach gives us error messages with a fine approximation of

the error location, these messages may not give a good clue

about how to fix the error, and may contain a long list of

expected tokens [11].So labeled PEGs were introduced.

3. Error reporting in PEG

 A PEG G is a tuple (V,T, P, pS) where V is a finite set of

nonterminals, T is a finite set of terminals, P is a total function

from non-terminals to parsing expressions and pS is the initial

parsing expression and the function P as a set of rules of the

form A ← p, where A ∈ V and p is a parsing

expression[9].When a parsing expression is applied to an input

string it can either consumes a prefix of the input string and

return the remaining suffix or it can fail.

Prog ← PUBLIC CLASS NAME LCUR PUBLIC STATIC

VOID MAIN LPAR STRING LBRA RBRA NAME RPAR

BlockStmt RCUR

BlockStmt ← LCUR (Stmt)∗ RCUR

Stmt ← IfStmt / WhileStmt / PrintStmt / DecStmt /

AssignStmt/ BlockStmt

IfStmt ← IF LPAR Exp RPAR Stmt (ELSE Stmt /ε)

WhileStmt ← WHILE LPAR Exp RPAR Stmt

DecStmt ← INT NAME (ASSIGN Exp / ε) SEMI

AssignStmt ← NAME ASSIGN Exp SEMI

PrintStmt ← PRINTLN LPAR Exp RPAR SEMI

Exp ← RelExp (EQ RelExp)∗

RelExp ← AddExp (LT AddExp)∗

AddExp ← MulExp ((PLUS / MINUS) MulExp)∗

MulExp ← AtomExp ((TIMES / DIV) AtomExp)∗

AtomExp ←LPAR Exp RPAR / NUMBER / NAME

Fig. 1. A PEG for a tiny subset of Java [9]

 Figure 1 [9] shows a PEG for a tiny subset of Java, where

lexical rules (shown in uppercase) have been elided.

1 public class Example {

2 public static void main(String[] args) {

3 int a = 10;

4 int b= 5;

5 while(0 < a) {

6 b = b * a;

7 a = a+2

8 };

9 System.out.println(b);

10 }

11 }

Fig. 2. A Java program with a syntax error

Fig. 2 depicts a java program with syntax errors. First error

is the missing semicolon at the end of line 7 and the second error

an extra semicolon at the end of line 8. The top down predictive

parser will detect the first error when it reads the RCUR({)

token at line 8 and provides a report to the user for missing

semicolon. But PEG when trying to parse the SEMI rule which

should match a ‘; ‘when the input has’ } ‘ will fail and does not

report the error to the user. During the parsing of PEGs if any

failure occurs, it means it has to backtrack and try another

alternative in an orderly manner or terminate the repetition.

Failure during parsing of a PEG usually just means that the PEG

should backtrack and try a different alternative in an ordered

choice, or end a repetition. For example, while trying to match

the BlockStmt rule inside Prog against the ‘a’ at the beginning

of line 3, three failures will occur. First against IF in the IfStmt

rule second for WHILE in the WhileStmt rule and lastly against

PRINTLN in the PrintStmt rule.

After all the failing and backtracking, the PEG in this

example, after consuming only the first two statements of the

body of main will fail in the RCUR rule of the initial BlockStmt.

Failure to match the SEMI in AssignStmt against the closing

‘{‘ in the input will cause PEG to backtrack and try the ordered

next alternative in Stmt which will also fail. The repetition

inside the BlockStmt that is parsing the body of the while

statement will end. The whole BlockStmt trying to match

RCUR against the ‘a’ in the beginning of line 7 will fail, thereby

causing the whole WhileStmt to fail and makes PEG to

backtrack at the beginning of the line5. The process now repeats

with the BlockStmt that is parsing the body of main.

At the end the PEG reports that it failed complaining that

while in the input does not match the RCUR that it expects and

hence it cannot proceed to the beginning of line 5. This does not

help the programmer in fixing and finding the actual error. To

deal with this problem, Ford [8] suggested that the furthest

position in the input where a failure has occurred should be used

for reporting an error. A similar approach for top-down parsers

with backtracking was also suggested by Grune and Jacobs

[10]. Using the farthest failure approach in our above example

it will report an error at the beginning of line 8. The same would

have been done by a predictive parser.

To track expected tokens in the error position we can even

use a map of lexical rules to token names to report for a

expecting semicolon. If the programmer fixes this error , the

parser fails repeatedly at the extra semicolon at line 8, while it

is trying to match the first term of all the alternatives of the

Stmt which will end the repetition inside BlockStmt, thereby

another failure will happen when trying to match a RCUR token

against the semicolon and finally aborting the parser. To report

an error at the exact position of the semicolon, and a list of

expected tokens that includes IF, WHILE, NAME, LCUR,

PRINTLN, and RCUR the parser can use the furthest failure

information.

Major advantage of using the farthest failure is that the error

messages can be generated automatically and the grammar

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

105

writer does not need to do anything to get a parser with better

error reporting.

However, although this approach gives us error messages

with a fine approximation of the error location, these messages

may not give a good clue about how to o fix the error, and may

contain a long list of expected tokens [11]. Using PEG with

labeled failures, which is a conservative extension of the PEG

formalism we can get more precise error messages. A labeled

PEG G is a tuple (V,T, P, L, fail,pS) where L is a finite set of

labels, fail ∉ L is a failure label, and the expressions in P have

been extended with the throw operator, represented by ⇑[9].

The parsing expression ⇑l where l ∈ L will generate a failure

with label l. A label l ≠ fail thrown by ⇑ indicates an actual

error during parsing as it cannot be caught by an ordered choice

while fail indicates that the parser should backtrack as it is

caught by a choice. The lookahead operator! captures any label

and turns it into a success. And meanwhile turning a success

into a fail label.

Prog ← PUBLIC CLASS NAME LCUR PUBLIC

STATIC VOID MAIN LPAR STRING LBRA RBRA NAME

RPAR BlockStmt RCUR

BlockStmt ← LCUR (Stmt)∗ [RCUR]rcblk

Stmt ← IfStmt / WhileStmt / PrintStmt / DecStmt / AssignStmt

/ BlockStmt

IfStmt ← IF [LPAR]lpif [Exp]condi [RPAR]rpif [Stmt]then(ELSE

[Stmt]else / ε)

WhileStmt ← WHILE [LPAR]lpw [Exp]condw [RPAR]rpw

[Stmt]body

DecStmt ← INT [NAME]ndec (ASSIGN [Exp]edec / ε)

[SEMI]semid

AssignStmt ← NAME [ASSIGN]assign [Exp]rval [SEMI]semia

PrintStmt ← PRINT [LPAR]lpp [Exp]eprint [RPAR]rpp

[SEMI]semip

Exp ← RelExp (EQ [RelExp]relexp)∗

RelExp ← AddExp (LT [AddExp]addexp)∗

AddExp ← MulExp ((PLUS / MINUS) [MulExp]mulexp)∗

MulExp ← AtomExp ((TIMES / DIV) [AtomExp]atomexp)∗

AtomExp ← LPAR [Exp]parexp [RPAR]rpe /NUMBER /

NAME
Fig. 3. A PEG with labels for a small subset of Java [9]

Different labels can be mapped to different error messages

and then annotate our PEG with these labels. Fig. 3 show

annotation of the PEG of Fig. 1 [except for the Prog rule]. The

expression [p]l is syntactic sugar for (p / ⇑l) [9]. The strategy

used is as follows: we annotate every symbol that is either

terminal or non-terminal that should not fail on the right side of

the production. Making the PEG to backtrack on the failure of

that symbol would be futile as the whole parse would either

consume the whole input or either fail. When we use this

labeled PEG in our program the first occurring syntax error will

fail with a semia label. This can be mapped to a “missing

semicolon in assignment" message. When the programmer

fixes this error, the second occurring error will fail with a rcblk

label. This can be mapped to a “missing end of block" message.

When we compare the farthest failure approach with the labeled

failure approach, one disadvantage of the latter is the burden of

annotation. If we combine both approaches we can still track

even in case of furthest failure the position of the failure and the

expected set of lexical rules.

4. Error recovery in PEGs

 In this section we discuss two of the error recovery

techniques. The first error recovery technique is based on the

labeled failures which is based on the error reporting method

discussed in the previous section and the second error recovery

technique is the automatic error recovery technique.

A. Error recovery through labeled failures

This error recovery uses the labeled error reporting method

discussed in section 3 as its first step. Let us consider the

example from Fig. 2, which has syntax errors: a missing ‘)’ at

line 5, and a missing semicolon at the end of line 7. For this, a

parser based on the fig. 3 labeled PEG would give us a message

as:

factorial.java:5: syntax error, missing ')' in while

As the parser did not recover from the first error, the second

error will not be reported, since rpw has no recovery expression

mapped with it. The recovery expression pr of a label l matches

the input from the point where l was thrown. Regular parsing is

resumed if pr is successful and it seems as if the label had not

been thrown. Usually pr should skip part of the input till its is

fine to continue parsing. In rule WhileStmt, we see that after the

‘)’ we expect to match a Stmt, so the recovery expression of

label rpw could skip the input until it encounters the beginning

of a statement. In order to define a safe input position to resume

parsing, we will use the classical FIRST and FOLLOW sets

[12]-[14]. With the help of these sets, we can define the

following recovery expression for rpw, where ‘.’ is a parsing

expression that matches any character: [15] (!FIRST(Stmt) .)∗

[15]

When label rpw is thrown now, its recovery expression

matches the input till it finds the start of a statement, and then

regular parsing continues. The parser will now also throw label

semia and report the second error, the missing semicolon at the

end of line 7. The above example shows how the error recovery

using labeled failures works. The disadvantage of this method

is that it is quite burdensome to manually annotate the grammar

with labels. Even the small example discussed here has 26

labels with recovery expressions.

B. Automatic error recovery

To avoid the burden caused by the above discussed error

recovery method, the following algorithm was proposed to

automatically annotate the grammars with labels and recovery

expressions [15].

Algorithm 1: Automatically Inserting Labels and Recovery

Expressions in a PEG [15].

1: function annotate(G)

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

106

2: G′ ←G

3: for A ∈ G do

4: G′(A)←labexp(G(A), false, FOLLOW(A))

5: return G′

6:

7: function labexp(p, seq, f lw)

8: if p = a and seq then

9: return addlab(p, f lw)

10: else if p = A and ε ∉ FIRST (A) and seq then

11: return addlab(p, f lw)

12: else if p = p1 p2 then

13: px ←labexp(p1, seq, calck(p2, f lw))

14: py ←labexp(p2, seq or ε∉ FIRST (p1), flw)

15: return px py

16: else if p = p1 / p2 then

17: px ←p1

18: if FIRST (p1) ∩ calck(p2, f lw) = ∅ then

19: px ←labexp(p1, false, flw)

20: py ←labexp(p2, false, f lw)

21: if seq and ε ∉ FIRST (p1 / p2) then

22: return addlab(px / py, flw)

23: else

24: return px / py

25: else if p = p1 ∗ and FIRST (p1) ∩ f lw = ∅ then

26: return labexp(p1, false, f lw)∗

27: else

28: return p

29:

30: function calck(p, f lw)

31: if ε ∈ FIRST (p) then

32: return (FIRST (p) − {ε }) ∪ f lw

33: else

34: return FIRST (p)

35:

36: function addlab(p, f lw)

37: l ←newLabel()

38: R′(l)←(!f lw .)∗

39: return [p]l

A grammar writer can either add or remove labels and their

respective recovery expressions after applying the Algorithm 1.

5. Conclusion

In this paper we have discussed the error recovery and error

reporting methods that were proposed by various authors, used

for parsers based on Parsing Expression Grammars. The error

reporting method is based on using PEGs with labelled failures.

This method reports the error messages better and in a precise

way. The two error recovery methods used are also based on

labelled PEGs. Every label is associated with a recovery

expression which is used for recovery and by using the

Algorithm 1, labels and recovery expressions can automatically

be annotated with a grammar.

References

[1] Lillian Lee. Fast context-free grammar parsing requires fast boolean

matrix multiplication. Journal of the ACM, 49(1):1– 15, 2002.

[2] Amir Shpilka. Lower bounds for matrix product. In IEEE Symposium on

Foundations of Computer Science, pages 358– 367, 2001.

[3] Niklaus Wirth. What can we do about the unnecessary diversity of

notation for syntactic descriptions. Communications of the ACM,

20(11):822–823, November 1977.

[4] International Standards Organization. Syntactic metalanguage —

Extended BNF, 1996. ISO/IEC 14977.

[5] Alexander Birman. The TMG Recognition Schema. PhD thesis, Princeton

University, February 1970.

[6] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms with

backtrack. Information and Control, 23(1):1–34, August 1973.

[7] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time. In

Proceedings of the 2002 International Conference on Functional

Programming, Oct 2002.

[8] B. Ford, Packrat parsing: a practical linear-time algorithm with

backtracking, Master’s thesis, Massachusetts Institute of Technology,

September 2002.

[9] Sérgio Medeiros, Fabio Mascarenhas: Syntax error recovery in parsing

expression grammars. In Proceedings of the 33rd Annual ACM

Symposium on Applied Computing.

[10] D. Grune, C.J. Jacobs, Parsing techniques: A Practical guide, 2nd,

Springer, Berlin, Heidelberg, Germany, 2010.

[11] André Murbach Maidl, Fabio Mascarenhas, Sérgio Medeiros, and

Roberto Ierusalimschy. 2016. Error Reporting in Parsing Expression

Grammars. Sci. Comput. Program. 132, P1 (Dec. 2016), 129–140.

[12] Fabio Mascarenhas, Sérgio Medeiros, and Roberto Ierusalimschy. 2014.

On the relation between context-free grammars and parsing expression

grammars. Science of Computer Programming 89 (2014), 235 – 250.

[13] Roman R. Redziejowski. 2009. Applying Classical Concepts to Parsing

Expression Grammar. Fundamenta Informaticae 93 (January 2009), 325–

336. Issue 1-3.

[14] Roman R. Redziejowski. 2014. More About Converting BNF to PEG.

Fundamenta Informaticae 133 (2014), 257–270. Issue 2-3.

[15] Sérgio Queiroz de Medeiros and Fabio Mascarenhas. 2018. Towards

Automatic Error Recovery in Parsing Expression Grammars. In

Proceedings of Brazilian Symposium on Programming Languages

(SBLP’18).

[16] B. Ford, “Parsing expression grammars: A recognition-based syntactic

foundation,” in Proceedings of the 31st ACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages.POPL‘04, ACM,

NewYork, NY, USA, 2004, pp.111-122.

