
International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

701

Abstract: Machine learning has been used to improve compiler

performance for quite some time now. This optimization can be of

various kinds – reducing the code size, optimizing the code space,

automatically generating program features and optimizing

memory access patterns. In this article, we shed light upon the

relationship between compiler performance (optimization) and

machine learning, and the types of optimizations that could be

made.

Keywords: Genetic Algorithm (GA), Features, optimization,

Machine Learning (ML).

1. Introduction

A compiler does two things – translate the source code of a

program from a programming language into executable code,

and then optimize this translation. Our goal is to maximize

performance, which is also termed as optimization. Machine

learning is used to predict an outcome for a sample based on

past data. It can only learn from the data that we provide, and

the ability to predict making use of past information is related

to optimization. These optimizations are of several kinds, and it

is upon the user to decide what performance criteria he wants

to optimize for his program.

In this paper, we discuss various types of optimizations that

can be made, and present a way to blend them for better results.

The rest of the paper is laid out as follows: Section II talks about

the types of machine learning used in compilers, Section III

shows the various types of optimizations that can be applied to

compilers using machine learning, and Section IV concludes

the paper.

2. Types of machine learning used in compilers

A. Supervised learning

Supervised learning consists of three stages – feature

generation, building a model, and then using that model for

prediction. There are several features that can be used, such as

– dataset size, the number of instructions in a program, the data

structures used in the program, etc. The entire process can be

summarized as in Fig 1.

B. Unsupervised Learning

In unsupervised learning, we draw references from

unlabelled input data to determine hidden patterns in it. The

most widely used algorithm is the k-means clustering

algorithm, which groups the input data into k clusters based on

similarities between the objects in those clusters. Similar

objects are grouped together achieving high intra-cluster

similarity and low inter-cluster similarity. Each data point here

characterizes program behavior.

Fig. 1. The figure depicts a general supervised technique in machine

learning. A model is trained on the training sample which is then used to

predict on the unknown testing sample.

3. Types of optimizations

Machine learning can be adopted to pick the most suitable

compiler optimizations based on program features. The nature

of these features is therefore, of utmost importance. Various

optimizations based on program features are discussed below.

A. Optimization based on distribution of instructions

Abid M. Malik in [1] focuses on producing features by

exploiting the spatial information of a program. By spatial it

refers to the distribution of the instructions in the program.

These features are utilized by the predictive models which are

constructed using machine learning approach to select prime

compiler options for optimization. This spatial information is

mainly found inside the compiler in the form of a Data Flow

Graph (DFG). The nodes of such a graph store instruction and

their edges represent the relationship between the instructions.

The author tests this scheme against IBM Milepost-GCC

framework. Experimental results display the significance of the

spatial information in tuning the compiler optimization by

outperforming the Milepost-GCC framework.

Optimizing Compilation using Machine

Learning Models

Neha Sharma1, Nirvana Dogra2, Mohammed Annan3, A. Parkavi4

1,2,3Student, Dept. of Computer Science and Engg., M. S. Ramaiah Institute of Technology, Bengaluru, India
4Assistant Professor, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bengaluru, India

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

702

B. Optimization based on code space

Keith D. Cooper, Philip J. Schielke and Devika Subramanian

in [2] discuss about the problem of selecting well established

set of optimizations which is lone capable of producing optimal

results for a piece of code. Traditional approaches either

standardize some set of optimizations to be capable of

optimizing all programs or put the burden on the user by

providing them with large number of flags for achieving the

purpose. But these approaches had their shortcomings due to

which the author incorporated a new technique called Genetic

Algorithm to come up with an optimized sequence that would

result in smaller code size. Genetic algorithm is a search

technique which relies upon processes such as selection,

mutation and crossover to come up with solutions rather than

random selection. This paper has portrayed GA to be a good fit

to solve the problem of finding optimization sequences in

compilers due to its capability of handling large space of

population (in this case, sequences). Secondly, GA technique

makes use of a function (also called fitness function) that

assures good quality solutions. They are also quite flexible

when it comes to the time spent. Experiments showed that GA

outperformed the traditional hand-designed sequence method

on a given benchmark set by the authors.

C. Optimization based on automatic feature generation

Hugh Leather, Edwin Bonilla, Michael O’Boyle in [3] try to

bring out a novel method of optimization of compilers. The

authors use machine learning (ML) to improve the performance

of the compiler and make a comparative analysis to the

compilers that are handcrafted. The major focus is on finding

the features to be used for prediction using an ML model. This

is seen to be a necessity as only a good feature selection leads

to a good model.

For any ML model, feature selection is a major task and

essential for the creation of a good model. For a given program

there can be infinite number of features like number of

instructions or loop nest level, but selection of any arbitrary

features might not lead to a good model. While the selection of

features it must be by hand the following problems might be

encountered.

 Irrelevant features: Like discussed initially, there can

be infinite number of features but not all of them might

hold importance for the optimization of the compiler.

 Classification clashes: Sometimes, the features

selected can be same for different programs but this

does not guarantee the best feature selection.

 Classifier peculiarities: Similar programs may have

same features but this does not guarantee that the

feature producer will produce similar optimization

results. It is possible that a set of features might work

well for a program but might not work for another.

 Beyond simple features: There are high chances on

missing out some of the essential features after the

selection of the common ones. Creating new features

becomes harder with each selection.

Essentially three steps have been taken to provide the

optimizations climbed in this paper.

 Data generation

 Feature search

 Machine learning

 Data generation: Data generation requires gathering

data from the input. The data structures describing the

program are also extracted for collection of data.

 Feature search: A population of features is maintained

by the feature search which are derived automatically

for compiler (intermediate representation) IR.

 Machine learning: It gives us a feedback about how

good a feature is. A predictive model is constructed

depending on the best features whose quality is

decided based on the speedup or slowdown in

comparison to the original values.

Finally, the author concludes by comparing the normal GCC

compiler implementation and the state-of-the-art ML

techniques against his approach. It was found the there was a

76% performance improvement in comparison to GCC

compiler and a 48% improvement for the ML technique.

4. Conclusion

In this paper, we have discussed various novel optimizations

of compiler that have been brought by either exploiting the

spatial distribution of instructions or by automating the process

of feature generation and selection. It has been observed that

application of ML model can help in making the current

compilers highly optimized and are usually more efficient than

the hand written compilers. A future scope of study could be

inclusion of ML for good feature selection, generation and

exploitation of spatial property as a composite.

References

[1] A. M. Malik, "Spatial Based Feature Generation for Machine Learning

Based Optimization Compilation," 2010 Ninth International Conference

on Machine Learning and Applications, Washington, DC, 2010, pp. 925-

930.

[2] Keith D. Cooper, Philip J Schielke and Devika Subramanian,

“Optimization for Reduction of code spaces using genetic algorithms,”

1999.

[3] H. Leather, E. Bonilla and M. O'Boyle, "Automatic Feature Generation

for Machine Learning based Optimizing Compilation," 2009

International Symposium on Code Generation and Optimization, Seattle,

WA, 2009, pp. 81-91.

[4] M. Castro, L. F. W. Góes, C. P. Ribeiro, M. Cole, M. Cintra and J.

Méhaut, "A machine learning-based approach for thread mapping on

transactional memory applications," 2011 18th International Conference

on High Performance Computing, Bangalore, 2011, pp. 1-10.

[5] A. Matsunaga and J. A. B. Fortes, "On the Use of Machine Learning to

Predict the Time and Resources Consumed by Applications," 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing, Melbourne, VIC, 2010, pp. 495-504.

[6] M. Curtis-Maury et al., "Identifying energy-efficient concurrency levels

using machine learning," 2007 IEEE International Conference on Cluster

Computing, Austin, TX, 2007, pp. 488-495.

[7] X. Chen and S. Long, "Adaptive Multi-versioning for OpenMP

Parallelization via Machine Learning," 2009 15th International

International Journal of Research in Engineering, Science and Management

Volume-2, Issue-5, May-2019

www.ijresm.com | ISSN (Online): 2581-5792

703

Conference on Parallel and Distributed Systems, Shenzhen, 2009, pp.

907-912.

[8] Andre Xian Chang, Aliasgre Zaidy, Eugenio Culurciello, “Efficient

compiler code generation for deep learning Snowflake co-processor,” 1st

Workshop on Energy Efficient Machine Learning, 2018.

[9] Z. Wang and M. O’Boyle, "Machine Learning in Compiler Optimization,"

in Proceedings of the IEEE, vol. 106, no. 11, pp. 1879-1901, Nov. 2018.

[10] Antoine Monsifrot, Francois Bodin and Rene Quiniou, “A Machine

learning approach to automatic production of compiler Heuristics,”

International Conference on Artificial Intelligence: Methodology,

Systems, and Applications, pp. 41-50, 2002.

[11] John Thomson, Michael O’Boyle, Grigori Fursi n, Bjorn Franke,

“Reducing training time in a one-shot machine learning based compiler,”

International Workshop on Languages and Compilers for Parallel

Computing, pp. 399-407, 2009.

[12] Mark Stephenson and Saman Amara Singh, Martin and Una-May

O’Reilly, “Meta optimization: Improving compiler Heuristics with

Machine learning,” PLDI '03 Proceedings of the ACM SIGPLAN 2003

conference on Programming language design and implementation, pp. 77-

90, 2003.

[13] S. Kulkarni, J. Cavazos, C. Wimmer and D. Simon, "Automatic

construction of inlining heuristics using machine learning," Proceedings

of the 2013 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), Shenzhen, 2013, pp. 1-12.

[14] L. G. A. Martins, R. Nobre, A. C. B. Delbem, E. Marques and J. M. P.

Cardoso, "A clustering-based approach for exploring sequences of

compiler optimizations," 2014 IEEE Congress on Evolutionary

Computation (CEC), Beijing, 2014, pp. 2436-2443.

[15] Vincent. P, Larochelle H., Bengio Y., “Extracting and composing robust

features with denoising autoencoders,” ICML '08 Proceedings of the 25th

international conference on Machine learning, pp. 1096-1103, 2008.

