
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

854

Abstract: The paper describes the design and development of

JAVASHOOT, an Intelligent Tutoring Systems (ITS) that teaches

java to university students. JAVASHOOT is a Web-enabled

system, and we discuss its architecture and techniques used to deal

with multiple students. We also discuss the plans for the evaluation

of the system and future work.

Keywords: Enter key words or phrases in alphabetical order,

separated by commas.

1. Introduction

Web-enabled educational systems are becoming the

dominant type of systems available to students. Web based

systems offer several advantages in comparison to standalone

systems. They minimize the problems of distributing software

to users and hardware/software compatibility. New releases of

systems are immediately available to everyone. More

importantly, students are not constrained to use specific

machines in their schools, and can access Web-enabled tutors

from any location and at any time. The time/location

independence is of enormous value for learning environments,

as flexibility and accessibility are extremely important for

learning.

The Intelligent Computer Tutoring Group (ICTG) has been

involved with developing intelligent tutoring systems for a

number of years. Our system aims to provide immediate and

customized instruction or feedback to learners, usually without

requiring intervention from a human factor. It has the common

goal of enabling learning in a meaningful and effective manner

by using a variety of computing technologies. There is a close

relationship between intelligent tutoring, cognitive learning

theories and design; and there is ongoing research to improve

the effectiveness of ITS. Countless domestic and global IT

companies, multinationals and other IT firms are constantly

looking for people with java skills. There are tons of good books

on the internet, but you won’t become a good programmer by

reading books. To become a programmer you need to write a

lot of code. JAVASHOOT. Intelligent Tutoring Systems

designs differ significantly from their historical computer-

driven predecessors. Rather than the one-size-fits-all strategy of

delivering content to a passive learner in those designs,

JAVASHOOT is able to customize the learning experience the

student receives based on factors such as pre-existing

knowledge, learning style, and the student's progress through

the content material. In spite of the lack of visibility of its

systems in the real world outside the rarified air of university

research labs, there is a modest amount of research suggesting

that intelligent tutoring systems can achieve remarkable

increases in student learning over traditional classroom

instruction.

2. Learning Java in Javashoot

A typical ITS will contain a number of conceptual

components, or models, that interact with one another. The

content model contains a web-like mapping of the content to be

learned, defining the prerequisites and dependencies between

the content elements. The student model is unique to each

learner and works in parallel with the content model to record

what the student does, and does not yet understand. Finally,

there is a method of delivering the instruction to the learner,

known as the pedagogical model.

Java is one of the most popular programming languages used

to create Web applications and platforms. It was designed for

flexibility, allowing developers to write code that would run on

any machine, regardless of architecture or platform. In thinking

about ITS, it is hard to envision a potentially more effective

system for instruction. Such systems contain a semantically

connected conceptualization of the content to be taught, a way

of knowing what the learner does and doesn’t understand, and

a delivery method that adapts that instruction accordingly. It

would appear that the early systems were not executed well

enough to become mainstream; but they should, nonetheless,

provide a rich foundation for future teaching machines to draw

lessons from, as these systems begin to use the computer's

power for more than simply delivering instruction. So in order

to make the students much more adroit in java, we have created

a platform where a candidate can come with a zero or little

knowledge and expand his/her skills as demanded by various

industries.

A login window will appear. To create a new profile, enter a

name and password and click register, followed by log in.

Javashoot – A Web Enabled Intelligent Tutorial

System that Teaches Java

Masoom Agrawal1, Anjali Tripathi2, Preeti Tuli3

1,2Student, Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional

Management and Technology, Raipur, India
3Assistant Professor, Department of Computer Science and Engineering, Shri Shankaracharya Institute of

Professional Management and Technology, Raipur, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

855

-If you do not wish to create a profile, enter "user" and

"password" in the respective fields for a default account.

-The slider will allow you to navigate the application.

-Example programming assignment:

For assignment 1 (Introduction) write in text area:

public static void main(String[] args){

System.out.println("Hello World!");}

and click submit or run.

-The system will write it to a class file, compile it, run it, and

read the outputstream and match it to a key.

Additional Features for final build:

-The main user interface has had a massive overhaul

-The companion now speaks to the user via the text field on the

left

-Companion speech is triggered by time. It follows the

decorator pattern

-The motivational companion will recommend a break every 10

minutes.

-After 30 minutes, the motivational companion becomes the

troll companion and taunts the user. (Can be adjusted or

deleted)

-User may toggle guided companion. This follows the decorator

pattern.

-When guided companion enabled, it will provide the user hints

when the user clicks the next button on quizzes.

-If answers are correct, it will indicate so in the companion text

panel.

-The control center now accounts for elapsed time. If you take

longer than 5 minutes on a quiz or assignment, it will affect your

standing.

-the control center is fully functional/will alter standing and

face based on performance

-A total of 6 quizzes are now present and they save data to the

user profile properly now.

-The content slides now contain buttons that will open helpful

websites in a frame.

Flash cards have been added to assist in studying.

The user may view his/her progress via a panel containing

progress bars.

If all six quizzes and all six assignments have been completed,

and the student is in good standing (happy face), the next time

the progress panel is accessed, it will display a certificate of

completion in a frame.

Universe and program clock follow the observer pattern

Control Center, Companion Message Panel and Program Clock

follow the singleton pattern.

The sequence of the steps is fixed: the student will only see

a Web page corresponding to the current task. However, the

student may ask for a new problem at any time during problem

solving. In addition to that, he/she may review the history of the

current session, or examine a global view of the student model.

When the student submits the solution to the current step, the

system analyses it and offers feedback. The first submission

receives only a general feedback, specifying whether the

solution is correct or not. If there are errors in the solution, the

incorrect parts of the solution are shown in red. On the second

submission, JAVASHOOT provides a general description of

the error, specifying what general domain principles have been

violated. On the next submission, the system provides a more

detailed message, by providing a hint as to how the student

should change the solution. The correct solution is only

available on student’s request.

Web-enabled systems use cookies or IP numbers to identify

the student who made a request. Those two approaches were not

suitable in our case. It was not possible to use the IP number, as

several students might be using the same machine. We did not

want to use cookies for identification purposes because cookies

reside on a specific machine and would prevent the student from

using the system from different machines. Instead, we identify

students by their login name, which is embedded in a hidden tag

of HTML forms and sent back to the server. If a student

accesses a page by following a link instead of accessing it

through a form, then user name is appended to the end of the

URL. It is also necessary to store student-specific data

separately from data about other students. All processing is

carried out within a single address space, and therefore there

must be a uniform mechanism for identifying students and

associating requests to corresponding student models. In order

to achieve this, we use a hash table that maps the string

representing a student name to their student object, which

contains all details pertaining to the student. Each action a

student performs in the interface is first sent to the session

manager, as it has to link it to the appropriate session and store

it in the student’s log. Then, the action is sent to the pedagogical

module, which decides how to respond to it. If the submitted

action is a solution to the current step, the pedagogical module

sends it to the student modeller, which diagnoses the solution,

updates the student model, and sends the result of the diagnosis

back to the pedagogical module. The pedagogical module then

generates feedback. If the student has requested a new problem,

the pedagogical module consults the student model in order to

identify the knowledge elements the student has problems with,

and selects one of the predefined problems that feature

identified misconceptions.

There are two feedback messages in the constraint, which are

given to the student if his/her solution is incorrect. The first

message is shorter, and tells the (5 (and (equalp (current-task

sol) 'closure) (not (null (attribute-set sol))) (bind-all ?a

(attribute-set sol) bindings)) (member ?a (closure sol) :test

'equalp)

"Each attribute that is an element of the set of attributes we

want to compute the closure of must appear in the closure."

"Remember the reflexivity rule? Each attributes determines

itself (A -> A).

 The general form of the reflexivity rule is:

If X is a superset of Y, or X=Y, then X -> Y"

 (?a "attribute-set"))

If the student still cannot correct the solution after this

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

856

message, JAVASHOOT will present the second message,

which explains the underlying domain principle that has been

violated (in this case, it is the reflexivity rule). The final element

of the constraint specifies the part of the solution that is

incorrect (in this case, that is the attribute to which variable a is

bound). This binding is used for highlighting the error.

3. The architecture of JAVASHOOT

Figure 2 illustrates the architecture of JAVASHOOT. As can

be seen, JAVASHOOT is based on a centralized architecture,

as many other existing Web-enabled ITSs (e.g. ELM-ART [3],

AST [11] and SQLT-Web [7]). Centralized tutors perform all

tutoring function on the server side, where all student models

are also kept. Distributed systems (e.g. ADELE [5], AlgeBrain

[2] or Belvedere [13]) also keep the student model on the central

server, but some of the tutoring functions are performed on the

client. JAVASHOOT is developed in Allegro Common Lisp

(ACL) [1] and uses the Allegro Serve Web server, which is an

extensible server provided with ACL. At the beginning of

interaction, a student is required to enter his/her name, which is

necessary in order to establish a session. The session manager

requires the student modeler to retrieve the model for the

student, if there is one, or to create a new model for a student

who interacts

Fig. 1. Architecture of Javashoot

Fig. 1. A screenshot from JAVASHOOT

With the system for the first time. A Web-based tutor must

be able to associate each request to the appropriate student

model. Some Web-enabled systems use cookies or IP numbers

to identify the student who made a request. Those two

approaches were not suitable in our case. It was not possible to

use the IP number, as several students might be using the same

machine. We did not want to use cookies for identification

purposes because cookies reside on a specific machine and

would prevent the student from using the system from different

machines. Instead, we identify students by their login name,

which is embedded in a hidden tag of HTML forms and sent

back to the server. If a student accesses a page by following a

link instead of accessing it through a form, then user name is

appended to the end of the URL.

4. Conclusions and future work

This paper presented the architecture and underlying

philosophy of JAVASHOOT, a Web-enabled ITS for teaching

database java. JAVASHOOT uses Constraint-based modelling

to model domain knowledge and the knowledge of its students.

However, unlike the previous tutors we developed,

JAVASHOOT is the first constraint based tutor that teaches a

procedural task. We have experienced no problems specifying

constraints for such a task. The system contains a problem

solver, capable of solving java problems. The knowledge base

contains 53 constraints that check the syntax and semantics of

students’ solutions, enabling it to analyze all students’

submissions. To analyze the semantics of solutions,

JAVASHOOT compares the student’s solution to the ideal

solution produced by the problem solver. The number of

constraints is likely to be higher, as we are currently working

on the decomposition task. JAVASHOOT is a Web-enabled

system, with a centralized architecture. Student models are kept

on the server, and all tutoring functions are also executed on the

server. The amount of information that needs to be transferred

from the browser to the server is not large, and we believe that

such architecture is appropriate. JAVASHOOT is developed in

AllegroServe, an extensible Web server that allows the

components of the system to be developed in Lisp. A special

component of the system called the session manager ensures

that a student’s actions are associated with her/his student

model, thus enabling the system to be used by multiple students

simultaneously. We plan to evaluate JAVASHOOT in a real

classroom in September 2002 at the University of Canterbury.

The system will be used in an introductory database course,

which has more than 170 enrolled students. We plan to compare

the students’ performance on a pre-test to their performance on

a post-test, after using JAVASHOOT. Information about all

sessions will be recorded in logs, and we will analyze how

students learn constraints, and also evaluate other types of

support the system offers, such as the open student model and

support for self-explanation.

Acknowledgement

The work presented here was supported by the Computer

Science Department, University of Canterbury. We thank Li

Chen for developing the interface.

References

[1] Allegro Common Lisp, Franz Inc, 1998.

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

857

[2] S. Alpert, M. Singley, P. Fairweather, Deploying Intelligent Tutors on the

Web: An Architecture and an Example. Int. J. Artificial Intelligence in

Education, 10, 1999, 183-197.

[3] P. Brusilovsky, E. Schwarz, G. Weber, ELM-ART: An Intelligent

Tutoring System on Wolrd Wide Web. In C. Frasson, G. Gauthier, A.

Lesgold (eds), Proc. 3rd Int. Conf. On Intelligent Tutoring Systems

(ITS’96), Springer, LCNS 1086, 1996, 261-269.

[4] R. Elmasri, S.B. Navathe, Fundamentals of database systems.

Benjamin/Cummings, Redwood, 1994.

[5] W.L. Johnson, E. Shaw, R. Ganeshan, Pedagogical Agents on the Web.

Proc. ITS’98 Workshop on Intelligent Educational Systems on the Web,

1998.

[6] M. Mayo, A. Mitrovic, Optimising Its behaviour with Bayesian Networks

and Decision Theory’. International Journal on Artificial Intelligence in

Education, 12(2), 2001, 124-153.

[7] A. Mitrovic, K. Hausler, Porting SQL-Tutor to the Web. Proc. ITS’2000

workshop on Adaptive and Intelligent Web-based Education Systems,

2000, 37-44.

[8] A. Mitrovic, B. Martin, M. Mayo, Using Evaluation to Shape ITS Design:

Results and Experiences with SQLTutor. User Modeling and User-

Adapted Interaction, 12(2-3), 2002, 243-279.

[9] A. Mitrovic, S. Ohlsson, Evaluation of a constraint-based tutor for a

database language, Int. J. Artificial Intelligence in Education, 10(3-4),

1999, 238-256.

[10] S. Ohlsson, Constraint-based Student Modeling. In Student Modeling:

The Key to Individualized Knowledge--based Instruction. Berlin:

Springer-Verlag, 1994, 167-189.

