
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

99

Abstract: The amount of computational power to handle

parallelism in programming has increased since the increase in

popularity of utilizing GPUs. GPUs are better utilized for

computation that takes a lot of time on CPUs. GPUs do this by

parallelizing instructions. Python libraries such as numpy have

better computation power than regular libraries because of

parallelization procedures. Despite having so many advantages,

GPUs have various shortcomings. This paper puts forward a study

of approaches that can be used to better utilize GPUs to their full

extent. We have put forward various techniques like cache-

bypassing. We also put forward few compiler frameworks that

would compile code so that the program runs better on GPUs.

Keywords: compiler, cache bypassing, graphics processing unit

(GPU), single program multiple data(spmd), single instruction

multiple data (simd), GNU compiler collections (gcc)

1. Introduction

GPUs are better suited for handling programs that require

simultaneous computations, as they have the ability to process

multiple instructions in parallel more effectively compared to

CPUs. But for GPUs to be effective, they have to be optimized.

Otherwise we cannot extract the full processing potential of the

GPU. In order to overcome this problem, several researchers

have put forward different methods to solve the optimization

problem, including methods such as redundant multithreading

(RMT), hardware saturation, introducing high level languages

for GPUs and so on. Implementing reliability in GPUs has also

been researched. The researchers have analyzed their proposed

methods practically and have obtained results and evidence to

show that the methods used improve GPU computation

efficiency. But GPUs are not suitable for all programs and

cannot be expected to deliver drastic improvements in all

programs. Only programs which utilize multiple threads while

processing will benefit from the parallelism support GPUs have

to offer. Thus the following survey paper focuses on surveying

different methods to optimize GPUs and enforce reliability.

2. Literature survey

Munesh Singh Chauhan in his research work describes the

growing popularity of GPU computing and the need for a

universal compiler base to support the growing number of

present day languages. The LLVM (Low Level Virtual

Machine) compiler is the most popular compiler base for GPU

computing. The main benefit of LLVM compilers is that it

features parallel execution such as multithreading. The most

popular architecture for GPU computing, CUDA is based on the

LLVM infrastructure. The working of CUDA compiling is

described in the paper [1].

Gautam Chakrabarti et al. in their work talk about how GPUs

have evolved to handle tasks which require a large amount of

parallel threads just to make any progress. In the paper they talk

about their experiences in developing a compiler for a language

called as CUDA C. Optimizations for CUDA architecture are

also presented. Optimizations are implemented and analysis is

done to see the scope of improvement. They conclude by stating

that parallelism is best achieved through GPU computing. [2]

Christopher Dubach et al. in their research work talk about

how using low-level languages for GPU programming such as

OpenCL and CUDA require explicitly managing numerous

low-level details involving synchronization and

communication. They found that this extra burden makes GPU

programming more prone to errors and difficult to do. Using a

high-level programming language can avert these

inconveniences while concurrently exploiting the GPU’s

computational power. A Java compatible language called Lime

is presented. Analysis has been done to compare Lime to low-

level languages such as those listed above. Optimizations are

introduced and tested. [3]

Jack Wadden et al. talk about how to implement reliability

for general purpose processing on GPUs. Implementing

reliability through hardware has several drawbacks, including

expensiveness, requiring dedicated on-chip resources, and lack

of portability across different architectures. A software solution

called RMT (redundant multithreading) is discussed in this

paper. Analysis on several parameters such as overhead and

power is carried out [4].

Alberto Magni et. al. discuss about how to realize the full

performance potential of GPUs for general purpose

computation. This often requires extensive compiler tuning,

which is an expensive procedure. To avoid this, hardware

saturation is introduced, where an application is executed with

a large number of threads such that all the hardware resources

are fully utilized. This method is applied to quickly infer the full

performance potential. Further analysis is done to test the

effectiveness of the proposed method. Thus they conclude by

Compiler Design Techniques to

Better Utilize GPUs

Parth Venkatesh1, Nikith Hosangadi2, P. Samith3, A. Parkavi4

1,2,3Student, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India
4Professor, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

100

showing experimental evidence of their research, and

strengthening the legitimacy of this method [5].

Reliability for general purpose computation on GPUs has

become low in of construction supercomputers nowadays. This

is because of introduction of unnecessary multi threads when

CPU code is parallelized for running it on GPUs. this paper

proposes usage of Wang et. al. and apply it to OpenCL’s kernel

compiler. This compiler converts the code into IR code. It is

then later optimized into LLVM.’s IR. code. Then a compiler

on the backend further compiles and optimizes it for running it

on gpus. This three-phase architecture of [6] is less prone to

introduce unnecessary multi threads into the gpu compiled

version of our code.

[7] introduces us to a new framework for python code. This

code has now been implemented into a python library. The

library contains its own version of various other libraries such

as numpy. It mimics the formulations but is much faster. We

are talking about theano. Theano, when introduced, was a

powerful python code compiler. It takes in code written in a

particular format. There have to be four segments of code. The

first segment has declaration of symbolic variables. This is to

be followed by building a symbolic expression graph. Then

comes the section where theano functions are written. The last

section is where these functions are used and called. This format

can be seen by most machine learning and deep learning

programs.

This format of code is efficiently compiled into parallel

instructions from GPUs. However, programs in all languages

cannot be written in this format. Therefore [8] introduces us

with kernelgen. KernelGen is another compiler platform that

would help to accelerate numerical model that are to run on

GPUs. The optimized code runs on an entirely different address

space. The address space is supposed to contain all the lain

instructions. Functions are kept in secondary memory. The start

addresses of functions are stored in registers. When a function

is called. GPU fetches address of the function and stores in

primary scratchpad memory. The address is then stored in

registers. Subsequent calls to the functions are faster.

In [9], the authors propose another compiler called ispc. Ispc

compiler stands for intel SPMD program compiler. So basically

this compiler has its own approach of parallelizing plain

instructions. The parallelization follows a pipelined technique.

The instructions are divided into certain phases such as fetch,

decode, etc. Then instead of running one instruction per core,

one phase is done per core. This one core always does fetch of

instructions and other core always does decoding part. This

makes one core just for executing the instructions.

[10] deals with a pretty common problem that every piece of

code running on GPUs faces. This paper talks about efficient

usage of the cache and on-board scratch pad memory. There

must be a balance in the amount of instructions that search

cache and instructions that search data in on-board scratchpad

memory. It provides us with a way we can bypass the cache

fetches.

In [11] they explain how Graphics processing units (GPUs)

successfully accelerate regularly structured and data intensive

applications. GPU’s are used to increase the speed of

computations which exhibit basic patterns of parallelism.

Dynamic parallelism (DP) which was introduced by Nvidia

allows the launch of kernels directly from GPU threads which

further enables nested parallelism at runtime. Poor performance

can be the direct result of the poor or improper use of DP.

However, we can improve performance by the use of three

workload consolidation schemes and by implementing the DP-

based codes in a /directive-based compiler. The improvements

include reduction of runtime overhead, improvement in GPU

utilization. DP, however, has its own set of limitations which

include kernel launch overhead, kernel buffering overhead and

synchronization overhead.

Although GPU’s enable a drastic improvement in

performance in data intensive parallel applications, the

execution of these applications on the GPU’s requires certain

low level operations such as handling memory allocations,

optimizing kernels by making use of the right memory types on

the GPU and using low level programming models to write

GPU kernels. This in turn is a herculean task for a large number

of programmers as they use high level programming languages

and only expert programmers are able to successfully take full

advantage of the computational powers of GPU’s. While GPU’s

do have benefits, the use of high-level programming languages

provides productivity benefits. As per [12], one such language

is Java, therefore a compiler which can generate GPU code

which is optimized from subsequent pure Java programs is

essential. The compiler can make use of the parallel streams

API’s which are offered in Java 8 to write lambda expressions,

the compiler would thus convert Java 8 code into GPU code and

generate runtime calls automatically which would further

handle the above-mentioned low-level operations. The benefits

of the compiler include the increase of the memory bandwidth,

increase of memory efficiency and lastly eliminate redundant

data transfers between the host machine and the GPU.

The recent developments in GPU design and the

programmability of GPU’s allow for general-purpose

computation on a GPU(GPGPU). Although multiple libraries,

tools and languages are proposed to enable GPGPU

programming the irregular programming model of the GPU is

a hindrance to well written GPGPU programs. To overcome

this, authors in [13] propose that code fragments which are

meant to be executed on the GPU are labelled using compiler

directives, further these labelled code fragments are converted

into C code(ISO-complaint) which in turn contains the

necessary OpenGl and Cg application program interfaces

(API’S). The code can then be compiled into executable code

using a native C compiler. By following the above-mentioned

steps, a suitable compiler could be generated which would

produce significant improvements in performance for data

intensive parallel programs

Graph algorithms in themselves are very challenging because

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

101

they tend to be dense array programs which have affine loop

nests. High-performance implementations of these algorithms

on the GPU are even more challenging. However, by making

use of throughput optimizations and polyhedral compilation

techniques we can generate high quality Compute Unified

Device Architecture (CUDA) code. The throughput

optimizations cannot be implemented by hand due to their large

implementation space. The throughput optimizations include

kernel launch throughput, fine grained synchronization

throughput and the graph traversal throughput. These

throughputs could cause bottlenecks in GPU performance

therefore limiting GPU’s. Furthermore, by keeping track of

certain focal points which are the nodes in the program’s control

flow graph which are sure to be visited by each and every thread

we can perform more optimizations. This has been put forth in

[14].

High performance code for platforms such as multicore

machines, GPU’s and distributed machines could unlock the

true potential of these platforms. As per authors in [15], the

high-performance code can be generated using polyhedral

frameworks which use a scheduling language with special

commands to deal with complexities arising due to these

systems. The scheduling language allows us precise control of

optimizations. The applications are limitless but can be used for

fields such as deep learning and image processing. The

polyhedral framework thoroughly separates the algorithms

from the data layouts, the loop transformations and the

communications. By doing so we can easily target multiple

hardware architectures for the same algorithm. We observe a

substantial improvement in performance and the framework

outperforms any existing libraries and compilers on different

platforms and hardware architectures such as GPUs multicore

CPUs and other distributed machines.

3. Discussion

In our thorough literature survey, we observed that the

common goal for most of the papers is optimizing GPU

compilers to achieve maximum throughput and efficiency.

Several related but different approaches were taken by different

researchers. The majority of the papers focused on parallelism,

CUDA computing, and using high level language compilers for

GPUs. Optimizing GPU compilers is attempted through several

methods, such as introducing a high level language GPU

compiler, hardware saturation, and so on. The most effective

method according to us is introducing a specially made high

level language for GPUs. This conclusion was reached after

considering the fact that using low level languages to run

programs on GPUs requires specifying several low level

functions and parameters, whereas this can be avoided in high

level language compilers. Maintaining reliability in GPU

compilers is also of concern, and thus research has been done

in the field of GPU reliability. Redundant multithreading is a

reliability technique where the program is run redundantly on

many threads so that the failure of one thread doesn’t end the

program, it can just be continued on the other threads. Handling

tasks which require a large amount of resources, like graph

algorithms, and other tasks which require parallelism, are best

handled using GPUs. CUDA architecture allows breakthroughs

in several trending fields such as machine learning, deep

learning and so on.

4. Conclusion

We conclude our survey by acknowledging the importance

of the GPU optimization concept and making GPU

programming reliable. Several methods were proposed for

optimization and reliability, each with their own advantages and

disadvantages. Optimization techniques such as hardware

saturation, designing a high level language for GPUs, and

different compilers to better parallelize instructions were

researched upon. Reliability techniques such as redundant

multithreading and using IR compiler code to prevent creating

unnecessary threads from wasting resources were also

examined. This survey paper was an attempt to aggregate

several optimization and reliability techniques which can be

applied to GPU computing to improve its efficiency. We aim to

research more into these techniques and attempt to develop our

own techniques to solve the same problem of optimization and

reliability in GPU computing.

References

[1] Munesh Singh Chauhan. "Analysis of LLVM Parallel Compiler on GPU

Running on CUDA Framework" The 1st National Symposium on

Frontiers in Information Technology: Business Intelligence and

Analytics, At Rustaq, Oman, 2015.

[2] Gautam Chakrabarti, Vinod Grover, Bastiaan Aarts, Xiangyun Kong,

Manjunath Kudlur, Yuan Lin, Jaydeep Marathe, Mike Murphy, Jian-

Zhong Wang. "CUDA: Compiling and optimizing for a GPU platform."

International Conference on Computational Science, ICCS 2012.

[3] Christophe Dubach, Perry Cheng, Rodric Rabbah,David F. Bacon,

Stephen J. Fink "Compiling a High-Level Language for GPUs (via

Language Support for Architectures and Compilers)" University of

Edinburgh.

[4] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan and K. Skadron,

"Real-world design and evaluation of compiler-managed GPU redundant

multithreading," 2014 ACM/IEEE 41st International Symposium on

Computer Architecture (ISCA), Minneapolis, MN, 2014, pp. 73-84.

[5] Alberto Magni, Christophe Dubach, Michael O’Boyle. "Exploiting GPU

Hardware Saturation for Fast Compiler Optimization." Proceeding

[6] GPGPU-7 Proceedings of Workshop on General Purpose Processing

Using GPUs, Pages 99, Salt Lake City, UT, USA, March 01 - 01, 2014.

[7] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,

Razvan Pascanu, Guillaume Desjardins,Joseph Turian, David Warde-

Farley, Yoshua Bengio. "Theano: A CPU and GPU Math Compiler in

Python"., proc. Of the 9th python in science conf. (SCIPY 2010).

[8] D. Mikushin, N. Likhogrud, E. Z. Zhang and C. Bergström, "KernelGen

-- The Design and Implementation of a Next Generation Compiler

Platform for Accelerating Numerical Models on GPUs," 2014 IEEE

International Parallel & Distributed Processing Symposium Workshops,

Phoenix, AZ, 2014, pp. 1011-1020.

[9] M. Pharr and W. R. Mark, "ispc: A SPMD compiler for high-performance

CPU programming," 2012 Innovative Parallel Computing (InPar), San

Jose, CA, 2012, pp. 1-13.

[10] X. Xie, Y. Liang, G. Sun and D. Chen, "An efficient compiler framework

for cache bypassing on GPUs," 2013 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), San Jose, CA, 2013,

pp. 516-523.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

102

[11] Hancheng Wu, and Da Li, "Compiler-Assisted Workload Consolidation

for Efficient Dynamic Parallelism on GPU," IEEE International Parallel

and Distributed Processing Symposium (IPDPS), 2016.

[12] K. Ishizaki, A. Hayashi, G. Koblents and V. Sarkar, "Compiling and

Optimizing Java 8 Programs for GPU Execution," 2015 International

Conference on Parallel Architecture and Compilation (PACT), San

Francisco, CA, 2015, pp. 419-431.

[13] Yu-Te Lin, Peng-Sheng Chen. "Compiler support for general-purpose

computation on GPUs" In The Journal of Supercomputing, vol. 50, no. 1,

October 2009.

[14] Sreepathi Pai, and Keshav Pingali. "A Compiler for Throughput

Optimization of Graph Algorithms on GPUs", Proceedings of the 2016

ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications.

[15] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del

Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib

Kamil, Saman Amarasinghe. "Tiramisu: a polyhedral compiler for

expressing fast and portable code". CGO 2019 Proceedings of the 2019

IEEE/ACM International Symposium on Code Generation and

Optimization.

