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Abstract: Machine learning has been used to improve compiler 

performance for quite some time now. This optimization can be of 

various kinds – reducing the code size, optimizing the code space, 

automatically generating program features and optimizing 

memory access patterns. In this article, we shed light upon the 

relationship between compiler performance (optimization) and 

machine learning, and the types of optimizations that could be 

made. 

 
Keywords: Genetic Algorithm (GA), Features, optimization, 

Machine Learning (ML). 

1. Introduction 

A compiler does two things – translate the source code of a 

program from a programming language into executable code, 

and then optimize this translation. Our goal is to maximize 

performance, which is also termed as optimization. Machine 

learning is used to predict an outcome for a sample based on 

past data. It can only learn from the data that we provide, and 

the ability to predict making use of past information is related 

to optimization. These optimizations are of several kinds, and it 

is upon the user to decide what performance criteria he wants 

to optimize for his program. 

In this paper, we discuss various types of optimizations that 

can be made, and present a way to blend them for better results. 

The rest of the paper is laid out as follows: Section II talks about 

the types of machine learning used in compilers, Section III 

shows the various types of optimizations that can be applied to 

compilers using machine learning, and Section IV concludes 

the paper. 

2. Types of machine learning used in compilers 

A. Supervised learning 

Supervised learning consists of three stages – feature 

generation, building a model, and then using that model for 

prediction. There are several features that can be used, such as 

– dataset size, the number of instructions in a program, the data 

structures used in the program, etc. The entire process can be 

summarized as in Fig 1. 

B. Unsupervised Learning 

In unsupervised learning, we draw references from 

unlabelled input data to determine hidden patterns in it. The  

 

most widely used algorithm is the k-means clustering 

algorithm, which groups the input data into k clusters based on 

similarities between the objects in those clusters. Similar 

objects are grouped together achieving high intra-cluster 

similarity and low inter-cluster similarity. Each data point here 

characterizes program behavior. 

 

 
Fig. 1.  The figure depicts a general supervised technique in machine 

learning. A model is trained on the training sample which is then used to 

predict on the unknown testing sample. 

3. Types of optimizations 

Machine learning can be adopted to pick the most suitable 

compiler optimizations based on program features. The nature 

of these features is therefore, of utmost importance. Various 

optimizations based on program features are discussed below. 

A. Optimization based on distribution of instructions 

Abid M. Malik in [1] focuses on producing features by 

exploiting the spatial information of a program. By spatial it 

refers to the distribution of the instructions in the program. 

These features are utilized by the predictive models which are 

constructed using machine learning approach to select prime 

compiler options for optimization. This spatial information is 

mainly found inside the compiler in the form of a Data Flow 

Graph (DFG). The nodes of such a graph store instruction and 

their edges represent the relationship between the instructions. 

The author tests this scheme against IBM Milepost-GCC 

framework. Experimental results display the significance of the 

spatial information in tuning the compiler optimization by 

outperforming the Milepost-GCC framework. 

 

Optimizing Compilation using Machine 

Learning Models  

Neha Sharma1, Nirvana Dogra2, Mohammed Annan3, A. Parkavi4 

1,2,3Student, Dept. of Computer Science and Engg., M. S. Ramaiah Institute of Technology, Bengaluru, India 
4Assistant Professor, Dept. of Computer Science and Engg., M. S. Ramaiah Inst. of Tech., Bengaluru, India 



International Journal of Research in Engineering, Science and Management  

Volume-2, Issue-5, May-2019 

www.ijresm.com | ISSN (Online): 2581-5792     

 

702 

B. Optimization based on code space 

Keith D. Cooper, Philip J. Schielke and Devika Subramanian 

in [2] discuss about the problem of selecting well established 

set of optimizations which is lone capable of producing optimal 

results for a piece of code. Traditional approaches either 

standardize some set of optimizations to be capable of 

optimizing all programs or put the burden on the user by 

providing them with large number of flags for achieving the 

purpose. But these approaches had their shortcomings due to 

which the author incorporated a new technique called Genetic 

Algorithm to come up with an optimized sequence that would 

result in smaller code size. Genetic algorithm is a search 

technique which relies upon processes such as selection, 

mutation and crossover to come up with solutions rather than 

random selection. This paper has portrayed GA to be a good fit 

to solve the problem of finding optimization sequences in 

compilers due to its capability of handling large space of 

population (in this case, sequences). Secondly, GA technique 

makes use of a function (also called fitness function) that 

assures good quality solutions. They are also quite flexible 

when it comes to the time spent. Experiments showed that GA 

outperformed the traditional hand-designed sequence method 

on a given benchmark set by the authors. 

C. Optimization based on automatic feature generation 

Hugh Leather, Edwin Bonilla, Michael O’Boyle in [3] try to 

bring out a novel method of optimization of compilers. The 

authors use machine learning (ML) to improve the performance 

of the compiler and make a comparative analysis to the 

compilers that are handcrafted. The major focus is on finding 

the features to be used for prediction using an ML model. This 

is seen to be a necessity as only a good feature selection leads 

to a good model. 

For any ML model, feature selection is a major task and 

essential for the creation of a good model. For a given program 

there can be infinite number of features like number of 

instructions or loop nest level, but selection of any arbitrary 

features might not lead to a good model. While the selection of 

features it must be by hand the following problems might be 

encountered.  

 Irrelevant features: Like discussed initially, there can 

be infinite number of features but not all of them might 

hold importance for the optimization of the compiler. 

 Classification clashes: Sometimes, the features 

selected can be same for different programs but this 

does not guarantee the best feature selection. 

 Classifier peculiarities: Similar programs may have 

same features but this does not guarantee that the 

feature producer will produce similar optimization 

results. It is possible that a set of features might work 

well for a program but might not work for another. 

 Beyond simple features: There are high chances on 

missing out some of the essential features after the 

selection of the common ones. Creating new features 

becomes harder with each selection. 

Essentially three steps have been taken to provide the 

optimizations climbed in this paper. 

 Data generation 

 Feature search 

 Machine learning  

 Data generation: Data generation requires gathering 

data from the input. The data structures describing the 

program are also extracted for collection of data. 

 Feature search: A population of features is maintained 

by the feature search which are derived automatically 

for compiler (intermediate representation) IR. 

 Machine learning: It gives us a feedback about how 

good a feature is. A predictive model is constructed 

depending on the best features whose quality is 

decided based on the speedup or slowdown in 

comparison to the original values. 

Finally, the author concludes by comparing the normal GCC 

compiler implementation and the state-of-the-art ML 

techniques against his approach. It was found the there was a 

76% performance improvement in comparison to GCC 

compiler and a 48% improvement for the ML technique. 

4. Conclusion 

In this paper, we have discussed various novel optimizations 

of compiler that have been brought by either exploiting the 

spatial distribution of instructions or by automating the process 

of feature generation and selection. It has been observed that 

application of ML model can help in making the current 

compilers highly optimized and are usually more efficient than 

the hand written compilers.  A future scope of study could be 

inclusion of ML for good feature selection, generation and 

exploitation of spatial property as a composite.  
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