
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

96

Abstract: This paper presents an idea that will help in the design

of a compiler for domain specific approaches that will help in the

conversion of the image processing codes that have been written in

a dynamic language into a highly optimized and specific code. We

will be borrowing some of the concepts from the halide language

and the sa-c language to help in the construction of a highly

efficient and optimized compiler to help in the image processing

approaches. One of the approaches that we will be taking is that of

automatic scheduling of the pipelines involved in the image

processing approach and combining with the concepts from

building an optimized compiler for dynamic languages. By using

the concepts and understanding the image processing pipelines

and approaches we will be able to develop a new and improved

compiler based on the techniques known and by using some

predicting techniques.

Keywords: Compiler, Image Processing, Image processing

pipelines, Scheduler, FPGA, DDL, Halide

1. Introduction

Compiler form a very important part of every major system

today and cannot function without one. Compilers will help in

the conversion of the high level languages into assembly code

used by the machines. We use compilers all the time and

without one the system will not be able to process our language

into language that the system will understand. There are

different layers to the compilers lexical analyzer, syntactic,

semantic, code generator and code optimizer. We will try to

exploit the code optimizer to help us achieve our goals. We will

now try to shed some light on the image processing approaches

that is very widely used and important. Image processing by

digital means is the ability to process images using some form

of computerized approaches. The following steps can be used:

1. Importing images by using some tools

2. Analysis and modification of the images

3. Output of the modified image.

Now we are going to combine the concepts of image

processing and compiler design and build a better and more

powerful specialized compiler for image processing. We will be

shedding some light on the new and improved languages and

the specialized compilers based on the new language that can

help speed up the image processing speed and improve

accuracy by a large scale. We will be going in depth about the

various languages that were designed for better improving the

image processing architecture and we will be talking about the

optimization of the compilers for these languages. The

optimized compilers will help to speed up the process. We will

be talking about the various languages like the SA-C and

HALIDE and also we will be talking about FPGA and External

and Shallow/Deep Embedding’s in the image processing setup.

First we will be talking about image processing pipelines and

the efficient scheduling of it for the improved processing and

about a new and improved halide compiler that can help

optimize the compiler design. We will also be talking about

External and Shallow/Deep Embedding’s in the image

processing where we are using domain specific languages and

we will be comparing them. The engineering cost of shallow

embedding is cheap, and that of deep embedding’s is expensive.

We here in this paper are trying to build a compiler which is

optimized so that it can work more efficiently. We will be

building a system that will run a scheduling system along with

an optimized compiler approach.

2. Literature survey

The first paper talks about the introduction of a new and

improved compiler for domain specific languages. The

specialized compiler written in python and is more efficient

then the modern compilers the are present in the market now to

do image processing. The compiler exploits the fundamental

approaches and ideas involved in the image processing

approaches and help in building the compiler based on that.[1].

The second paper talks compiling of image processing in

reconfigurable hardware and is developed in the sa c language

for image processing and talks about the language and the

optimization approaches to the compiler design. It talks about

the data flow diagram and the abstract approaches to the design.

[2]. The third paper talks about optimizing and compiling of the

image processing approaches in FPGA. It talks about FPGA

and the methods in which the compiler can exploit the usage of

this for image processing. It also talks about the sac languages

and the benefits of the language and the optimized compiler for

that language [3]. The fourth paper talks about the automatic

scheduling of the image processing pipelines in the halide

languages and tells us that by using this automatic approaches

the system can perform better than when an expert writes the

codes. It talks about the various approaches that the system will

An Optimized Scheduler and Compiler for

Image Processing

N. Shashank1, M. Kunal2, U. Puneet3, A. Parkavi4

1,2,3Student, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India
4Professor, Department of CSE, M. S. Ramaiah Institute of Technology, Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

97

take to help in the optimization of the compiler so as to get a

faster execution [4]. The fifth paper talks about the different

languages and the embedding whether it is a shallow

embedding or if it is a deep embedding and it gives a

comparison of the two [5].

3. Methodology

We will be talking about the method in which we will be able

to develop the most optimized and efficient compiler by

combing the concepts of automatic scheduling approaches.

However efficient the codes may be the scheduling of the

pipelines in the image processing approaches is very necessary

then only will the compiler be performing up to the maximum

and deliver the desired results. This compiler will be exploiting

the three conditions

1. A lot of the data structures that are involved in the image

processing are arrays of small sizes so if we have the size

information about the arrays and the different data

structures the we will be able to help in a lot of the

optimization processes, such as stack allocation and

unfolding.

2. A lot of the processes in the image processing approaches

can be parallelized and a lot of time have no data

dependency to each other therefore can be used for multiple

thread approaches which will help in the optimization and

will reduce the execution time by a major factor. Therefore,

all processes that do not have any form of data dependency

can be run at the same time.

3. Whenever humans execute the coding in image processing

a few errors are not really recognized by humans due to

human nature and the capacity of our eyes, like the error in

color of an image of about 0.001% is not noticed. So we do

not really require such high precision as our eyes will not

be able to make out the difference so we can make a

tradeoff between precision and efficiency in speed.

For all these compiler designs we will be having two parts to

it the optimization phase in the code such as removing or

unrolling the loops or the design using languages which will

allow single assignment so that there is no confusion for the

compiler and can run smoothly and also the another main

component of the imag3 processing the scheduling of the

different pipelines of the approach. By combing the

methodology of having a highly optimized compiler to optimize

the code as well as have a proper scheduling methodology to

help support it will greatly increase the efficiency of the

compiler for image processing. In our system we will be having

the three phases of the image processing compilers they are the

1. Analysis phase that will analyze the requirements

2. Program transformations

3. Automatic scheduling

A. Analysis phase

We will be talking about the analysis phase and the methods

in which we can help in the optimization of the compiler, we

will be doing three main things in the analysis part they are First

we will analyze the type of input and the relative sizes of the

different data types involved in it. By getting to know about the

different type of data we will be able to combine them and

compile portions of the program to an efficient code. By also

knowing the size of the different data types we should be able

allocate the space required more efficiently.

Second step is the analysis to find out the parallelism. We

should be able to determine the extent of dependence between

the different parts of the code so as to efficiently parallelize the

code to run on different threads.

Third step is the allocation of certain arrays such as the

temporary and output buffers. We also develop a method in

which we can reduce the precision and increase efficiency of

the code as the human eye will not be able to differentiate

between the highly precise images. In the next phase we will be

doing some form of transformations such as

Rewriting the api calls so that it will be calling a more

efficient and customized functions that will work better. The

system also does some loop changes such as unrolling the loops

so that it is easier for the compiler to access the information. It

also can use a single assignment language or the prevention of

the use of the control stack that will help in the smooth running

of the compilers. The compiler does not need to store much

information if it is in such a way that will help in the optimizing

of the compilers.

More optimization is also achieved by the use of some ai

principles. There are certain parameters on which optimization

is done and a good guess of the initial value to these parameters

is chosen called the heuristic, then by using hill climb racing

approaches the system will be able to get to a better estimate

and optimize the code from there.

All of these will help in the optimizing of the compiler and

the smooth and efficient running of the code, to help improve

the efficiency of the system we will be trying to also involve the

scheduling approaches to the image processing pipelines to help

in the optimization of the code.it is the job of the automatic

scheduler to help in choosing the different tasks to be completed

in the and to perform the most critical tasks. All the scheduling

should be done on the basis of producer consumer dependencies

and should strictly follow the rules of data dependency. With

the help of the automatic scheduler the memory usage is also

reduced as compared to one where there is no proper

scheduling. Consider the blur function in image processing in

which without the scheduling the intermediate buffer is big and

the memory has to store in the main memory and the access

time will be large, so by doing some proper scheduling a small

portion of the image can be processed at a time and therefore

the output and data can be stored in the cache therefore the

access time will increase. In this way the automatic scheduling

will help in the reduction of memory as well as in the increase

of execution time. The method by which the automatic

scheduling will take place is by estimating the cost, for all the

given inputs and outputs. Deciding which stages to interleave

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

98

for better data locality. Picking the data in such a way so as to

improve locality, and mainly to improve stability to execute the

code in a parallel fashion.

B. Future works

There is a possibility to improve the working of the proposed

compiler in this paper. By the better understanding of the image

processing approaches and by using better pipelining and the

use of artificial intelligence approaches to the image processing

approaches the task of compiling the code can be improved.

4. Discussions and conclusion

We have in this paper we have tried to create a new and

improved compiler based on the various image processing

approaches that are available. We were able to combine the

automatic scheduling concepts and the code optimization

techniques that are designed for image processing. Image

processing is a very large and in demand field in the present

age, with companies spending a considerable amount of

resources into image processing approaches. With the help of

this new and improved compiler designed the code for the

image processing will be greatly reduced and it will become

more optimized and efficiency will improve The automatic

scheduling approach will be beneficial to the image processing

methods as it will provide easier and more efficient to the image

processing methodology.

References

[1] Yuting Yang, Sam Prestwood, Connelly Barnes, “VizGen: Accelerating

Visual Computing Prototypes in Dynamic Languages.”

[2] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan

Kelley, and Kayvon Fatahalian, “Automatically Scheduling Halide Image

Processing Pipelines,” in ACM Transactions on Graphics, 35(4), July

2016.

[3] B. Draper et al., "Compiling and optimizing image processing algorithms

for FPGAs," Proceedings Fifth IEEE International Workshop on

Computer Architectures for Machine Perception, Padova, Italy, 2000, pp.

222-231.

[4] Robert Stewart and Heriot-Watt. An Image Processing Language:

External and Shallow/Deep Embedding, RWDSL '16 Proceedings of the

1st International Workshop on Real World Domain Specific Languages,

2016.

[5] R. Rinker, J. Hammes, W. A. Najjar, W. Bohm and B. Draper, "Compiling

image processing applications to reconfigurable hardware," Proceedings

IEEE International Conference on Application-Specific Systems,

Architectures, and Processors, Boston, MA, USA, 2000, pp. 56-65.

[6] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner and W. Eckert,

"HIPAcc: A Domain-Specific Language and Compiler for Image

Processing," in IEEE Transactions on Parallel and Distributed Systems,

vol. 27, no. 1, pp. 210-224, 1 Jan. 2016.

[7] Jonathan Ragan-Kelly, Connelly Barnes and Andrew Adams, Halide: A

Language and Compiler for Optimizing Parallelism, Locality and

Recomputation in Image Processing Pipelines,” PLDI '13 Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation, pp. 519-530, 2013.

[8] N. Chugh, V. Vasista, S. Purini and U. Bondhugula, "A DSL compiler for

accelerating image processing pipelines on FPGAs," 2016 International

Conference on Parallel Architecture and Compilation Techniques

(PACT), Haifa, 2016, pp. 327-338.

[9] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-

Kelley, Noy Cohen Steven Bell, Artem Vasilye, Mark Horowitz, Pat

Hanrahan, “Darkroom: CompilingHigh-Level Image Processing Code

into Hardware Pipelines,” Proceedings of SIGGRAPH 2014.

[10] Pierre Guillou, Benoît Pin, Fabien Coelho and François Irigoin, “A

Dynamic to Static DSL Compiler for Image Processing Applications,”

2016.

[11] Hammes J.P., Draper B.A., Willem Böhm A.P. (1999) Sassy: A Language

and Optimizing Compiler for Image Processing on Reconfigurable

Computing Systems. In: Computer Vision Systems. ICVS 1999. Lecture

Notes in Computer Science, vol. 1542. Springer, Berlin, Heidelberg.

